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Spinor Bose gas in an elongated trap
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We examine a spinor Bose gas confined by an elongated trap. Since a spin-independent energy is much
higher than a spin-dependent energy in alkali species, the system exhibits different properties by changing a
radial confinement. We show that if a spin-dependent coupling is positive, a spin-liquid condensate, which
breaks the charge U(1) symmetry but preserves the spin rotational symmetry, can be realized in an intermediate
confinement regime. Properties of the spin-liquid condensate are visible if a temperature is lower than a spin gap
to characterize the spin-disorder property. If a temperature is higher than the gap but lower than a spin-dependent
coupling energy, on the other hand, a regime in which a spin sector is described by a semiclassical wave emerges.
A characterization in each regime by means of correlation functions and topological solitons is also discussed.
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I. INTRODUCTION

Quantum many-body physics in reduced dimension is
fundamentally different from that in higher dimensions [1].
When it comes to bosonic systems, while the presence
of a Bose-Einstein condensate (BEC) [2] is the natural
consequence for the systems in higher dimensions, there is
no BEC in an interacting one-dimensional (1D) system due
to quantum fluctuations [3,4]. Instead in many cases the
so-called Tomonaga-Luttinger liquid (TLL) [1], which is also
responsible for describing many fermionic 1D systems, is
realized.

A well-known criterion for the emergence of quantum 1D
systems is that temperature and interaction energy should
be much smaller than a confinement energy along higher
dimensional directions [1]. However, one may encounter a
nontrivial low-dimensional system if there are several energy
scales, each of which is energetically separated. A typical
example is a quasi-1D superconductor discussed in condensed
matter physics where an energy scale of electrons is much
higher than that of Cooper pairs. In this system, therefore, it is
expected that by changing a radial confinement properties of
the superconductor change despite the three-dimensional (3D)
motion in each electron [5,6].

Recently, on the other hand, cold atoms have provided
remarkable realizations of systems in reduced dimension
[7–9]. Practically speaking, such systems can be prepared by
making a trap very anisotropic [10–12] or by loading systems
on two-dimensional (2D) optical lattices [12–14].

In particular, one can consider a spinor Bose gas realized
in cold atoms [15,16] as a system with multiple energy scales.
Experimentally, this system has been realized with alkali
species such as 23Na and 87Rb where s-wave scattering lengths
to characterize interatomic interactions take similar values for
different spin channels. This implies that a spin-dependent
coupling is much smaller than a spin-independent coupling.
Therefore, a variance of spin can easily be restricted to one
direction compared with that of charge, which has indeed been
confirmed in Ref. [17].

In this paper, we examine a spinor Bose gas confined
by an elongated trap as illustrated in Fig. 1 and show that
the system experiences nontrivial properties by changing a
radial confinement. In particular, by considering a positive

spin-dependent coupling, we predict that in a region where a
charge sector is 3D while a spin sector is 1D, a spin-liquid
condensate [18–22] is realized. We also discuss temperature
effects and show that a regime where the spin sector is de-
scribed by a semiclassical wave [23–26] is achieved in certain
temperature regime, although it is difficult to obtain such a
regime in an antiferromagnetic quantum spin-1 system [23].
This difference can be attributed to the fact that there are
several length scales in spinor bosons, while there is only one
length scale in a quantum spin system. A characterization in
each phase by means of correlation functions and vortices is
also discussed.

II. MODEL

We consider spin-1 bosons in an elongated trap. The
Hamiltonian with U(1) × SO(3) symmetry is given by

H =
∫

d3x

{
ψ†

m

[
− �

2�

2M
+ V (x)

]
ψm

+ c0

2
(ψ†

mψm)2 + c1

2
(ψ†

mFmnψn)2

}
, (1)

where ψm is the boson field with the mass M , Fi (i = x,y,z)
are spin-1 matrices, and V (x) is a confined potential described
by a harmonic oscillator. In what follows, let us focus on a
situation that a confined potential is imposed only along the

radial direction, namely, V (x) = Mω2
⊥

2 (y2 + z2). In fact, such
a trapping has already been realized in Ref. [27]. The spin-
independent and spin-dependent couplings are respectively
expressed with s-wave scattering lengths as c0 = 4π�

2(a0 +
2a2)/3M and c1 = 4π�

2(a2 − a0)/3M , where af (f = 0,2)
is the s-wave scattering length of the total spin-f channel.

III. SPINOR BOSE GAS IN AN ELONGATED TRAP

Here we discuss a spin-1 Bose gas for c1 > 0 in different
harmonic oscillator frequencies at absolute zero.

