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Scattering theory for Floquet-Bloch states
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Motivated by recent experimental implementations of artificial gauge fields for gases of cold atoms, we study the
scattering properties of particles that are subjected to time-periodic Hamiltonians. Making use of Floquet theory,
we focus on translationally invariant situations in which the single-particle dynamics can be described in terms of
spatially extended Floquet-Bloch waves. We develop a general formalism for the scattering of these Floquet-Bloch
waves. An important role is played by the conservation of Floquet quasienergy, which is defined only up to the
addition of integer multiples of �ω for a Hamiltonian with period T = 2π/ω. We discuss the consequences of this
for the interpretation of “elastic” and “inelastic” scattering in cases of physical interest. We illustrate our general
results with applications to the scattering of a single particle in a Floquet-Bloch state from a static potential and
the scattering of two bosonic particles in Floquet-Bloch states through their interparticle interaction. We analyze
examples of these scattering processes that are closely related to the schemes used to generate artificial gauge
fields in cold-atom experiments, through optical dressing of internal states, or through time-periodic modulations
of tight-binding lattices. We show that the effects of scattering cannot, in general, be understood by an effective
time-independent Hamiltonian, even in the limit ω → ∞ of rapid modulation. We discuss the relative sizes of the
elastic scattering (required to stabilize many-body phases) and of the inelastic scattering (leading to deleterious
heating effects). In particular, we describe how inelastic processes that can cause significant heating in the current
experimental setup can be switched off by additional confinement of transverse motion.
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I. INTRODUCTION

There have been long-standing research efforts to find ways
to cause neutral atoms to experience artificial gauge fields,
extending the capabilities of ultracold gases as simulators of
quantum many-body systems [1–5]. Such gauge fields can
mimic the orbital effects of magnetic fields on a charged
particle and can generate topological energy bands, which
could lead to novel many-body phases of degenerate fermionic
or bosonic atoms. A wide variety of theoretical proposals for
how to generate artificial gauge fields has been put forward,
and there have now been several successful experimental
implementations of artificial gauge fields using schemes
inspired by these proposals [6–16]. These advances open up
possibilities for future studies of strongly correlated physics,
analogous to (fractional) quantum Hall physics, in cold-gas
setups with topological band structures.

All of the methods used to generate these artificial gauge
fields exploit periodic time-dependent forcing [17]. Quantum-
mechanical systems with a periodic time dependence allow a
treatment within Floquet theory [18,19], the analog of Bloch’s
theorem for time periodicity instead of space periodicity. This
allows the reformulation of the time-periodic Schrödinger
equation in terms of an eigenvalue problem which enables the
use of well-known methods from time-independent quantum
theory in contrast to the general time-dependent case in which
such methods are generally not applicable. Such time-periodic
systems are more easily accessible to a theoretical treatment
while still going beyond equilibrium physics and showing
a range of novel phenomena. They can be used to simulate
otherwise inaccessible static Hamiltonians, as well as to show
genuinely nonstatic behavior.
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One class of methods to generate artificial magnetic fields
makes use of the internal structure of the atomic species.
By coupling different internal states by optical (two-photon)
transitions and by using a specific spatial dependence of the
laser fields, one can engineer a geometric phase equivalent
to the motion of charged particles in a magnetic field [4,5].
Such methods can be implemented for particles in the
continuum [9,20–23] or very shallow optical lattices [24–26],
for particles in deep species-dependent optical lattices [27–29],
and for collective “spin” degrees of freedom in lattices [30].

Another class of methods uses periodic shaking or
modulation of species-independent optical lattices. Notable
effects include the tuning of magnitude and sign of the
tunneling strength, leading to the phenomenon of coherent
destruction of tunneling in two-level systems [31] and in
tight-binding models to dynamic localization [32], a tunable
superfluid-to-Mott transition [33], as well as the possibility to
invert bands. More sophisticated driving protocols to generate
artificial gauge fields with high fluxes have been proposed
and experimentally realized [10,34–42]. These approaches
do not depend on any internal structure of the atoms and
are thus applicable to a wide range of species. One can
divide these proposals into two classes: Either the lattice
position is periodically changed [11,34,43], referred to as
shaking in the following, or the on-site energies in a static
lattice are modulated by additional time-dependent fields
in such a way as to resonantly restore tunneling between
different sites in the lattice [10,13,14,41]. In all of these
systems the time-periodic driving effectively modifies the
tunneling elements, allowing these to become complex with
site-dependent phases. Interpreting these as arising from a
Peierls substitution, the tunneling phases correspond to the
presence of an artificial gauge field.

With the experimental achievement of artificial gauge fields
using these techniques, as demonstrated by at least the resulting
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single-particle phenomena, it is of great interest now to
consider the consequences for systems of many interacting
quantum particles. Much work has been done in exploring the
effective interactions between particles in the dressed-state
bands [44–51], which leads to many novel features. However,
this work has largely ignored the aspects relating to the periodic
time dependence giving conservation only of the Floquet
quasienergy, but see [52–55] for notable exceptions. In [54]
the stability of a Bose-Einstein condensate in a shaken lattice
was analyzed and the system was shown to have both stable
and unstable phases.

Generally, time-periodic driving with characteristic angular
frequency ω allows the absorption of energy quanta �ω from
the field. At the single-particle level, there is a periodic
energy transfer, as typical of a Rabi oscillation in a dressed
state, which does not lead to entropy generation or other
heating processes. However, in the presence of interparticle
interactions, one can anticipate that this energy absorption can
cause forms of “inelastic” scattering that can have a heating
effect. Possible processes include the excitation of particles
into higher bands or even particle loss, or absorption of energy
into transverse directions, also resulting in heating and loss
of particles from the experimental region. These processes
necessitate investigation.

Scattering through time-periodically modulated potentials
has been studied previously in other contexts [56–59]. In
particular, the transport properties of time-driven mesoscopic
systems have been investigated [60,61] and formulations been
given within the Keldysh formalism [62], as well as in the
Floquet framework [63]. A general formulation for oscillating
scatterers in terms of a Floquet scattering matrix was developed
in [64]. The study of the transport in periodically driven
systems and the associated scattering properties is still an
active field of research [65–69]. The distinctive feature of the
systems considered here is that the noninteracting Hamiltonian
is periodically driven and the scattering is caused by static
two-body interactions, not by an external oscillating one-body
scattering potential. Due to the Floquet structure of the single-
particle states, the interactions will effectively become time
dependent. Importantly, this also means that for the systems
we consider the asymptotic states will be time dependent,
in contrast to the situation usually assumed in transport
measurements in which the time dependence is restricted to the
scattering region. Thus, while the underlying theory describing
the scattering processes and the resulting phenomena (like
the absorption of quanta �ω from the photon field during
scattering) is similar, the physical origin of those processes is
very different. Such systems have been studied in the context of
atom-atom and atom-electron collisions in intense laser fields
and a perturbation theory in the particle interactions has been
established [70–73].

In this paper we study the scattering processes that arise
in these time-driven systems. The focus is on elucidating
the role of two-body elastic scattering processes, required
for the realization of strongly correlated many-body phases,
as compared to inelastic two-body processes, which will
limit experimental lifetimes or the temperatures achievable
in experiments. We begin with a discussion of the Floquet
theory framework in Sec. II, which is used to introduce the
concepts and notation required for the following treatment

of two model systems in Sec. III. First, Sec. III A presents
a two-level system coupled by laser fields which serve to
illustrate effects of time-periodic driving on the scattering
properties in the continuum case. Second, in Sec. III B we
consider a lattice with time-modulated on-site energies to
highlight similarities and differences to the continuum. We
present the results of two-particle scattering in a model relevant
to current and future cold-gas experiments realizing artificial
gauge fields in this fashion.

II. FLOQUET THEORY

Our studies rely on the application of Floquet the-
ory [18,19,31], as is relevant for quantum-mechanical systems
with periodic time dependence. We make use of an inner
product in an extended space, which allows the usage of
the language and many of the techniques developed for
time-independent Hamiltonians [74], the basis of which we
now review.

Consider a time-varying Hamiltonian H (t) that is periodic
in time, H (t + T ) = H (t), where T = 2π/ω is the oscillation
period and ω the associated frequency. The corresponding
time-dependent Schrödinger equation[

H (t) − i�
∂

∂t

]
|�(t)〉 = 0 (1)

allows solutions of a specific form called Floquet states. These
may be written as

|�α(t)〉 = exp[−iεαt/�]|�α(t)〉, (2)

where |�α(t)〉 is called the Floquet mode which has the same
time-periodicity as the Hamiltonian, i.e., it satisfies |�α(t +
T )〉 = |�α(t)〉, and εα is called the quasienergy, which is only
defined up to multiples of �ω. Due to the time periodicity of
the Floquet modes, one may expand them as

|�α(t)〉 =
∑
m

eimωt
∣∣φm

α

〉
. (3)

Clearly, the same physical state is obtained from

|�α(t)〉 = exp[−i(εα + m�ω)t/�] exp[imωt]|�α(t)〉
= exp

[−iεm
α t/�

]∣∣�m
α (t)

〉
, (4)

where the shifted states are defined as |�m
α (t)〉 =

exp[imωt]|�α(t)〉 with quasienergy εm
α = εα + m�ω for any

integer number m.
The formal analogy to Bloch’s theorem is now evident:

Just as the (discrete) spatial translational invariance of a lattice
Hamiltonian leads to Bloch functions with an exponential
plane-wave part and a periodic part labeled by the crystal
or quasimomentum k, so too does the invariance of the
Hamiltonian under discrete time translation t → t + T cause
the Floquet states to consist of an exponential part and a
periodic part labeled by the quasienergy ε. Just as the Bloch
quasimomentum k is only defined up to reciprocal lattice
vectors and conventionally taken to lie in the first Brillouin
zone (BZ), so too the Floquet quasienergy is defined only up to
the addition of �ω. One may then define ε0

α to lie in the range
−�ω/2 < ε0

α � �ω/2. However, as we discuss below, other
conventions for the Floquet energies may be more suitable and
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physically transparent: For example, one might choose εα,0 in
such a way as to most closely correspond to the eigenenergies
of a static Hamiltonian.

Defining the Hermitian operator H = H − i� ∂
∂t

, one sees
that the Floquet modes themselves satisfy an eigenvalue
equation

H�α(t) = εα�α(t), (5)

with the additional restriction that �α(t) must be a periodic
function of period T . Moreover, clearly, the shifted Floquet
modes �m

α (t) satisfy the same equation, but with their shifted
eigenvalues εm

α . As eigenfunctions of a Hermitian operator,
they form a complete and orthogonal basis set with respect to
a suitably extended inner product. This is achieved via [19,74]

〈〈
�n

α

∣∣�m
β

〉〉 = 1

T

∫ T

0
dt

〈
�n

α(t)
∣∣�m

β (t)
〉 = δα,βδn,m, (6)

where 〈�n
α(t) | �m

β (t)〉 denotes the usual inner product between
state vectors at equal times. Moreover, at equal times the
Floquet modes form a complete set for the Hilbert space of H ,∑

α

|�α(t)〉〈�α(t)| = 1̂, (7)

where 1̂ denotes the identity in the Hilbert space of H only,
i.e., not including the space of time-periodic functions on
which H acts. This formulation allows one to carry over many
of the techniques known from time-independent quantum-
mechanical systems and extend them to the time-periodic case
by use of the scalar product (6).

A. Scattering theory

The theory of scattering within the Floquet framework [70]
is most conveniently described in the interaction picture
of quantum mechanics. The conceptional difference in the
scattering of Floquet states arises from the fact that the
interaction picture is defined with respect to a time-periodic
noninteracting Hamiltonian H0(t) in contrast to the more
conventional case of a static noninteracting Hamiltonian. The
special properties of the associated propagator, encoding the
fact that energy is only conserved modulo �ω, will ultimately
lead to inelastic scattering processes.