A. 3D regime

We consider a regime obeying the following condition:

nc0,nc1 � �ω⊥, (2)
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FIG. 1. (Color online) Spinor Bose gas in an elongated trap with
a cross section s.

where n is the density, and nc0 and nc1 denote the interaction
entries with respect to charge and spin, respectively. In this
regime, since there are a number of transverse modes, the
system is treated as 3D, and thereby the Gross-Pitaevskii
approximation is justified at least for a weak-coupling case.
This approximation is nothing but the substitution of a c-
number field φm for the original field. Such a c-number field
can be determined by the saddle point equation known as the
Gross-Pitaevskii equation. It can be shown that for c1 > 0 the
ground state is a polar phase whose order parameter is given
by [28,29]

〈ψm〉 ≡ φm = √
n(0,1,0)T , (3)

where T represents transposition. We also note that in general
n has a dependence of r⊥, which may be approximated by the
Thomas-Fermi profile due to the condition (2) [2].

Let us next look at a symmetry breaking. From (3), we see
that 〈F〉 = 0 and the charge U(1) symmetry is spontaneously
broken, which is accompanied by an off-diagonal long-range
order (ODLRO). In addition, it is easy to show [30]

〈[ψm′ ,ψ†
m(Fi)mnψn]〉 	= 0, (i = x,y), (4)

which states that the spin rotational symmetry is also sponta-
neously broken as SO(3) → SO(2). An accurate order param-
eter manifold including discrete symmetry can be obtained by
operating eiθ eiFzαeiFyβeiFzγ into Eq. (3), where θ is the phase
of the charge U(1) and (α,β,γ ) are Euler angles, and it is
shown to be [31]

G/H = [U (1) × S2]/Z2. (5)

The above order parameter manifold physically represents that
while the charge U(1) symmetry and rotational symmetry
along the x and y axes are broken, the rotational symmetry
along the z and spin-charge coupled discrete Z2 sym-
metry remain.

Due to the spontaneous symmetry breaking, gapless modes
known to be Nambu-Goldstone modes emerge. The number
of Nambu-Goldstone modes is expected to be equal to the
dimension of the order parameter manifold, which is three
in Eq. (5). In fact, we can check this forecast by means of
the analysis of collective modes. To this end, we consider
fluctuation effects from the c-number field and expand it
up to the linear order of the fluctuation field in the Gross-
Pitaevskii equation, which leads to the Bogoliubov equation.
By diagonalizing it, we obtain the following Bogoliubov
modes [28,29]:

Ec,k =
√

εk(εk + 2nc0), (6)

Efi,k =
√

εk(εk + 2nc1), (i = x,y) (7)

where εk = �
2k2/(2M), Ec,k denotes the Bogoliubov mode

coming from charge fluctuations, and Efx,k and Efy,k are
related to spin fluctuations. Thus, it turns out that all of the
above Bogoliubov modes are shown to be linear gapless
by taking the limit k → 0, which is consistent with the
Nambu-Goldstone theorem.

B. 1D regime

We next consider a situation that atomic motions along the
transverse directions are frozen and the gas is kinematically
1D, which implies

nc0,nc1 � �ω⊥. (8)

In this case, the conventional Gross-Pitaevskii approach is no
longer appropriate due to the absence of a BEC. Nevertheless,
we can employ a semiclassical analysis to describe low-energy
properties in the system.

A key idea is an introduction of a number-phase represen-
tation in bosons [32],

ψm = √
nnmeiθm, (9)

with a constraint
∑

m n2
m = 1. If we discuss such a represen-

tation in spinless bosons, there are two variables, density and
phase. Since the density is a massive degree of freedom, we can
integrate out it as far as low-energy properties in the system are
concerned. As a consequence, we obtain a phase-only action,
which is essentially the TLL whose spectrum is linear gapless.
This is indeed the correct low-energy effective action [1]. For
the case of spinor bosons, on the other hand, while the situation
is much involved due to the multiple number-phase variables,
the technique used in spinless bosons is still applicable.
First, by solving saddle point equations in the number-phase
representation, we can specify massive and massless degrees of
freedom at the lowest order. Second, by expanding the effective
potential from the minimum with respect to the massive
degrees of freedom up to second order and then integrating
them out, we arrive at the following effective action [31,32]:

S = STLL + SNLσM, (10)

STLL = �Kc

2π

∫
dt dx

[
1

vc

(∂tθ+)2 − vc(∂xθ+)2

]
, (11)

SNLσM = �

2g

∫
vs dt dx[(∂tm/vs)