We consider a Hamiltonian of the form H (t) = H0(t) + V ,
which is split into a noninteracting part H0 that describes free
particle motion, and an interaction V that describes the particle
scattering. The noninteracting Hamiltonian H0(t) consists of
a static part and a time-periodic single-particle coupling term
that is strong and thus must be treated in a nonperturbative
way, whereas the interaction V is treated in the framework
of perturbative scattering theory. We assume that V is time
independent, as this is relevant in the physical situations
discussed later, but the analysis can be readily extended to
general time-dependent V (t).

We define the unitary time-evolution operator U0(t,t ′)
associated with H0(t) by

|�0(t ′)〉 = U0(t,t ′)|�0(t)〉. (8)

Due to the time dependence of H0(t) this operator depends on
both start and end times and, due to the time periodicity, has a

special structure. Specifically, it has a spectral representation
as

U0(t,t ′) =
∑

α

e−iεα (t ′−t)/�|�0,α(t ′)〉〈�0,α(t)| (9)

=
∑
α,n,m

e−iεα (t ′−t)/�e−i(nωt−mωt ′)∣∣φm
0,α

〉〈
φn

0,α

∣∣. (10)

We define the states in the interaction picture in the usual way
via

|�I(t)〉 = U0(t,t0)|�(t)〉, (11)

which then satisfy the Schrödinger equation

i�∂t |�I(t)〉 = V I(t)|�I(t)〉, (12)

with

V I(t) = U0(t,t0)V U0(t0,t). (13)

The corresponding time-evolution operator U I(t0,t) then sat-
isfies the differential equation

i�∂tU
I(t0,t) = V I(t)U I(t0,t), (14)

with the initial condition U I(t0,t0) = 1̂. Rewritten as an integral
equation,

U I(t0,t) = 1̂ − i

�

∫ t

t0

dt ′ V I(t ′)U I(t0,t
′), (15)

it allows the usual iterative solution in the Dyson series,

U I(t0,t) = 1̂ − i

�

∫ t

t0

dt ′ V I(t ′) + O(V 2). (16)

The full unitary evolution operator is then given by

U (t0,t) = U0(t0,t)U
I(t0,t). (17)

This treatment clarifies in what way the usual scattering
theory can be applied to Floquet states. The only difference
arises via the use of the propagator U0(t,t0) [Eq. (9)], whose
structure therefore determines the differences to the standard
case of a time-independent Hamiltonian. Since every Floquet
state generically contains components that evolve with phases
e−i(ε+m�ωt)/� for all integer m, V I(t) will most generally
contain time-dependent terms oscillating with e−i(�ε+m�ωt)/�,
where �ε = εα − εβ is the quasienergy difference of any
two Floquet states. Therefore, it is immediately apparent
that generically a transition between an initial state with
quasienergy εi and a final state with quasienergy εf = εi +
m�ω for any integer m can be induced by a static interaction
V due to the structure of the Floquet states. Keeping only the
term that is first order in V leads to the Born approximation for
the scattering, which reduces to the application of the Floquet
Fermi golden rule for transition rates. Including higher orders
in the scattering potential will lead to a further mixing of the
Floquet states at the same quasienergy, but will not change
the qualitative picture described based on the Floquet Fermi
golden rule.

B. Floquet Fermi golden rule

The extension of Fermi’s golden rule to the Floquet
framework, called the Floquet Fermi golden rule (FFGR), was
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presented in Ref. [75]. Since it is central to the applications
described below, here we present a simple derivation of the
FFGR following from the above propagator.

We consider a case in which V is switched on at t = 0
and compute transition rates from an initial state |�i〉 to
final states |�f〉. We take the initial state at t = 0 and the
final state at all times to be Floquet eigenstates of the
unperturbed Hamiltonian H0(t), i.e., |�i(t = 0〉 = |�0,i(t =
0)〉 and |�f(t〉 = e−iεα t |�0,α(t)〉. For notational simplicity we
drop this subscript indicating the states of the unperturbed
Hamiltonian in the following.

Thus, the relevant amplitude is

A(i → f,t) = 〈�f(t)|U (0,t)|�i(t = 0)〉 (18)

= 〈�f(t)|U0(0,t)U I(0,t)|�i(t = 0)〉 (19)

= 〈�f(t = 0)|U I(0,t)|�i(t = 0)〉. (20)

Using the expansion up to first order of the time-evolution
operator U I(0,t) we obtain for the transition amplitude in the
case of i �= f

A(i → f,t) = −i

�

∫ t

0
dt ′〈�f(0)|V I(0,t ′)|�i(0)〉 (21)

= −i

�

∫ t

0
dt ′〈�f(0)|U0(t ′,0)V U0(0,t ′)|�i(0)〉

(22)

= −i

�

∫ t

0
dt ′e−i(εi−εf )t ′/�〈�f(t

′)|V |�i(t
′)〉 (23)

=
∑
n.m

−i

�

∫ t

0
dt ′e−i(εi−εf−(n−m)�ω)t ′/�

〈
φm

f

∣∣V ∣∣φn
i

〉
(24)

=
∑
n.m

e−i(εi−εf−(n−m)�ω)t/� − 1

(εi − εf − (n − m)�ω)
V mn

fi (25)

=
∑
l.m

e−i(εi−εf−m�ω)t/� − 1

(εi − εf − m�ω)
V ll+m

fi , (26)

where to get from Eq. (22) to Eq. (23) we used the spectral rep-
resentation of the propagator Eq. (9) and the orthogonality of
the Floquet modes at equal times. In Eq. (25) we have defined
the matrix element V mn

fi = 〈φm
f |V |φn

i 〉 of the perturbation V

between the nth Fourier component |φn
i 〉 of the initial Floquet

mode |�i(t)〉 = ∑
n einωt |φn〉 and the mth Fourier component

|φm
f 〉 of the final Floquet mode |�f(t)〉 = ∑

m eimωt |φm
f 〉.

From the transition probability, P (i → f,t) =
|A(i → f,t)|2, one derives the FFGR by computing the rate
γi→f = limt→∞ P (i → f,t)/t . In contrast to the derivation
of the usual Fermi golden rule, the amplitude contains two
sums over the Fourier components of the Floquet modes.
The sum over m allows the emission or absorption of energy
quanta m�ω during the scattering process. In computing
the transition rates m is fixed by the resonance condition
εi − εf = m�ω. With this in mind the standard steps lead to

γi→f =
∑
m,l,n

2π

�
δ(εi − εf − m�ω)V nn+m

fi V l+ml
if . (27)

As a final step we may rewrite this in a more convenient form
as

γi→f =
∑
m

2π

�
δ
(
ε0

i − ε0
f − m�ω

)∣∣〈〈�m
f

∣∣V ∣∣�0
i

〉〉∣∣2
, (28)

where |�m
f (t)〉 = eimωt |�0

f (t)〉 are the shifted Floquet modes
introduced above. Written in this way the rate has the same
form as the conventional Fermi’s golden rule apart from the
additional summation over m and the use of the extended
scalar product. The explicit sum over m justifies the remarks
that only quasienergy is conserved or equivalently that energy
is only conserved up to quanta of �ω. Transitions with the
absorption or emission of m�ω will occur within the FFGR if
V nn+m

fi = 〈φn
f |V |φn+m

i 〉 �= 0 for some n, i.e., if the interaction
couples different Fourier components of the Floquet modes.

C. Inelastic scattering

In light of the fact that for a time-periodic Hamiltonian
only the quasienergy is conserved, it is important to consider
the definition of “inelastic scattering” in these circumstances.
One obvious choice for the quasienergies is to reduce all
to a BZ −�ω/2 < ε0

α � �ω/2. However, this choice may be
inconvenient and even hide some of the relevant physics.

We illustrate this by describing two simple examples.
As a first example, consider a single particle for which the

Floquet energy spectrum of H0(t) consists of Floquet-Bloch
waves with a parabolic energy dispersion as a function of
the dimensionless wave vector k, with ε0

k = �ω(k2 − 1/2);
see Fig. 1. (The dimensions and energy offset are chosen for
presentational convenience. We present a model leading to
a similar case in Sec. II D below.) The single-particle states
of this unperturbed time-periodic Hamiltonian can be fully
described by an energy dispersion that is a continuous function
of wave vector k. Within the Floquet framework, one can
equally well choose to reduce the quasienergies to a BZ, shown
as the set of bold curves in Fig. 1. In terms of the reduced
quasienergies the dispersion is discontinuous and there is a

FIG. 1. (Color online) Unbounded single-particle dispersion
ε0
k /(�ω) ∝ k2 as a function of dimensionless wave vector k reduced to

the first BZ (bold lines) and continuous dispersion with periodically
repeated images (dashed lines). Scattering an initial state [red
(middle) circle] to final state [green (left) circle] would be considered
elastic and scattering from initial state [red (middle) circle] to a
different branch [blue (right) circle] would be considered inelastic.
When regarding these processes with respect to the continuously
defined dispersions, elastic scattering corresponds to no change in
the Floquet index m, whereas inelastic scattering changes m.
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FIG. 2. (Color online) Bounded single-particle dispersion
ε(k)/(�ω) = −0.4 cos(k) as a function of dimensionless wave vector
k in the energy BZ with periodically repeated images (left) and
contours of the reduced two-particle quasienergy (right). Depicted
is a two-particle scattering process during which two particles
initially in the band minimum [red (middle) circles] scatter into
higher quasienergy states [blue (left and right) circles]. This process
conserves the reduced two-particle quasienergy or equivalently can
be viewed as one-particle scattering into the lower shifted dispersion
(gray circle).

discrete infinite set of quasienergetically degenerate momenta.
When a potential V that breaks translational symmetry is in-
troduced, it can cause one-body scattering from an initial state
(e.g., the red dot) to the final states of the same quasienergy
(e.g., the green or blue dots). Given the simple nature of the
parabolic energy dispersion for the unperturbed single particle,
it is natural to call the transition to a different branch “inelastic”
(red to blue) and the transition staying within the same branch
“elastic” (red to green). This may be conveniently achieved
by defining ε0

k = �ω(k2 − 1/2) to depend continuously on
the dimensionless wave vector k (i.e., not to be restricted to
−�/ω/2 < ε0

k � �ω/2) and by considering the whole family
of periodically repeated dispersions (the dashed lines in Fig. 1):
“inelastic” scattering (i.e., between different branches) then
corresponds to a change in the Floquet index m.

The relevance of these considerations become even more
apparent for two-particle scattering. As a second example,
we consider scattering of two particles occupying an energy
band (on a lattice) that has a bounded dispersion, e.g., each
particle experiences the band structure of the form ε0

k /(�ω) =
−0.4 cos(k) depending on the dimensionless wave vector k,
shown in Fig. 2 with its periodic repetitions. From a naive
interpretation of the single-particle spectrum, in which one
ignores the periodically repeated spectra, one would say
that two particles at the bottom of the band k = 0 with
quasienergy ε = −0.4�ω would be forbidden from scattering
by energy conservation. However, the total two-particle energy
is ε2 = −0.8�ω, which would have to be mapped to a
quasienergy 0.2�ω to lie in the range −�ω → �ω/2. Thus,
scattering is, in fact, allowed to a number of states for which
cos(k1) + cos(k2) = −0.5. One such possible scattering event
is depicted in the figure where the two initial particles in the
band minimum [red (middle) circles] scatter to a final state
[blue (left and right) circles]. One might also consider the
reduced two-particle dispersion, contours of which are shown
in Fig. 2. Clearly, scattering from the center to a region around
the corners of the BZ now becomes possible, so two particles in
the band minimum are not stable anymore. Those are processes

that become allowed only within the Floquet description and
are called inelastic. If the (two-particle) quasienergies are
defined to be continuous with respect to the variable k, those
correspond to a term m �= 0. For example, using the viewpoint
of the repeated zone for the quasienergy, the above scattering
process involves the transition of one particle (depicted gray
in Fig. 2) to a copy of the Floquet band shifted down by �ω

(i.e., a transition with m = 1).
Based on these examples and the applications below,

we provide a general definition of “inelastic scattering” of
Floquet-Bloch waves. We consider the Floquet-Bloch spec-
trum for a single particle and define the quasienergy for m = 0,
ε0
k,τ , to be a continuous function of the wave vector k (which

will be a vector in dimensions d > 1). The index τ accounts
for any other discrete quantum numbers—e.g., band, or spin
indices—which characterize the Floquet-Bloch state. The full
set of Floquet modes is obtained via εm

k,τ = ε0
k,τ + m�ω. In any

scattering event, the particle (or particles) must start and finish
in states labeled by these indices (k,τ,m) (at long times before
and after the collision). We define all those scattering events
which involve a change of either the discrete label τ or of the
Floquet index m (or both) to be “inelastic.” This definition of
inelastic scattering accounts both for collisions in which the
band index of one or both particles changes and for collisions
that would not have occurred under a naive interpretation of
the energy bands where the repeated copies spaced by �ω are
ignored.

D. Toy model

To illustrate the preceding discussion of the scattering
properties of Floquet states, we consider a toy model for
scattering in the presence of Raman dressing of internal
states. We consider a single particle (or relative particle
coordinate) with two internal states and the Hamiltonian
H (t) = H0(t) + V with

H0(t) = p2

2M
1 +

(
0 �e−iωt

�eiωt −�ω

)
(29)

and

V = δ(x)

(
g0 + g1 gc

gc g0 − g1

)
. (30)

The Floquet modes are given as

�m
k,τ = 1√

2L
eimωteikx

(
1

τeiωt

)
, (31)

with quasienergies εm
k,τ = �

2k2

2M
+ τ� + m�ω, where L is the

system size and labels are the quasimomemtum k, the band
index τ = ±1, and the Floquet mode number m. Note that
this actually corresponds to two shifted copies of a single
parabolic dispersion which is shown in Fig. 1 and for which
the implications within the Floquet framework have been
discussed above.

We begin the discussion of the scattering by a treatment
within the FFGR. The rate of scattering from initial state
�i to final state �f is given by Eq. (28), with �m

(i/f) the
Floquet modes associated with �m

(i/f) with quasienergies εm
i/f =

ε(i/f) + m�ω as described in Sec. II. The argument of the
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quasienergy-conserving δ function reads

�
2k2

f

2M
= �

2k2
i

2M
+ (τi − τf)� − m�ω, (32)

which shows that a transition to a final state with m < 0 (m >

0) corresponds to an absorption (emission) of energy m�ω

from the driving field. This may be converted into kinetic
energy or into a change of the bands, or both. Transitions
with m = 0 can still convert the difference between the band
energies into kinetic and vice versa, but the total energy of the
states remain the same.

We take the initial and final states to be �i = �0
ki,τi

and
�m

f = �m
kf ,τf

, respectively, and the matrix element is computed
as 〈〈

�m
f

∣∣V ∣∣�0
i

〉〉 = 1/(2L) δm,0 [(g0 + g1) + (g0 − g1)τiτf ]

+ 1/(2L) δm,1 τigc + δm,−1 τfgc. (33)

As the Floquet modes (31) contain two frequency com-
ponents at m and (m + 1), single-particle scattering within
FFGR allows, at most, the absorption of a single quantum �ω.
Moreover, clearly for gc = 0 no inelastic processes (�m = 0)
take place and particles can only scatter elastically between the
two bands. However, for gc �= 0 particles can absorb energy
during scattering (�m �= 0).

The elastic scattering rate is given by

γki,τ→kf ,τ = 1

L

2π

�
|g0|2 ρτ (εi). (34)

For the inelastic rates we distinguish between those processes
which only convert kinetic energy into band energy and vice
versa, which for our basis choice correspond to no change m

and those that change m. The inelastic rate for band-changing
collisions with no energy absorption is

γki,τi→kf ,−τi = 1

L

2π

�
|g1|2 ρ−τi (εi), (35)

assuming that a band-changing transition is energetically
allowed by Eq. (32) with m = 0, and the inelastic scattering
rate with a change in total energy is given by

γki,τi→kf ,τf = 1

L

π

2�
|gc|2 ρτf (εi ± �ω), (36)

with the density of states ρτ (ε) defined for the single-particle
dispersion ε0

k,τ per unit length.
In one dimension (1D) the corresponding cross sections

read σel = 2M2g2
0

�4
1
k2 for elastic collisions for which k = ki = kf

and σm=0
inel = 2M2g2

1
�4

1
kikf

for band-changing energy-conserving
collisions for which ki and kf satisfy Eq. (32) with m = 0. The
inelastic scattering cross section for absorption or emission of

�ω is σ
m�=0
inel = 2M2g2

c

4�4
1

kikf
, where ki and kf satisfy Eq. (32) with

m = ±1. The divergences in the cross sections at low energies
(small ki) stem from two factors. First from the division by the
incoming flux which accounts for the 1/ki factor present in
all cross sections and, second, from the final density of states
which is proportional to 1/kf in 1D.

Assuming a regime in which band-changing collisions are
not allowed in collisions without absorption of energy, i.e.,
initial particles in the lower band and εi < 2�, and further
εi < �ω and �ω > 2� such that emission of energy during

scattering is not possible and band-changing collisions are
allowed with the absorption of energy, the ratio of the total
cross sections is given by

σ 1D
inel

σ 1D
el

= g2
c

4g2
0

[
1√

1 + �ω/εkin
i

+ 1√
1 + (�ω − 2�)/εkin

i

]
,

(37)

with εkin
i = �

2k2
i /(2M). These expressions suggest that to

achieve strong elastic scattering as compared to inelastic
scattering it is advantageous to work at small εkin

i . However,
at very low energies the Born approximation becomes invalid,

certainly breaking down when σel � 1, thus for εkin � Mg2
0

�2 .
Using this value in Eq. (37), we obtain a natural lower limit
for the ratio of inelastic to elastic cross sections.

The corresponding expression in 2D is

σ 2D
inel

σ 2D
el

= g2
c

4g2
0

× 2, (38)

where the factor of 2 is due to the fact that the inelastic
scattering cross section has two contributions from the band-
changing and the band-conserving scattering processes. Thus,
in 2D there is no energy dependence, and the relative size of
inelastic and elastic scattering is simply controlled by the ratio
of the relevant interaction parameters. In 3D one finds

σ 3D
inel

σ 3D
el

= g2
c

4g2
0

[√
1 + �ω/εkin

i +
√

1 + (�ω − 2�)/εkin
i

]
, (39)

which shows that inelastic scattering becomes increasingly im-
portant compared to elastic scattering at low kinetic energies.
Unless gc/g0 is very small, this could lead to experimental
difficulties in achieving stable strongly correlated phases of
dressed-state particles at low energies in 3D settings. This
model provides a simple example of how the suppression
of inelastic compared to elastic scattering for low-energy
particles may be favored by the confinement of free motion
to low dimensions.

We emphasize that the inelastic scattering rate and cross
sections only depend on ω via the final density of states. In
particular, in the limit ω → ∞, the rate vanishes in 1D, but
is constant in 2D and divergent in 3D. Thus, the dynamics
in higher than 2D are not in any way described by the
average Hamiltonian even for ω → ∞, but rather inelastic
scattering with an infinitely high energy transfer occurs in this
case. (In view of the contact interaction, the matrix element
remains nonzero for arbitrarily high momentum transfer, hence
arbitrarily large final-state energy.)

We now consider the effects of terms that are higher order
in the scattering potential. From the higher-order terms in
the Dyson series equation (16) one can see that to order V n

transitions with an energy absorption or emission of n�ω are
allowed for this specific model if gc �= 0. However, in this case
it is more transparent to perform a unitary transformation to
the eigenstates of the noninteracting Hamiltonian,

H̃ = U †HU − i�U †∂tU

= p2

2M
1 +

(
� 0
0 −�

)
+ Ṽ (t), (40)
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with

Ṽ (t) =
(

g0 g1

g1 g0

)
+ gc

(
cos ωt i sin ωt

−i sin ωt cos ωt

)
. (41)

In this representation Ṽ (t) contains two frequency components
at ±ω and at order Ṽ n allows the absorption of n�ω of
energy. This derivation has the additional advantage that it
provides a natural explanation for the inelastic scattering in this
model. Whenever the unitary transformation that diagonalizes
the time-periodic noninteracting Hamiltonian H0(t) com-
mutes with the interaction U †V U = V (or, more generally,
leaves it time independent) no inelastic scattering can occur.
This exactly corresponds to the case in which V I(t) [Eq. (13)]
only picks up the trivial phase dependence due to the difference
in quasienergies.

This toy model is special in two aspects. Each Floquet
mode contains only two frequency components, because the
Hamiltonian contains only rotating-wave terms. Moreover,
in the internal-state basis each internal-state component has
a single oscillation frequency. As a consequence, inelastic
scattering only occurs if these internal states are coupled by the
interaction, i.e., if gc �= 0. If one adds counter-rotating terms
to the Hamiltonian, the Floquet modes do, in fact, contain all
frequency components and inelastic scattering is possible even
for gc = 0.

From the discussion of this toy model we draw the following
conclusions. First, the scattering properties of a time-periodic
Hamiltonian are not encapsulated by some effective time-
independent Hamiltonian: Of the infinite set of momentum
states that have the same quasienergy, and therefore could be
coupled by scattering, we have found that the rate of coupling
depends both on the detailed time-dependence of the Floquet
modes and on the structure of the interaction. In particular,
the scattering properties of a time-periodic Hamiltonian with
frequency ω cannot be described by an effective “time-
averaged” Hamiltonian even in the limit ω → ∞. Second,
we have shown how the FFGR may be used to compute
transition rates to lowest order in the interaction potential and
that higher-order corrections captured by the full Dyson series
can modify the picture emerging from FFGR but do not change
the qualitative scattering properties.

III. APPLICATIONS

Following these preliminary considerations and the de-
velopment of the formalism of scattering theory for parti-
cles in time-periodic Hamiltonians, we now turn to discuss
applications to situations of physical interest. We consider
the two-particle scattering processes in cases where the one-
particle states are Bloch waves arising from some “dressed”
states. We consider two cases that are representative of
physical implementations that have recently been studied in
experiments: the use of Raman coupling of internal states
to generate gauge fields in the continuum and the use of
periodic modulation of site energies to form vector potentials
on optical lattices. Our interest is in the sizes of “inelastic”
two-body scattering processes (which have deleterious effects
of heating) as compared to the remaining elastic processes
(which are required for the formation of strongly correlated
phases). Although our approach may be applied to fermions

or bosons, or to two distinguishable particles, and may be
extended to any general interaction potentials, for simplicity
we focus on the case of bosons with contact interactions.

A. Continuum (Raman) coupling model

We consider a model for the creation of artificial vector
potentials in the continuum by dressing of two internal
states, σ = ±, similar to the experimental implementa-
tions [9,20,21,45,76–80]. However, the states may be either
internal (spin) states of the atomic species coupled by optical
transitions or subbands of a suppressed additional spatial
dimension coupled with a suitable time-periodic potential
perturbation [79,80]. For simplicity we mainly treat the system
in 1D, assuming tight confinement in the other two directions.
We briefly comment on the extension to a 2D model by adding
free motion in a second dimension.