2 − {(∂xm)2}]. (12)

Here STLL is the TLL action reflecting in a superfluid prop-
erty, which can be described by the velocity vc = √

n̄c̄0/M

and the so-called TLL parameter Kc = π�
√

n̄/(Mc̄0) with
the line density n̄ = ns and effective 1D coupling c̄i =
ci/s [33]. On the other hand, SNLσM is the nonlinear σ

model action describing the spin dynamics with velocity vs =√
n̄c̄1/M , dimensionless coupling constant g =

√
Mc̄1/(�2n̄),

and constraint m2 = 1. The variables in the above ac-
tion are associated with (9) via θ± = (θ1 ± θ−1)/2, and
m = (sin θ cos θ−, sin θ sin θ−, cos θ )T with θ = sin−1[(n1 −
n−1)/

√
2]. Thus, we could obtain the action with the spin-

charge separation, which is naturally expected in 1D sys-
tems [1].
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Here we look at excitation properties in each sector. As for
the charge sector, the gapless property of the spectrum should
be maintained unless there is a commensurate potential, which
introduces cosine terms and may make it gapful. As for the spin
sector described by the 1+1-dimensional nonlinear σ model,
the excitation is going to be gapped. This is in contrast with
the 2D or 3D cases where the spin excitation is gapless due
to the absence of infrared divergences [34]. In fact, the above
properties can be shown exactly for the c0 = c1 case [35] where
the so-called Takhatajan-Babujian limit [36,37] is realized
and the Bethe ansatz solution is available. In addition, the
corresponding analysis shows that the ground state consists
of a string solution forming a spin-singlet pair, which is
responsible for the spin gap.

We now come back to the semiclassical analysis to
see correlation properties. The above semiclassical analysis
indicates that the bosonic field can be expressed as

ψm ≈ √
neiθ+ [(m1 + im2)/

√
2,m3, − (m1 − im2)/

√
2]T .

(13)

Thus, we see that the one-particle correlation function in
a long range decays exponentially since 〈mi(r)mj (0)〉 ∼
δi,j e

−�sr/(�vs ), where �s is the spin gap originating from
the nonlinear σ model action (12), while a correlator of
the charge sector decays algebraically as 〈eiθ+(r)e−iθ+(0)〉 ∼
r−1/(2Kc), where r =

√
x2 + v2

j t
2 (j = c or s). Thereby, the

dominant correlation turns out to be the following spin-singlet
pair correlation:

〈P †
0 (r)P0(0)〉 ≈ 〈e−2iθ+(r)e2iθ+(0)〉 ∼ r−2/Kc , (14)

where P0 = 2ψ1ψ−1 − ψ0ψ0. As a consequence, it follows
that the ground state of a 1D spinor Bose gas for c1 > 0 is the
spin-liquid TLL.

C. Intermediate regime

In accord with the analyses discussed above, we next
consider an intermediate confinement regime defined by

nc1 � �ω⊥ � nc0. (15)

The above states that the charge sector is 3D while the spin
sector is 1D; that is, in the latter sector a quantum fluctuation
is important.

To consider this regime, we come back to the number-
phase representation of bosons discussed in the 1D regime. An
important observation is that the number-phase representation
of Eq. (13) is still applicable for higher dimensional cases.
Then, the crucial point is that for higher dimensions a quantum
fluctuation effect trying to break the order is weak enough,
which ensures that excitations both from the charge and spin
are gapless and leads to the ODLRO in the system. Thus, for
higher dimensions Eq. (13) corresponds to (3) up to U(1) ×
SO(3) rotations.

On the other hand, from the condition (15), the spin
correlation length ξs = �/

√
2Mnc1 providing a typical length

scale in the spin sector is larger than the radial oscillator
length a⊥ = √

�/Mω⊥, while the charge correlation length
ξc = �/

√
2Mnc0 as a typical length scale in the charge sector

is smaller than a⊥. This implies that the effective low-energy
action describing the intermediate regime is given by

S = Sc + SNLσM, (16)

Sc = �
2
∫

dt d3x

√
n

4Mc0

[
1

vc

(∂tθ+)2 − vc(∇θ+)2

]
, (17)

where SNLσM corresponds to Eq. (12). Since the effective
action of the charge sector is three dimensional, a quantum
fluctuation effect is significantly reduced to cause the emer-
gence of a BEC. As in the case of the 3D regime, the density
profile may be captured by the Thomas-Fermi one due to
nc0 � �ω⊥. On the other hand, the effective action of the
spin sector is the 1+1-dimensional nonlinear σ model, and
therefore, the spin-singlet formation and corresponding spin
gap emerge.