The system is described by the Hamiltonian

H (t) =
∫

dx �
†
σ ′(x)

[
p2

2M
1σ ′σ + Vσ ′σ (x,t)

]
�σ (x), (42)

where �†
σ (x) is a creation operator for bosons in internal state

σ . The coupling matrix V describes the internal dynamics of
the atoms interacting with the laser field. It is given by

V(x,t) =
(

�/2 ��/2e−iωt+2ikr x

��/2eiωt−2ikr x −�/2

)
, (43)

with an energy splitting � between internal states and the
coupling of strength �� between internal states due to the
laser fields taken to be of the rotating-wave form. As described
in [20], such a system may arise as the effective two-level
description of Raman-coupled spin states in which case the
splitting and coupling strength are also to be understood as
effective quantities for the two photon transitions involved.

The interaction Hamiltonian is

Hint = 1

2

∫
dx

∑
σ

gσ�†
σ (x)�†

σ (x)�σ (x)�σ (x)

+ g2

∑
σ

�
†
−σ (x)�†

σ (x)�−σ (x)�σ (x)

+ gc

∑
σ

�†
σ (x)�†

σ (x)�−σ (x)�−σ (x), (44)

describing general contact interactions with species-dependent
strength gσ , interspecies coupling with strength g2, and
species-changing coupling with strength gc. The relative sizes
of these couplings depend on the physical origin of the two
internal states. For two (hyperfine) spin states, the gc term does
not conserve the spin projection and is therefore is not present if
spin-rotation symmetry is preserved [81]. However, if the two
internal states are two states of position motion—for example,
two vibrational subbands [79,80]—then gc is proportional to
the usual contact interaction modified by a geometric factor
describing the wave function overlap between bands. In the
specific case of Refs. [79,80], the two internal states are
the s and p bands of an optical lattice, and the couplings
are gσ ∝ g

∫
dx |wσ (x)|4, g2 ∝ g

∫
dx |ws(x)|2|wp(x)|2, and

gc ∝ g
∫

dx w∗
s (x)w∗

s (x)wp(x)wp(x), where g is the appropri-
ate 1D contact interaction strength and wσ the Wannier orbital
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of the band σ = s(p). Thus, the couplings (gσ , g2, and gc) are
all nonzero and of comparable magnitude.

1. Single-particle states

Our discussion of the single-particle states follows the one
given in [5] with the main exception that the explicit time
dependence of the states is kept within the Floquet theory
description.

The noninteracting Hamiltonian H0 couples only two
components and can be expressed with respect to the operators
φ
†
1(k) = φ

†
1,k+kr

and φ
†
2(k) = φ

†
2,k−kr

eiωt , where φ
†
σ,k creates an

internal-state σ particle in a plane-wave state. Then H0 reduces
to a sum over independent 2 × 2 blocks of the form

H0(k) =
(

�
2(k+kr )2

2M
− �δ/2 ��/2

��/2 �
2(k−kr )2

2M
+ �δ/2

)
, (45)

where �δ/2 = �ω/2 − �/2 and we dropped an overall con-
stant energy shift �ω/2. Note that this implies that the
eigenstates will be mixtures of different (internal) states at
different momenta where the composition will depend on
the quasimomentum k. We choose the recoil energy Er =
�

2k2
r /2M as the unit of energy and kr as the unit of momentum

defining dimensionless parameters �̃ = ��/Er , δ̃ = �δ/Er ,
and k̃ = k/kr . The Hamiltonian becomes

H0(k) = Er

(
(k̃ + 1)2 − δ̃/2 �̃/2

�̃/2 (k̃ − 1)2 + δ̃/2

)
(46)

and the Floquet modes are

�m
k,τ = Nk,τ

(
δ̃ + 4k̃ + τ

√
�̃2 + (4k̃ − δ̃)2

�̃

)
eimωt , (47)

with the normalization factor

Nk,τ = 1/
√

L{[δ̃ + 4k̃ + τ

√
�̃2 + (4k̃ − δ̃)2]2 + �̃2}−1/2

(48)

for a system of size L. Defining the components of the τ = ±
eigenvector with respect to φ

†
1(k), φ

†
2(k) as aτ (k) and bτ (k),

respectively, these states read in the original basis as

�m
k,τ (x) =

(
aτ (k)eikrx

bτ (k)e−ikr xeiωt

)
ei(kx+mωt). (49)

Note at this point that the coupling in the rotating-wave
approximation leads to a wave function in which each
component in the internal-state basis has a single oscillation
frequency, i.e., m ω and (m + 1) ω for the components of �m

k,τ .
As a consequence, inelastic scattering processes can only
occur if these internal states are coupled by the interaction,
as has been mentioned in the discussion of the toy model
before.

The corresponding quasienergies are

εm
k,τ = Er [k̃2 + τ

√
�̃2 + (4k̃ − δ̃)2] + m�ω. (50)

The dispersion for different characteristic values of the
parameters is shown in Fig. 3. First, for no detuning �δ/Er = 0
both bands are symmetric around k/kr = 0. The character of

FIG. 3. (Color online) Dispersion E/Er as a function of k/kr

[see Eq. (50)], including an energy offset to have zero minimum. The
top row shows the dispersion for �δ/Er = 0 and ��/Er = 1 on the
left and ��/Er = 4 on the right and the bottom row for the same
parameters in the case of �δ/Er = 1.

the lower band changes as a function of ��/Er , as discussed
in [45]. For ��/Er < 4 (left column of Fig. 3) it has three
distinct extrema of which the one at k/kr = 0 is a maximum
and two global degenerate minima at k/kr = ±|k0|. For
��/Er � 4 (right column of Fig. 3) it only has a single global
minimum at k/kr = 0. The gap between upper and lower band
is in both cases given by ��. For nonzero detuning, both bands
become skewed, lifting the symmetry under k → −k and the
degeneracy between the minima of the lower band present
for ��/Er < 4. The shift of the minimum of the dispersion
to nonzero k can be interpreted as the effect of a nonzero
electromagnetic vector potential [4].

Note that the noninteracting Hamiltonian H0 is in-
variant under two continuous symmetry operations: modi-
fied spatial translations generated by Op̂ = 1p̂ + krσz, and
modified temporal translations generated by OÊ = 1i�∂t −
�ωσz/2, where σz = diag(1,−1) denotes the third Pauli
matrix. The corresponding finite symmetry operations are
translations multiplied by a state-dependent phase fac-
tor, diag(eikra,e−ikr a)Tx→x+a and diag(e−iωa/2,eiωa/2)Tt→t+a .
These symmetries imply the conservation of both the momen-
tum k and the energy E and the single-particle eigenstates.
The single-particle states can thus be characterized by their
momentum k and energy E, both of which can take unbounded
values: There is no BZ for momentum or energy, owing to the
existence of the continuous symmetry. It is for this reason
that no BZ structure (in energy or momentum) appears in
Fig. 3.

2. Two-body scattering

We now study whether, through their mutual interaction,
two particles that both start in plane-wave states in the lower
band can undergo scattering into the higher band or scattering
into higher quasimomentum states in the same band via the
absorption of energy quanta �ω from the time-dependent
fields.

In discussing the two-body scattering, it is interesting to
consider the interplay of the interparticle interaction Hint and
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the above finite symmetry operations. One finds that these
symmetries commute with the gσ and g2 terms, but that both
symmetries are broken by the gc coupling term. However, there
remains a discrete symmetry, namely, when including the gc

interaction term the full Hamiltonian is still invariant under
discrete spatial and temporal translations by x → x + π/kr

and t → t + 2π/ω. Thus, while in the noninteracting model
both momentum k and energy E are strictly conserved, in the
presence of the gc interaction term scattering processes that
change the momentum by integer multiples of 2kr and the
energy by multiples of �ω are allowed, or, put differently,
for gc �= 0 only quasimomentum and quasienergy remain
conserved quantities.

We compute the two-body scattering rate using the
FFGR (28). The initial state consists of two particles in
the lower band �m

k,− with their momentum centered at the
minimum k0 of the single-particle dispersion, i.e., k1 = k0 + k

and k2 = k0 − k, respectively, i.e.,

|ψi〉 = �
†
k1,−�

†
k2,−|vac〉, (51)

and the final state with two particles in any of the bands with
momentum q1 and q2,

|ψf〉 = ∣∣ψq1,τ1;q2;τ2

〉 = �†
q1,τ1

�†
q2,τ2

|vac〉. (52)

The general two-particle Floquet mode can be written as a
four-component spinor in the basis of (internal) states (|1〉|1〉,
|1〉|2〉, |2〉|1〉, and |2〉|2〉) as

�m
τ1,k1;τ2,k2

= P

⎛
⎜⎜⎜⎜⎝

aτ1 (k1)aτ2 (k2)eikr (x+y)

aτ1 (k1)bτ2 (k2)e−ikr (y−x)eiωt

bτ1 (k1)aτ2 (k2)e−ikr (x−y)eiωt

bτ1 (k1)bτ2 (k2)e−ikr (x+y)e2iωt

⎞
⎟⎟⎟⎟⎠eik1x+ik2yeimωt ,

(53)

where P denotes symmetrization of the wave function under
exchange of single-particle quantum numbers as is appropriate
for the bosonic particles considered.

As we are interested in inelastic processes with the
absorption of a nonzero number of photons, the relevant
matrix element is 〈〈�m

f |Hint|�0
i 〉〉 for nonzero m. Therefore,

the usual scalar product 〈�m
f |Hint|�0

i 〉 contains an overall
oscillating factor of exp[−imωt] stemming from the last factor
in Eq. (53). This factor can only be canceled to yield a
nonzero time-average if different components of the spinors
are coupled by Hint. Thus, the only relevant coupling for
inelastic scattering is the one given by gc coupling the states
|1〉|1〉 to |2〉|2〉. For this process the energy of exactly two
two-photon transitions, i.e., m = 2 in Eq. (28), is absorbed;
simultaneously, the center-of-mass momentum changes by
4kr , owing to the fact that the running waves providing the
Raman coupling cause a momentum transfer of 2kr for each
two-photon absorption.

In the following we focus on the results for the case of
two low-energy particles, k → 0. Exploiting the quasienergy
conservation in the FFGR and the constraint on the final center-
of-mass momentum those parameter regions in which such
inelastic processes are allowed energetically can be derived
and are shown in Fig. 4. Generally, as � increases, the gap
to the higher band increases and makes transitions from the

FIG. 4. (Color online) Stability diagram for (a) �δ/Er = 0 and
(b) �δ/Er = 16 with initial state of two particles with quasimomen-
tum k = k0 in the lower band. For no detuning and ��/Er < 4
both cases of k = +|k0| (dashed lines) and k = −|k0| (solid lines)
are shown, where detuning the minimum is unique. Shaded regions
correspond to parameter regimes in which inelastic scattering is
allowed. The bottom region (A) in light blue corresponds to inelastic
scattering where both particles remain in the lower bands, i.e., the
(−,−) final state, in the middle region (B) particles can scatter into
either the (−,−) or the (+,−) final state, and in the top region (C)
scattering into all states (−,−),(+,−) and (+,+) is allowed. The thick
dashed lines of constant ω�/Er and of constant ��/Er correspond
to the cuts along which the scattering rate is shown in Figs. 5
and 6.

initial state in (−,−) to those with at least one excited particle
in a higher band [(+,−), (−,+), or (+,+)] impossible, as only
an energy of 2�ω is available. Conversely, as ω is increased
there is a threshold above which particles can be excited into
higher bands. For no detuning �δ/Er = 0 the dispersion is
symmetric and has two degenerate minima for ��/Er < 4 at
k = ±|k0| �= 0. Therefore, there are two distinct initial states
with k = ±|k0| and stability regions for both cases are shown.
The thin dashed lines that split off and go up for ��/Er < 4
correspond to k = +|k0| and the bold lines that go down to
k = −|k0|. This is readily explained by the fact that for k =
−|k0| particles starting in the left minimum of the dispersion
get scattered close to the right minimum when increasing their
crystal momentum by 2kr and therefore have a lower energy
and threshold ω. This breaking of the symmetry k → −k that
is apparent in the dispersion is due to the fact the the coupling
matrix in Eq. (43) contains a running-wave term exp[−iωt +
2ikrx] which explicitly sets a direction in space. With detuning
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FIG. 5. (Color online) Dimensionless scattering rate �1D [see
Eq. (54)] for an initial state with particles in the lower band
with momentum k = ±|k0| getting inelastically scattered. In the
top row, for no detuning, �δ/Er = 0 as a function of ω�/Er for
fixed ��/Er = 4 on the left and as a function of ��/Er for fixed
ω�/Er = 7 on the right (dashed k = +|k0|, full k = −|k0|), and at the
bottom, for �δ/Er = 16 as a function of ω�/Er for fixed ��/Er = 16
on the left and as a function of ��/Er for fixed ω�/Er = 20 on the
right, as indicated in Fig. 4. The rate shows divergences at the opening
and closing of scattering channels corresponding to the borders in
Fig. 4, at which the density of states of the final states diverges.

the degeneracy is lifted and the minimum is unique for all
parameter values.

From these considerations the allowed final states can
be parametrized as �m

f (q) = �m
τ1,k0+2kr+q;τ2,k0+2kr−q . To com-

pute the total scattering rate, one integrates over the final
states

dn

dt
= 2π

�

∑
τ1τ2;m�=0

L

2π

∫
dq

∣∣〈〈�m
f (q)

∣∣Hint

∣∣�0
i

〉〉∣∣2

× δ[εi − εf(q) − m�ω],

= 1

�L

kr

Er

∑
τ1τ2;m�=0

L2
∫

dεf
d(q/kr )

d(εf/Er )

× ∣∣〈〈�m
f (q)

∣∣Hint

∣∣�0
i

〉〉∣∣2
δ(εi − εf − m�ω),

= g2
c

�L

kr

Er

�1D, (54)

which defines the intensive dimensionless scattering rate �1D

for inelastic processes. Due to the dependence on the 1D
density of states, �1D will diverge at the borders of the stability
regions in Fig. 4 whenever a scattering channel opens or closes
and the density of states of the final state diverges. A plot of
�1D for characteristic parameter values is shown in Fig. 5 with
these divergences clearly visible. Away from those points the
dimensionless rate is �1D ≈ 0.2–0.4. We remark again that for
coupled spin states gc = 0 and no inelastic scattering occurs,
whereas for subbands gc �= 0 generally.

The elastic scattering rates are comparatively easier to
compute. For simplicity we focus on the case of spin-
independent coupling strengths gσ = g2 = g, no detuning
δ̃ = 0, and consider the limit of k → 0 for which the leading

behavior can be given explicitly. A more detailed discussion
of the elastic scattering properties can be found in [9].

As mentioned before the non-species-changing interaction
terms (gσ and g2) conserve the total momentum and only
the relative momentum can be changed during scattering.
Moreover, in first order gc does not contribute to the elastic
scattering rate as it always changes both the energy and the total
momentum of the colliding particles. Neglecting higher-order
effects of gc and in the limit of k → 0 the particles behave like
spinless bosons with a modified dispersion relation interacting
via a contact interaction and all differences that occur in their
elastic scattering is entirely due to density of states effects.

The elastic scattering rates within FGR are given by

�el = 1

(�̃/4)2 − 1

1

k/kr

for �̃ < 4,

�el = 2

(k/kr )3
for �̃ = 4,

�el = 1

1 − 4/�̃

1

k/kr

for �̃ > 4,

(55)

where in the case of �̃ = 4 the dispersion is quartic ε(k) ∝ k4

and consequently the divergence is 1/k3 instead of the usual
1/k for a parabolic dispersion. We emphasize again that these
rates are the same as for undressed particles with the modified
dispersion interacting via a contact interaction. In the limit of
k → 0 the dressing of particles only changes the dispersion
and the density of states, not the interactions themselves.

To relate both the inelastic and the elastic scattering rates to
the corresponding cross sections, the rates have to be divided
by the incident flux. For simplicity we again focus on the case
of δ̃ = 0 and the limit of k → 0 for which the incoming flux
for our initial state is

Jin = 2�k

ML

[
1 −

(
�̃

4

)2]
for �̃ < 4,

Jin = 2�k

ML

(
k

2kr

)2

for �̃ = 4,

Jin = 2�k

ML

[
1 − 4

�̃

]
for �̃ > 4.

(56)

For �̃ �= 4 these factors, together with Eqs. (55) and (54), give
a divergence of 1/k2 and 1/k for the elastic and inelastic
scattering cross section, respectively, in the same way as
discussed in the toy model above. The case of �̃ = 4 is
special as the dispersion then becomes quartic ε(k) ∝ k4.
The corresponding 1/k6 and 1/k3 behavior of the elastic
and inelastic scattering cross sections is entirely due to the
dispersion and density of states effects and is not related to the
dressing of the states. In both cases the divergence at low k

signals a failure of the Born approximation.
Following the discussion of the toy model, in 1D the elastic

rate should dominate over the inelastic rate at low k and at
lower overall interaction strengths when the ratio of gc/g is
kept fixed.

3. Extension to two dimensions

The above model has motion only along one dimension,
as relevant for the motion along tubes with transverse
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confinement frequencies large compared to ω. In systems
with weak confinement in the transverse directions there are
additional inelastic scattering channels. Here we consider the
case of a 2D system as is required to generate a nonvanishing
effective magnetic field. For now, we ignore any spatial
dependence of the laser fields along the second direction,
which we denote y. The setting is then a 2D system tightly
confined in the z direction, with the Raman lasers running
along the x direction and free motion in y.

The discussion straightforwardly generalizes to this case.
We define

εf(q,ky) = εf(q,ky = 0) + Ey = εq + Ey, (57)

where the additional energy is given by Ey = 2Er (ky/kr )2

and ky is the relative momentum in the y direction of a
two-particle state. Note that inelastic scattering processes
remain gapped in this case even for particles remaining in
the same band because the absorption of photons is always
coupled to a change in the center-of-mass momentum in this
model, which changes the energy.

Taking an initial state with no relative momentum ki
y = 0

and a final state with relative momentum kf
y = qy , we define

the matrix element of the interaction Hamiltonian as

Im
q,qy

= 〈〈
�m

f (q,qy)
∣∣Hint

∣∣�0
i

〉〉
(58)

and get for the inelastic scattering rate

dn

dt
= 2π

�

∑
τ1τ2;m�=0

(
L

2π

)2 ∫
dqy

×
∫

dq
∣∣Im

q,qy

∣∣2
δ[εi − εf(q,qy) − m�ω]

= 1

2π�L2

k2
r

E2
r

∑
τ1τ2;m�=0

L4
∫

dEy

d(qy/kr )

d(Ey/Er )

×
∫

dεq

d(q/kr )

d(εq/Er )

∣∣Im
q,qy

∣∣2
δ(εi − εq − Ey − m�ω)

= g2
c

2π�L2

k2
r

Er

�2D, (59)

where, as before, �2D is a dimensionless intensive rate constant
for inelastic scattering processes. Note that gc is now defined
differently, while it was an effective quantity for a 1D system
before, it is now the corresponding quantity for a 2D confined
system. This 2D rate is not expected to diverge at the opening
or closing of scattering channels anymore, but rather to exhibit
jumps, which is confirmed in Fig. 6. Note that the scattering
rate does not vanish in the limit ω → ∞. The situation is
the same as in the toy model discussed in Sec. II D, where
the rate vanishes in 1D simply due to the decreasing density
of states, whereas in 2D with a constant density of states
this is no longer the case. In the 3D case (not shown), the
density of states increases as

√
ω for large drive frequency,

again leading to large scattering for ω → ∞. In terms of the
relation of inelastic to elastic scattering, the expectation is that
in 2D elastic and inelastic scattering should scale in the same
way as functions of k for low momenta because the density
of states is k independent, whereas in 3D the inelastic rate

FIG. 6. (Color online) Dimensionless scattering rate �2D [see
Eq. (59)] for an initial state with particles in the lower band
with momentum k = ±|k0| and relative momentum ky = 0 getting
inelastically scattered for the extension to a 2D setting with free
motion in a transverse direction. In the top row, for no detuning,
�δ/Er = 0 as a function of ω�/Er for fixed ��/Er = 4 on the left
and as a function of ��/Er for fixed ω�/Er = 7 on the right (dashed
k = +|k0|, full k = −|k0|), and at the bottom, for �δ/Er = 16 as
a function of ω�/Er for fixed ��/Er = 16 on the left and as a
function of ��/Er for fixed ω�/Er = 20 on the right, as indicated in
Fig. 4. The rate shows jumps at the opening and closing of scattering
channels corresponding to the borders in Fig. 4.

should dominate at low k because of the suppression of elastic
scattering due to the vanishing density of states.

B. Modulated lattice

We now turn to consider a model of a lattice with modulated
on-site energies. This is a simplified version of the modulation
protocols used in [10,13,41] used to create artificial magnetic
fields in optical lattices. Despite its simplifications it should
still capture the novel scattering properties which become
important due to the periodic driving. Our discussion describes
generic features of two-particle scattering in the second class of
proposals for the periodic driving of optical lattices mentioned
in the Sec. I, the modulation of on-site energies. Our work
is complementary to that of Ref. [54], which considered
many-particle systems subjected to another form of periodic
drive, of shaken lattices.

Our model consists of a 1D superlattice with time-periodic
modulation of on-site energies sketched in Fig. 7. The
superlattice causes a staggered energy offset between sites,
and the site modulation resonantly restores the suppressed
tunneling along the lattice. We assume that the resulting
bandwidth �w is small compared to the modulation frequency,
�w � �ω. However, we allow for the possibility that �ω is
close to the interband transition energy �g , allowing inelastic
scattering into this higher band. We therefore retain two bands
of the original 1D lattice (i.e., there are two Wannier states
per local minimum of the potential). After a discussion of
the 1D model we comment on the inclusion of an additional
free direction of motion. Consider bosons described by a field
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d

FIG. 7. (Color online) Sketch of the 1D time-periodically driven
lattice potential given in Eq. (60). The lattice is staggered with
an energy offset V2 between neighboring sites, which suppresses
tunneling along the lattice. Tunneling is then restored by resonantly
modulating the site energies with a modulation strength Vω at
frequency �ω = V2.

operator �(x) loaded into such an optical superlattice. The
resulting Hamiltonian is then given by H = H0(t) + Hint,

H0(t) =
∫

dx �†(x)

[−�
2

2M

d2

dx2
+ V1 sin2(kx)

+ V2 cos2(kx/2)

]
�(x)

+
∫

dx �†(x)[Vω cos2(kx/2 + ωt/2)]�(x), (60)

Hint = g

2

∫
dx �†(x)�†(x)�(x)�(x), (61)

where the first and second lines of Eq. (60) describe the
kinetic energy and superlattice potential with strength V1

and V2 created by standing laser fields and the third line
gives the modulation of on-site energies with strength Vω

and modulation frequency ω, which can be created by two
running-wave beams as described in [41]. Energies and lattice

depth are measured in terms of the recoil energy Er = �
2k2

r

2m
,

which we define with respect to the unstaggered lattice, i.e.,
kr = 2k, and we assume the lattice to be deep V1 > Er in order
to justify the tight-binding description made in the following.