Now, we look at correlation properties in this regime. A
striking property is that the one-particle correlation function
decays exponentially as in the case of the 1D regime, which
implies the absence of an ODLRO of the one-particle density
matrix. This is due to the fact that while 〈e−iθ+(r)eiθ+(0)〉 is a
constant even in a long range, the one-particle correlation itself
disappears in the corresponding limit since 〈mi(r)mj (0)〉 ∼
δi,j e

−�sr/(�vs ). At the same time, this property does not mean
the absence of an ODLRO in the system itself. In fact, the
spin-singlet pair correlation function, 〈P †

0 (r)P0(0)〉 remains
nonzero in a long range. Namely, as in the case of fermionic
superfluids described by the BCS theory, the ODLRO comes
out from the two-particle density matrix.

Here we point out that the BEC realized in this intermediate
regime can be regarded as a spin-liquid condensate discussed
in Refs. [18–22]. This is a bosonic state such that the spin rota-
tional symmetry remains unbroken while the U(1) charge sym-
metry breaks spontaneously. In our model, the U(1) symmetry
breaking causes the ODLRO of the two-particle density matrix
not of the one-particle density matrix due to the spin-disorder
property. We notice the difference between the spin-liquid
condensate and the spin-singlet pair condensate obtained with
a single-mode approximation [38–41]. In the latter case, while
the spin rotational symmetry is maintained, the ODLRO of
the one-particle density matrix exists since such a singlet-pair
formation occurs between bosons with zero momentum. An
emergence of bosonic condensates without the ODLRO of the
one-particle density matrix is considered to be unusual.

IV. DISCUSSION

A. Characterization in each phase

Now we wish to discuss a characterization in each phase
in light of experimental observables. To this end, we focus
on correlation properties and vortices, both of which can
be measured in experiments. When it comes to correlation
properties, the one-particle density matrix to confirm an
ODLRO in a spinless BEC has been measured in Refs. [42,43],
and pair correlation function to confirm existence of pair
condensation has been measured in Ref. [44] via the atom
shot noise in absorption imaging. On the other hand, the several
topological excitations including vortices in a spinor BEC have
been reported in Refs. [45–52].
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In the 3D regime (2), whose existence has been confirmed
by the experiment [53], the ODLRO of the one-particle density
matrix in the m = 0 component should appear in the order
parameter (3). In addition, since the system size is bigger
than the charge and spin correlation lengths, both integer and
half-quantized vortices are topologically allowed due to H =
Z2 � U (1) and π1(G/H ) = Z in the polar phase, where �

and π1 mean the semidirect product and first homotopy group,
respectively.

In the 1D regime (8), vortex excitations are forbidden
due to a⊥ < ξc,ξs . The one-particle density matrix decays
exponentially in contrast with the 3D case. At the same time,
since the charge part can be described by the TLL, we expect
a quasi-long-range order of the pair correlation function as
Eq. (14).

In the intermediate regime (15), an integer quantum vortex
is allowed although a half-quantum vortex is forbidden. This is
due to the fact that there is (no) the rotational degree of freedom
along the radial direction in the charge (spin) sector since ξc <

a⊥ < ξs . The one-particle correlation decays exponentially as
in the case of the 1D regime. On the other hand, the pair
correlation function acquires the ODLRO because of the 3D
properties in the charge sector.

B. Temperature effect

We turn to consider effects of a finite temperature within a
range where the effective theory discussed above is applicable.
This implies that the thermal lengths (�vc/T and �vs/T )
should be longer than the cutoff length of the theory in each
sector, which is of the order of the healing lengths (ξc and ξs).
In other words, we wish to consider the temperature satisfying
T < nc0,nc1.

Although in the 3D regime we do not expect any modi-
fication of the argument at least in this temperature regime,
we need to care about temperature effects in the 1D and
intermediate regimes. This is because in both cases there is
the spin gap �s as an additional energy scale in the spin
sector. The typical behavior of the spin gap is known to be
�s ∼ nc1e

−2π/g in the weak-coupling limit, and is �s ∼ nc1 in
the strong-coupling limit [54]. The dimensionless coupling g is
expected to be small in typical experiments of cold atoms, and
therefore �s can be much smaller than nc1, which is in contrast
with an antiferromagnetic quantum spin-1 system where a spin
gap is of the order of an exchange energy [26]. This is due to
the fact that although an exchange energy is essentially only
one energy scale in such a spin system, g in a spinor gas can
be determined by the competition among the three different
length scales: a2 − a0, a⊥, 1/n1/3. On the other hand, the
realization of the strong-coupling regime would be important
to obtain �s > T , which ensures the spin-liquid properties
discussed above. To this end, an optical lattice technique,
optical Feshbach resonance [55], or microwave Feshbach
resonance [56] to tune the spin-dependent interaction may
be promising.