The last part, Eq. (61), gives the usual 1D contact interaction
between atoms of strength g. Assuming a tight confinement
by a harmonic potential in the transverse radial direction, it
is given by g = 4�

2as

a2
⊥M

, where as is the 3D s-wave-scattering

length of the true interaction potential and a⊥ = √
2�/(Mω⊥)

the radial confinement length of the harmonic trap with
frequency w⊥ [82].

We begin by mapping the Hamiltonian H0(t) onto a tight-
binding Hamiltonian with two orbitals per lattice site. To this
end the bosonic field operator �(x) is expanded in terms of the
Wannier functions of the two lowest bands of the Hamiltonian
with V2 = Vω = 0, i.e., in the Wannier functions of the simple
optical lattice without the superlattice potential. Writing

�(x) =
∑

j

w1(x − xj )aj + w2(x − xj )bj , (62)

where a (b) are field operators for Wannier states in the first
(second) band, one obtains the tight-binding model as

H0(t) =
∑
ij

(−t
(1)
ij a

†
i aj − t

(2)
ij b

†
i bj + H.c.

)

+
∑

j

1/2[1 + (−1)j ][V2 + Vω cos(wt)]a†
j aj

+
∑

j

1/2[1 + (−1)j ][V2 + Vω cos(wt) + �g]b†j bj ,

(63)

where

t
(n)
ij =

∫
dxw∗

n(x − xi)

[−�
2

2M

d2

dx2
+ V1 sin2(kx)

]
wn(x − xj )

(64)

and �g is the energy gap between the first (a) and second (b)
band. The superlattice potential V2 cos2(kx/2) is seen to lead
to a staggering in the tight-binding model which suppresses
tunneling along the lattice due to the energy difference V2

between neighboring sites. Tunneling can then be restored by
modulating the lattice on resonance �ω = V2, whereby the
necessary energy is provided by absorption and emission of
photons. The parameters need to satisfy V2 > t

(n)
ij such that

in the staggered lattice tunneling is suppressed. Moreover,
to obtain clearly separated bands the gap �g should be
bigger than the bandwidth of the Bloch bands. Finally, to
avoid resonant excitation from the lowest to the highest band,
�ω should be smaller than the gap. Additionally, the time-
dependent modulation Vω should not be too strong, as becomes
apparent in the derivation below. In the high-frequency regime
the relevant quantity to measure the effect of the modulation
is κ = Vω/(�ω), which should be of order 1, whereas for the
low-frequency regime Vω should be comparable to V2 and
smaller than V1. This leads to a hierarchy of energy scales,
�g,V1 > V2 = �ω � Vω > t

(n)
ij .

In the following we treat the interparticle interaction,
Eq. (61), as a perturbation of the noninteracting Hamiltonian;
thus, our study is limited to the weakly interacting regime.
In particular, we are precluded from accessing the Hubbard
regime in which, instead of the Bloch waves used below,
the Wannier states would be more suitable. The discussion
of corresponding processes in the strongly interacting regime
that would lead to heating and interband transitions is beyond
the scope of the present work.

1. Single-particle states

We proceed to obtain the single-particle spectrum of the
noninteracting Hamiltonian H0. Because it is translationally
invariant with respect to translations by two lattice sites l →
l + 2, it is best analyzed in momentum space. Defining the
Fourier transform of the operators as

ak = 1√
N

∑
l

ale
−ikld , (65)

a
†
k = 1√

N

∑
l

a
†
l e

ikld , (66)
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where d is the lattice spacing, which is set to 1 in the following,
one obtains the Hamiltonian in momentum space

H0(t) =
∑

k

ε
(1)
k a

†
kak + (

ε
(2)
k + �g

)
b
†
kbk

+
∑

k

1/2[V2 + Vω cos(ωt)](a†
k+πak + b

†
k+πbk),

(67)

with

ε
(n)
k =

∑
l

t
(n)
l cos(lk), (68)

and l = |i − j |. The staggering of the lattice induces a
coupling between the two momentum components at k and
k + π .

We proceed to diagonalize this Hamiltonian by the use of
a rotating-wave-like approximation for the case of resonant
modulation �ω = V2. Details of the derivation are given in
Appendix A . The Floquet modes turn out to be

�
(n),m
τ,k (t) = 1/2{[f (t) + τeiωt f̄ (t)]c†k,n

+ [f (t) − τeiωt f̄ (t)]c†k+π,n}eimωt |vac〉, (69)

where we denote by c
†
k,n the creation operator for a state in

band n = a or b, the states are characterized by an addi-
tional subband index τ = ± and the time-periodic function
f (t) = exp[iκ sin(ωt)], with κ = Vω/(�ω) was defined. The
corresponding quasienergies are

ε
a,0
τ,k = τεa

k J−1(κ), (70)

ε
b,0
τ,k = τεb

k J−1(κ) + �g, (71)

where J−1 denotes the Bessel function of the first kind. Note
that the quasienergies are not reduced to a Floquet BZ here, but
rather defined to keep the association with the original lowest
first (a) and second (b) bands that are gapped in energy by
�g in the static Hamiltonian. The resulting band structure is
depicted in Fig. 8.

The modulation of the lattice now shows its effect in
two ways. First, the tunneling is restored with a modified
strength of εn

k J−1(κ). Second, the population of momentum
components oscillates in time between k and k + π with equal
amplitudes as the energy gap of V2 is bridged by the energy of
the modulation �ω = V2.

Following the definitions in Sec. II B scattering processes in
which particles change the band from a to b and those for which
particles stay within a band, but scatter into higher-energy
single-particle states in the same band, are called inelastic.
The first process leads to loss of particles from the lowest
band, whereas the second process may lead to heating within
the band.

2. Two-particle scattering

To consider the effects of the collisions of the atoms given
by the interaction Hamiltonian (61) we treat them to first order
within Fermi’s golden rule. This will preclude the discussion
of strongly correlated many-body phases, but is still sufficient

FIG. 8. (Color online) Quasienergies of the resonantly modu-
lated lattice, Eqs. (70) and (71), as a function of the quasimomentum
k in arbitrary energy units. The two lowest bands of the original lattice
(a) and (b) both split into two subbands τ = ±, which are degenerate
at the BZ boundaries. Depicted is a typical situation in which the
energy of the periodic modulation �ω is larger than the bandwidth of
the lowest band and smaller than the band gap �g . The circles show
our initial state with two particles in the lowest band and a possible
final state with two particles in the upper band after scattering. For this
plot a nearest-neighbor tight-binding dispersion ε(n)(k) = t(n) cos(k)
is assumed with parameters ta = 1.1, tb = 2.3, �ω = 4.8, �g = 10,
and κ = 1.

to see the relevant two-particle physics and their relevance to
heating.

We apply FFGR (28) for an initial state consisting of two
particles in the lowest band with the same subband index τi =
± with crystal momentum +k and −k, respectively, i.e.,

�i = �
a†
τi,k

�
a†
τi,−k|vac〉, (72)

and a final state containing two particles in the upper band in
subbands τ1, τ2 with momenta q1 and q2,

�f = �b†
τ1,q1

�b†
τ2,q2

|vac〉. (73)

This is the only relevant inelastic scattering process allowed
within FFGR for the case in which �ω > 4εa

k J−1(κ), which
forbids the absorption of a quantum of energy �ω within the
lowest band. Because of the resonance condition �ω = V2, this
corresponds to strong suppression of tunneling for which V2

was assumed to be large compared to the bandwidth. Such a
situation with the initial and an allowed final state is shown in
Fig. 8.

Due to the structure of the single-particle states that
contain two momentum components at k and k + π scattering
is allowed into states with momenta q1 = q, q2 = −q and
q1 = q + π , q2 = −q. Within the reduced BZ the second
case (τ1,q + π ) actually corresponds to (−τ1,q). As we
consider the case in which the bands are well separated,
i.e., 4(J1,eff + J2,eff) < �g , transitions from the lower to the
upper band require the absorption of a nonzero number m0 of
photons. Specifically, the conservation of quasienergy in the
FFGR then picks the representative state �m

f with m = −m0

and energy conservation reduces to

2εa
k J−1(κ) = εb

qJ−1(κ) [τ1 ± τ2] + (2�g − m0�ω), (74)

where the + (−) sign corresponds to the cases q1 + q2 =
0 (q1 + q2 = π ) described above. This equation fixes the

033601-13



THOMAS BILITEWSKI AND NIGEL R. COOPER PHYSICAL REVIEW A 91, 033601 (2015)

FIG. 9. (Color online) Stability diagram of the lowest band in a time-periodically modulated 1D lattice of depth V1 = 6Er for which the
band gap is 4.75Er . Shaded regions correspond to energetically allowed scattering from the ground state into the first excited band. Different
lobes correspond to different orders of the instability m starting with m = 1 at the top and increasing downwards. In (a) only the first four such
lobes are shown for clarity; in (b) the region 1 � ω�/Er � 3 with the m = 4,5,6,7 lobes which overlap the m = 5 lobe are shown. The dashed
lines of constant ω�/Er correspond to the cuts along which the scattering rate is shown in Fig. 10.

momentum qf of the final state depending on the band gap
�g , the amplitude of the driving Vω, and the driving frequency
ω. Assuming for the moment that an arbitrary number of
photons may be absorbed within FFGR, Eq. (74) then allows
us to derive a stability diagram purely based on quasienergy
conservation in which scattering is allowed or forbidden; see
Fig. 9. Depending on the modulation strength κ = Vω/(�ω)
and frequency ω�/Er , there are stable regions in which no
energy absorption takes place, regions where a single transition
with a unique m, and regions where multiple transitions with
different photon numbers m are allowed. To compute the
matrix element appearing in FFGR

Im
τi,τ1,τ2;k,q = 〈〈

�−m
τ1,q;τ2,−q

∣∣Hint/g
∣∣�0

τi,k;τi,−k

〉〉
, (75)

we can make use of the expansion in the basis of Bloch
functions ψn(x,k) of band n, similarly to the steps performed
in [54]. Thus, the field operator �(x) in Eq. (61) is expanded
as

�n(x) =
∑

k

φn(k)ψk
n (x), (76)

and the interaction Hamiltonian is rewritten as

Hint

g
= 1

2

∑
{ni }

∫ L

0
dx �†

n1
(x)�†

n2
(x)�n3 (x)�n4 (x)

=
∑

{ni ,ki }
Wk1k2k3k4

n1n2n3n4
φ†

n1
(k1)φ†

n2
(k2)φn3 (k3)φn4 (k4), (77)

where we defined the matrix elements of the interaction
between Bloch waves,

Wk1k2k3k4
n1n2n3n4

= 1

2

∫ L

0
dx ψ̄k1

n1
(x)ψ̄k2

n2
(x)ψk3

n3
(x)ψk4

n4
(x). (78)

The explicit expressions for coupling matrix elements
Im
τi,τ1,τ2;k,q [Eq. (75)] are given in Appendix B. If one assumes

that the matrix element between Bloch functions W
k1k2k3k4
bbaa

defined in Eq. (78) is completely momentum independent,
then the matrix element Im

τi,τ1,τ2;k,q in Eq. (75) vanishes for
m �= 0 and there is no inelastic scattering. This occurs if
the Bloch waves themselves become momentum-independent,

e.g., in the case of an infinitely deep lattice. Thus, for
sufficiently deep lattices there is no inelastic scattering and no
coupling to the higher band within the FFGR. Generically, the
interaction matrix elements W

k1k2k3k4
bbaa do depend on momentum

and Im
τi,τ1,τ2;k,q is nonvanishing for any m. This implies the

possibility of absorption of arbitrary integer numbers of energy
�ω during scattering and thus justifies the assumption made in
deriving the stability diagram.

To obtain the total inelastic scattering rate, one integrates
over all allowed final states,

dn

dt
= L

�

∑
τ1τ2

m �= 0

∫
dq g2

∣∣Im
τi,τ1,τ2;k,q

∣∣2
δ[εi − εf(q) + m�ω]

= g2L

�

∑
τ1τ2

m �= 0

∫
dεf

dq

dεf

∣∣Im
τi,τ1,τ2;k,q

∣∣2
δ(εi − εf + m�ω)

= g2

�Er

1

Ld

∑
τ1τ2

m �= 0

L2
∫

dεf
d(qd)

d(εf/Er )

× ∣∣Im
τi,τ1,τ2;k,q

∣∣2
δ(εi − εf + m�ω)

= g2

�Er

1

Ld
�1D, (79)

which defines the intensive dimensionless scattering rate �1D

for scattering into the higher band. This equation may be
compared to (19) in [54], which is identical apart from
the different definition of Im

τi,τ1,τ2;k,q , which contains the
dependence on the driving protocol and the relevant physics.
�1D depends on the lattice via the band structure εk and the
gap �g , the modulation strength and frequency which deter-
mine both the effective band structure εkJ−1(Vω/w) and the
eigenstates via their dependence on f (t) = exp[iκ sin(ωt)] =∑

n Jn(κ) exp[inωt]. Therefore, the scattering rate shows a
complicated behavior, possibly with zeros inherited from
the Bessel functions. Moreover, the rate will diverge at the
thresholds for scattering, i.e., at the envelope functions of the

033601-14



SCATTERING THEORY FOR FLOQUET-BLOCH STATES PHYSICAL REVIEW A 91, 033601 (2015)

FIG. 10. (Color online) Dimensionless scattering rate �1D [see
Eq. (79)] along the cuts �ω/Er = const., as indicated in Fig. 9 for
particles in the first band (a) with momentum k = 0 scattering into
the second band (b). The left panel corresponds to �ω/Er = 10 for
which m = 1 is the only scattering channel, whereas the right panel
corresponds to �ω/Er = 2 for which m = 5 transitions are allowed
for 0.6 � Vω/Er � 6.9 and both m = 4,5 for 2.1 � Vω/Er � 5.3.

shaded areas in Fig. 9, where the momentum of the final
state is at the edges of the BZ and the dispersion is flat,
yielding a diverging 1D density of states. These expectations
are confirmed in Fig. 10, which shows the scattering rate �1D

for transitions of particles in the lower band (a) into the higher
band (b) along the cuts indicated in Fig. 9.

As an order-of-magnitude estimate for the decay of particles
starting in the lower band, consider a gas of density N/L ≈
1/d, as = 5 nm, d⊥ = 100 nm, m = 100 u and take �1D ≈
0.05 to obtain N/(dN/dt) ≈ 40 ms. From this estimate,
experiments in the unstable region would be seriously affected
by the scattering into higher bands and a single-band approxi-
mation would not be valid. We can conclude that experiments
on modulated lattices should take care to work in regions
of parameter space where transitions are not allowed to avoid
rapid scattering into higher bands. From Fig. 9 this corresponds
to avoiding single-photon (m = 1) and multiphoton (m > 1)
resonances in which the gap 2�g to lift two particles into the
higher band is bridged by a number of m photons. Multiphoton
scattering processes may also be reduced by keeping the
modulation amplitude Vω small compared to �ω. However,
for this specific model there is parameter space available to
avoid any resonant scattering into the higher bands while still
keeping within the limits of the approximations made. An
example for such suitable parameter values would be given
by working at �ω/Er ≈ 4, which allows modulation strengths
κ = Vω/(�ω) sufficiently high to explore both the maximum
and the first zero of J−1(κ), thus completely tuning the effective
dispersion of the resulting bands.

3. Extension to weakly confined system

We now discuss the inclusion of an additional free degree
of motion. Such a model is relevant for experiments in which
the confinement in the transverse direction is relatively weak.
In this case particles may absorb energy during collisions from
the driving fields and may scatter into states with fast motion
in the transverse direction, which may lead to either heating or
loss from the experimentally relevant region. This additional
direction of motion would correspond to the z direction in the
case of 2D optical lattices used to simulate magnetic fields (in
the xy plane).

We assume that the motion in the z direction is free, so the
previous discussion generalizes straightforwardly by including
the additional energy Ez = 2Er (kz/kr )2 and integrating over

the plane-wave states of the transverse direction. The scattering
into the higher band still requires a minimal energy and the
additional degree of freedom does not change the stability
regions. However, as the energy in the transverse direction is
unbounded, arbitrarily high energy may be absorbed from the
driving fields, which corresponds to the presence of nonzero
terms for all m in FFGR higher than the minimal m required
to scatter into the higher band.

Additionally, inelastic scattering within the same band now
becomes possible, which was forbidden by the smallness of the
bandwidth compared to the modulation energy before, as any
amount of energy can be absorbed in the transverse direction
irrespectively of how small or high the driving frequency is.
For these processes any scattering with m �= 0 corresponds to
inelastic scattering following the definitions made at the end
of Sec. II B. Therefore, the system is always susceptible to
inelastic scattering if motion in the transverse direction is free.

The inelastic scattering rate is now given by

dna,ã

dt
= 2π

�

∑
τ1τ2

m �= 0

(
L

2π

)2 ∫
dqz

∫
dq g2

∣∣Im;a→ã
τi,τ1,τ2;k,q

∣∣2

× δ
[
εa

i − εã
f (q,qz) + m�ω

]
= g2

2π�E2
r

1

L2d2

∑
τ1τ2

m �= 0

L4
∫

dEz

d(qzd)

d(Ez/Er )

∫
dεq

× d(qd)

d(εq/Er )

∣∣Im;a→ã
τi,τ1,τ2;k,q

∣∣2
δ
(
εa

i − εã
q − Ez + m�ω

)

= g2

2π�Er

1

L2d2
�2D

a→ã , (80)

where we split the final-state energy into the part due to the
motion in the lattice and the free part via εq(q) = εf(q,kz) −
Ez(kz) and defined the generalized matrix element I

m;a→ã
τi,τ1,τ2;k,q

for transitions with two particles initially in band a to a final
state with two particles in band ã.

The dimensionless rate constants �2D
a→b and �2D

a→a are shown
in Figs. 11 and 12, respectively. For the scattering into the
higher band �2D

a→b the rates are of the same order as in the
1D case. The inelastic rate �2D

a→a for particles remaining in

FIG. 11. (Color online) Dimensionless scattering rate �2D
a→b for

the extension to a weakly confined system with a free transverse
degree of motion [see Eq. (80)] along the cuts �ω/Er = const. as
indicated in Fig. 9 for particles in the first band with quasimomentum
k = 0 and relative momentum ky = 0 scattering into the second band,
integrated over the final states with crystal momentum q and relative
momentum qy . The left panel corresponds to �ω/Er = 10, for which
m � 1 are the available inelastic scattering channel, whereas the right
panel corresponds to �ω/Er = 2, for which m � 5 transitions are
allowed for 0.6 � Vω/Er � 6.9 and m � 4 for 2.1 � Vω/Er � 5.3.
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FIG. 12. (Color online) Dimensionless scattering rate �2D
a→a for

the extension to a weakly confined system with a free transverse
degree of motion [see Eq. (80)] along the cuts �ω/Er = const., as
indicated in Fig. 9 for particles in the first band with quasimomentum
k = 0 and relative momentum ky = 0 scattering inelastically and
remaining in the first band, integrated over the final states with crystal
momentum q and relative momentum qy . The left panel corresponds
to �ω/Er = 10 and the right panel corresponds to �ω/Er = 2. In
both cases all processes with m � 1 are inelastic and allowed as the
particles remain in the same band and the energy in y direction is not
gapped.

the lower band depends strongly on �ω. For high oscillation
frequencies most of the energy must be absorbed in the
transverse direction for which the density of states decreases
as 1/

√
Ez and consequently the total rate remains small.

To relate these considerations to recent experiments in
Ref. [16], we provide a rough estimate of the relevant inelastic
scattering processes. The experiment simulates the Hofstadter
model in a 2D driven optical lattice. The flux per cell is π/2, so
the lowest Wannier band splits into four Hofstadter subbands.
First, based on the experimental parameters, we conclude that
the restriction to the lowest Wannier band is justified because
scattering into the higher Wannier bands should be forbidden
by quasienergy conservation or very highly suppressed. Thus,
the dominant process should be the absorption of energy within
the same Wannier band and into weakly confined transverse
directions, i.e., inelastic scattering between the four Hofstadter
subbands.

The results of Ref. [16] indeed show repopulation dynamics
in which particles from the lowest Hofstadter subband are
transferred to the higher subbands. The rate of transfer into
the highest subband is observed to be approximately γexp ≈
10 Hz per particle. In our model, the collision of two particles
in the lowest subband can lead to both being transferred to
the highest subband, leading to a rate γmodel = 2 dna→a

dt
N per

particle. To connect to the experimental 2D setup, we extend
our 1D model to 2D by assuming that particles collide and
remain in the lowest Wannier band of the optical lattice. Based
on the optical lattice depth of Vy = 10Er , this leads to g2D =
2g3D/d. Further, we assume confinement in the transverse
direction, i.e., Lz = √

πaz with az the oscillator length in the
transverse direction. The rate in our model then is γmodel =
(g2

2D/(dLzhEr )�2D
a→aρ, where we introduced the 2D particle

density ρ = N/(LxLy). For the experimental parameters of
ρd2 ≈ 20 and with �2D

a→a = 0.25, this yields γmodel ≈ 9 Hz.
Inelastic scattering within the same subband can be reduced

by either working at larger �ω/Er as this then requires a large
amount of energy to be absorbed in the z direction or by
working in sufficiently deep lattices in which the inelastic
processes of the type discussed become strongly suppressed.
Such inelastic scattering processes can also be eliminated
by adding an additional optical confining potential in the

transverse direction, which, depending on the parameters of
the experiment, might be required to avoid losses and heating.

IV. SUMMARY

We have studied the scattering processes of Floquet-Bloch
waves in periodically driven systems in the weakly interacting
regime as relevant to recent experiments creating artificial
gauge fields for gases of cold atoms. An extension of this
work to the strongly interacting regime would be desirable to
explore the stability and heating processes in the Mott and
other strongly correlated phases, but is beyond the scope of
the present work. We have described a formalism that allows
the computation of elastic and inelastic two-body scattering
rates of particles in Floquet-Bloch states and have illustrated
the consequences for model systems that are representative of
experimental situations: where energy can be absorbed through
transitions into other Floquet-Bloch bands or to motion in
weakly confined directions. Notably, we have shown that,
in general, the scattering cannot be understood in terms of
some effective time-independent Hamiltonian even for rapid
modulation. Our results provide a framework by which the
relative sizes of elastic and inelastic two-body scattering
processes can be determined. As experiments move towards
the realization of strongly correlated phases of matter in
artificial gauge fields, it will be crucial to determine the
parameter regions in which the elastic interactions which are
responsible for the emergence of the interesting physics remain
dominant compared to the inelastic processes which can limit
the experimentally achievable temperatures through particle
loss or heating.