At the same time, even when the weak-coupling regime is
realized and �s < T is met, we have a chance to obtain an
interesting regime �s < T < nc0,nc1. Due to T < nc1, the
usage of the nonlinear σ model to describe the low-energy
property of the spin sector is still reasonable. Then it turns

out that the spin sector is described by a semiclassical
wave, which has been originally discussed in quantum spin
systems [23–26]. In this regime, a decay of a two-point
correlation function in spin 〈mi(r)mj (0)〉 can be characterized
by a correlation length ξ ∼ �vs

T
log(T/�s). An important point

is that a crossover with respect to different behaviours of the
correlator occurs around ξ ; that is, the decay can be described
by algebraic one for |r| � ξ while it can be described by expo-
nential one for r � ξ [1]. Thus, the properties of this regime
can be again captured by means of the correlation function.

C. Species

So far, spin-1 bosons for c1 > 0 have been discussed, which
have been realized in 23Na [53]. In this case, the ratio of
the spin-dependent coupling to the spin-independent coupling
c1/c0 is indeed small and is of the order of 10−2, which may
open a window of opportunity to see the properties discussed
above.

We can also consider 87Rb atoms where the ferromagnetic
condensate has been realized in the 3D regime since c1 <

0 [57]. In this case, the ratio |c1|/c0 is of the order of
10−3, which is smaller than the spin-1 23Na case. At the
same time, the change of properties for c1 < 0 may not
be drastic compared with that for c1 > 0 since it is known
that a ferromagnetic property always maintains even in a 1D
case [58].

In addition, a spin-2 BEC has also been realized with
87Rb [57,59]. In the spin-2 case, we need an additional case
since there are two-independent spin-dependent couplings, c1

and c2, each of which describes the spin-spin coupling and
pair-singlet coupling, respectively. For a spin-2 87Rb BEC
realized in three dimensions, the ground state is expected to
be a nematic phase, which is realized for c1 > 0 and c2 < 0.
The ratios c1/c0 and |c2|/c0 are respectively of the order of
10−2 and 10−3. The nematic phase has similar properties as
the polar phase in the sense that there is no magnetization
and the spin-singlet amplitude takes a nonzero value in the
ground state [39,60,61]. However, the nematic phase has an
unusual property since it has an accidental SO(5) symmetry
at the semiclassical level, which leads to the emergence
of quasi-Nambu-Goldstone modes [62]. Thus, such modes
gain masses due to the explicit symmetry breaking from the
interaction term with SO(3) via the quantum fluctuations even
in three dimensions. When it comes to the reduced dimensional
case, however, the spin-singlet projection operator possessing
SO(5) symmetry in the spin-2 case are responsible for spin
gaps and then, SO(3) symmetric interaction may just cause the
renormalization on the gaps [54]. Thus, as in the case of the
polar phase in a spin-1 BEC, the excitation spectra except for
the charge sector obtain gaps in such a spin-2 Bose gas in one
dimension.

In addition, the ratios of a spin-dependent coupling to
a spin-independent coupling may be changed by using the
optical [55] and microwave Feshbach resonances [56].

V. SUMMARY

We have discussed spinor bosons confined by an elongated
trap and shown that the system experiences different properties
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by changing a radial confinement. At absolute zero, we have
predicted the spin liquid condensate phase realized in an
intermediate regime where the charge sector is 3D while the
spin sector is 1D. In this condensate, the charge U(1) symmetry
is spontaneously broken but the spin rotational symmetry is
unbroken due to a spin gap. We have pointed out that at a
finite temperature higher than the spin gap but lower than
a spin-dependent coupling, there is the regime where the
spin sector can be described by a semiclassical wave. We
suggest that each phase can be characterized by properties of
correlation functions and topological defects.

We also comment on a possible experiment to probe the
phases discussed above. The simplest way would be to measure
the spin gap since each phase can be discussed by existence

or nonexistence of the gap or its magnitude as shown in
the previous sections. Then a magnon contrast interferometer
recently demonstrated to measure a magnon gap in Ref. [63],
magnetic resonance spectroscopy [64] or Bragg spectroscopy
in a spin-selective manner [2] may be utilized to measure the
spin gap.

It would also be interesting to extend our study to higher
spin cases.
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