Recently, we learned of a related study by Choudhury
and Mueller [83] in which instabilities through excitation of
transverse motion were also explored.
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APPENDIX A: DERIVATION OF THE FLOQUET-MODES
FOR THE MODULATED LATTICE

In this Appendix we derive the single-particle Floquet
modes of the modulated lattice in a rotating-wave-like ap-
proximation.

We start from the noninteracting Hamiltonian given in
momentum space in Eq. (67),

H0(t) =
∑

k

ε
(1)
k a

†
kak + (

ε
(2)
k + �g

)
b
†
kbk

+
∑

k

1/2[V2 + Vω cos(ωt)](a†
k+πak + b

†
k+πbk).

(A1)

We abbreviate Vc(t) = 1/2[V2 + Vω cos(ωt)] and write the
Hamiltonian in the basis of coupled momentum states at k and
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k + π as

H0(t) = (a†
k a

†
k+π

)

(
εa
k Vc(t)

Vc(t) −εa
k

)(
ak

ak+π

)

+ (b†k b
†
k+π

)

(
εb
k + �g Vc(t)
Vc(t) −εb

k + �g

)(
bk

bk+π

)
,

(A2)

where k is now restricted to lie in the reduced BZ −π/2 <

k � π/2 corresponding to the supercell of two inequivalent
sites in the real space lattice.

Without the modulation term Vω, this model can be easily
solved exactly. The result will be a ground state of bosons
with two momentum components at k = 0 and k = π with
a relative occupation that depends on the strength of V2. In
the limit of strong staggering V2 � ε

(n)
k , both components are

equally occupied, corresponding in real space to occupation
of the lower-energy sites, and the excited states correspond to
occupation of the higher-energy sites gapped by an energy
difference of V2 and both subbands are flat as a function
of k. The undriven band structure is given by E±(k) =
±

√
ε(k)2 + (V2/2)2, with ε(k) corresponding to either the

a or the b band. Assuming a nearest-neighbor tight-binding
dispersion ε(k) = −t cos(k), the band structure displays a
gap of V2 for k = ±π/2 between the ± subbands and the
bandwidth of the subbands is suppressed by a factor of t/V2

compared to the case of vanishing V2.
Because tunneling should be strongly suppressed, i.e., V2 >

ε
(n)
k , we first change the basis to the eigenstates for ε

(n)
k = 0,

α±
k = 1/

√
2(ak ± ak+π ) and treat the resulting off-diagonal

terms as a small coupling. With this definition one obtains

H0(t) = (α†
k+ α

†
k−)

(
Vc(t) εa

k

εa
k −Vc(t)

)(
αk+
αk−

)

+ (β†
k+ β

†
k−)

(
�g + Vc(t) εb

k

εb
k �g − Vc(t)

)(
βk+
βk−

)
.

(A3)

We now perform a unitary transformation to eliminate the
diagonal terms via

Uc(t) =
(

exp[−iκ sin(ωt)/2] 0
0 exp{i[ωt + κ sin(ωt)/2]}

)
,

(A4)

where we defined κ = Vω/(�ω) and use the resonance condi-
tion V2 = �ω to get

H0(t) = (α̃†
k+ α̃

†
k−)

(
0 εa

k (t)
ε̄a
k (t) 0

)(
α̃k+
α̃k−

)

+ (β̃†
k+ β̃

†
k−)

(
�g εb

k (t)
ε̄b
k (t) �g

)(
β̃k+
β̃k−

)
, (A5)

where ε
(n)
k (t) = ε

(n)
k exp{i[ωt + κ sin(ωt)]} and an overall con-

stant energy shift of �ω/2 was dropped. The exponential is
expanded in terms of Bessel functions as

ε
(n)
k (t) = ε

(n)
k eiωt

∑
n

Jn(κ)einωt , (A6)

and this contains a term constant in time and oscillating terms.
In particular, for a nearest-neighbor tight-binding dispersion
ε

(n)
k = −t(n) cos(k) the time-dependent dispersion simplifies to

ε
(n)
k (t) = −t(n) cos(k)eiωt

∑
n Jn(κ)einωt = −t(n)(t) cos(k) and

the modulation is seen to lead to a time-dependent hopping
strength t(n)(t). Finally, we perform a rotating-wave approxi-
mation and only keep the constant term ε

(n)
k (t) ≈ ε

(n)
k J−1(κ).

Thus, one obtains the eigenstates as

�a
τ,k|vac〉 = 1/

√
2(α̃†

k+ + τ α̃
†
k−)|vac〉, (A7)

�b
τ,k|vac〉 = 1/

√
2(β̃†

k+ + τ β̃
†
k−)|vac〉, (A8)

with τ = ±. Abbreviating f (t) = exp[iκ sin(ωt)] these states
read in the original basis as

�
a,m
τ,k (t) = 1/2{[f (t) + τeiωt f̄ (t)]a†

k (A9)

+ [f (t) − τeiωt f̄ (t)]a†
k+π }eimωt |vac〉, (A10)

�
b,m
τ,k (t) = 1/2{[f (t) + τeiωt f̄ (t)]b†k (A11)

+ [f (t) − τeiωt f̄ (t)]b†k+π }eimωt |vac〉, (A12)

and the corresponding quasienergies are

ε
a,0
τ,k = τεa

k J−1(κ), (A13)

ε
b,0
τ,k = τεb

k J−1(κ) + �g. (A14)

Again turning to the discussion of the nearest-neighbor tight-
binding dispersion ε(k) = −t cos(k) with hopping strength t ,
where the subbands were gapped by V2 and the hopping was
suppressed by a factor of t/V2 in the case of an undriven lattice,
we note that the hopping is now modified by J−1(κ) instead
and the gap between the subbands is closed at k = ±π/2.

APPENDIX B: MATRIX ELEMENTS FOR THE
MODULATED LATTICE

In this appendix we provide the explicit expressions for the
matrix element

Im
τi,τ1,τ2;k,q = 〈

�0
τ1,q;τ2,−q

∣∣Hint/g
∣∣�0

i

〉
, (B1)

appearing in the FFGR for the scattering in the modulated
lattice; see Eq. (75) and the following discussion for details.

As a first step we compute

Im
τi,τ1,τ2;k,q = 〈〈

�−m
τ1,q;τ2,−q

∣∣Hint/g
∣∣�0

τi,k;τi,−k

〉〉
= 1

T

∫ T

0
dt

〈
�−m

τ1,q;τ2,−q;

∣∣Hint/g
∣∣�0

τi,k;τi,−k

〉

= 1

T

∫ T

0
dt eimωt

〈
�0

τ1,q;τ2,−q

∣∣Hint/g
∣∣�0

τi,k;τi,−k

〉

= 1

T

∫ T

0
dt eimωt I 0

τi,τ1,τ2;k,q , (B2)

where

Iτi,τ1,τ2;k,q = 〈
�0

τ1,q;τ2,−q;0

∣∣Hint/g
∣∣�0

τi,k;τi,−k

〉
(B3)

was defined. This implies that Im
τi,τ1,τ2;k,q is just the Fourier com-

ponent of Iτi,τ1,τ2;k,q oscillating at exp[−imωt] and Iτi,τ1,τ2;k,q

contains all the relevant information.
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TABLE I. Matrix elements Iτi,τ1,τ2;k,q as defined in Eq. (B3) for transitions from an initial state with particles starting in the lower band a

in subband τi = + with momentum k and −k into the state with two particles in the upper band b in subbands τ1 and τ2 with momenta q and
−q, abbreviated as (a,k,+; a,−k,+) → (b,q,τ1; b,−q,τ2).

(a,k,+; a,−k,+) → (b,q,+; b,−q,+) 4M1 cos {1/2[ωt − 2Vω/(�ω) sin(ωt)]}4

+ 2(−M2 − M3 + M4 + M5 + M6 + M7 + M8) sin {1/2[ωt − 2Vω/(�ω) sin(ωt)]}2

+ 2(−M2 − M3 − M4 + M5 + M6 + M7 + M8) cos [ωt − 2Vω/(�ω) sin(ωt)]
× sin {1/2[t − 2Vω/(�ω) sin(ωt)]}2

(a,k,+; a,−k,+) → (b,q,−; b,−q,−) 1/2(−M1 + 3M3 − M4 + M5 + M6 + M7 + M8)
+ 4M2 cos {1/2[ωt − 2Vω/(�ω) sin(ωt)]}4 − 8M3 cos [ωt − 2Vω/(�ω) sin(ωt)]
+ 1/2(M1 + M3 + M4 − M5 − M6 − M7 − M8) cos {2[ωt − 2Vω/(�ω) sin(ωt)]}

(a,k,+; a,−k,+) → (b,q,+; b,−q,−) (M1 + M2 − M3 − M4 − M5 + M6 − M7 + M8) sin [ωt − 2κ sin(ωt)]
+ 1/2(M1 + M2 + M3 + M4 − M5 − M6 − M7 − M8) sin {2[ωt − 2κ sin(ωt)]}

We expand the single-particle Floquet mode �n
i,k on the

basis of Bloch functions ψk
n (x) of band n as

�n
i,k(x,t) = cn

i,k(t)ψk
n (x). (B4)

By Eq. (A9) cn
i;k do not depend either on the band (a or b)

or on the momentum k, but only on which subband (i = ±)
the particles are in. However, the interaction matrix elements
W

k1;k2;k3;k4
bbaa do depend on the momenta of the particles.
With the definition of the abbreviations

M1 = W
q,−q,k,−k

bbaa , (B5)

M2 = W
q,−q,k+π,−k+π

bbaa , (B6)

M3 = W
q+π,−q+π,k,−k

bbaa , (B7)

M4 = W
q+π,−q+π,k+π,−k+π

bbaa , (B8)

M5 = W
q,−q+π,k,−k+π

bbaa , (B9)

M6 = W
q,−q+π,k+π,−k

bbaa , (B10)

M7 = W
q+π,−q,k,−k+π

bbaa , (B11)

M8 = W
q+π,−q,k+π,−k

bbaa , (B12)

the matrix elements for transitions from an initial state with
particles starting in the lower band a in subband τi = +
with momentum k and −k into the state with two particles

in the upper band b in subbands τ1 and τ2 with momenta q and
−q, abbreviated as (a,k,+; a,−k,+) → (b,q,τ1; b,−q,τ2),
are given in Table I. To better understand the general behavior
of these matrix elements with regard to their Fourier structure
and justify the statements made in their discussion, we con-
sider more closely the (a,k,+; a,−k,+) → (b,q,+; b,−q,−)
element given by

I+,−;k,q = f1({Mi}) sin[ωt − 2κ sin(ωt)]

+ f2({Mi}) sin{2[ωt − 2κ sin(ωt)]}/2, (B13)

with

f1({Mi}) = M1 + M2 − M3 − M4 − M5 + M6 − M7 + M8,

f2({Mi}) = M1 + M2 + M3 + M4 − M5 − M6 − M7 − M8.

(B14)

If the interaction matrix elements are momentum independent,
Mi = M , we have that f1({Mi}) = f2({Mi}) = 0 and the time-
dependent terms vanish, and therefore no inelastic scattering
occurs.

Using the usual expansion in terms of Bessel functions,
exp[iz sin(ωt)] = ∑

n Jn(z)einωt , the term given in Eq. (B13)
is seen to, in fact, contain all frequency components allowing
the absorption of an arbitrary integer number of energy
quanta �ω. Moreover, for small κ = Vω/(�ω) higher-order
processes are suppressed by powers of κ . Specifically, for this
matrix element, in a given order (κ)n, frequency components
exp[imωt] from m = −n − 2 up to m = n + 2 are present. Or,
put differently, an m-photon transition is at least suppressed
by a power of (κ)n0 with n0 = max[|m| − 2,0].
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