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Some exact properties of the nonequilibrium response function for transient photoabsorption
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The physical interpretation of time-resolved photoabsorption experiments is not as straightforward as for the
more conventional photoabsorption experiments conducted on equilibrium systems. In fact, the relation between
the transient photoabsorption spectrum and the properties of the examined sample can be rather intricate since
the former is a complicated functional of both the driving pump and the feeble probe fields. In this work, we
critically review the derivation of the time-resolved photoabsorption spectrum in terms of the nonequilibrium
dipole response function χ and assess its domain of validity. We then analyze χ in detail and discuss a few
exact properties useful to interpret the transient spectrum during (overlapping regime) and after (nonoverlapping
regime) the action of the pump. The nonoverlapping regime is the simplest to address. The absorption energies
are indeed independent of the delay between the pump and probe pulses and hence the transient spectrum can
change only by a rearrangement of the spectral weights. We give a close expression of these spectral weights
in two limiting cases (ultrashort and everlasting monochromatic probes) and highlight their strong dependence
on coherence and probe envelope. In the overlapping regime, we obtain a Lehmann-type representation of χ in
terms of light-dressed states and provide a unifying framework of various well-known effects in pump-driven
systems. We also show the emergence of spectral substructures due to the finite duration of the pump pulse.
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I. INTRODUCTION

Filming a “movie” with electrons and nuclei as actors may
sound fantasylike, but it is de facto a common practice in
physics and chemistry modern laboratories. With the impres-
sive march of advances in laser technology, ultrashort (down
to the sub-fs time scale), intense (�1015W/cm2) and focused
pulses of designable shape, hereafter named pumps, are avail-
able to move electrons in real or energy space. By recording
the photoemission or photoabsorption spectrum produced by
a second, weak pulse, hereafter named probe, impacting the
sample with a tunable delay from the pump a large variety of ul-
trafast physical and chemical processes can be documented [1–
6]. Time-resolved pump and probe (P&P) spectroscopies have
revealed the formation and dynamics of excitons [7–11],
charge-transfer excitations [12–20], autoionized states [21,22]
and light-dressed states [23–37], the evolution of Fano res-
onances [38–43], the screening buildup of charged excita-
tions [44–47], the transient transparency of solids [48,49],
the motion of valence electrons [50–55], the band-gap renor-
malization of excited semiconductors [56–58], how chemical
bonds break [59–62], and other fundamental phenomena.

A suited P&P spectroscopy to investigate charge-neutral
excitations is the time-resolved (TR) photoabsorbtion (PA)
spectroscopy [63–65]. It is well established that PA spectra
of equilibrium systems are proportional to the dipole-dipole
response function χ [66–69], an extremely useful quantity to
understand and interpret the experimental results. In pump-
driven systems, the derivation of a mathematical quantity to
interpret TR-PA spectra is slightly more delicate and, in fact,
several recent works have been devoted to this subject [70–74].
The difficulty in constructing a solid and general TR-PA
spectroscopy framework (valid for general P&P envelopes,
durations and delays, and for samples of any thickness)
stems from the fact that the probed systems evolve in a

strong time-dependent electromagnetic (em) field and hence
(i) low-order perturbation theory in the pump intensity may
not be sufficiently accurate and (ii) separating the total energy
per unit frequency absorbed by the system into a pump and
probe contribution is questionable. Furthermore, due to the
lack of time-translational invariance, the TR-PA spectrum is
not an intrinsic property of the pump-driven system, depending
it on the shape of the probe field too.

We can distinguish two different approaches to derive a
TR-PA formula: the energy approach [70,72,74] which aims at
calculating the energy absorbed from only the probe, and the
Maxwell approach [71,73,75] which aims at calculating the
transmitted probe field (these approaches are equivalent for
optically thin and equilibrium samples). We carefully revisit
the energy approach, highlight its limitations, and infer that it is
not suited to perform a spectral decomposition of the absorbed
energy. We also reexamine the Maxwell approach and provide
a derivation of the TR-PA spectrum in nonmagnetic systems
without the need of frequently made assumptions like, e.g.,
slowly varying probe envelopes or ultrathin samples. The final
result is that the TR-PA spectrum can be calculated from the
single and double convolution of the nonequilibrium response
function χ with the probe field.

For the physical interpretation of TR-PA spectral features, a
Lehmann-type representation of the nonequilibrium χ would
be highly valuable, as it is in PA spectroscopy of equilibrium
systems. In this work, we discuss some exact properties of the
nonequilibrium χ and of its convolution with the probe field.
When the probe acts after the pump (nonoverlapping regime),
χ can be written as the average over a nonstationary state
of the dipole operator correlator evolving with the equilibrium
Hamiltonian of the sample. In this regime, the TR-PA spectrum
is nonvanishing when the frequency matches the difference of
two excited-state energies. As these energies are independent
of the delay τ between the pump and probe field, only
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the spectral weights can change with τ (not the absorption
regions) [76]. We discuss in detail how the spectral weights are
affected by the coherence between nondegenerate excitations
and by the shape of the probe field. A close expression is
given in the two limiting cases of ultrashort and everlasting
monochromatic probes.

The overlapping regime is, in general, much more com-
plicated to address. The absorption energies cease to be an
intrinsic property of the unperturbed system and acquire a
dependence on the delay. Nevertheless, an analytic treatment is
still possible in some relevant situations. For many-cycle pump
fields of duration longer than the typical dipole relaxation
time, we show that a Lehmann-type representation of the
nonequilibrium χ in terms of light-dressed states can be
used to interpret the TR-PA spectrum. We provide a unifying
framework of well-known effects in pump-driven systems such
as, e.g., the ac Stark shift, the Autler-Townes splitting, and the
Mollow triplet. More analytic results can be found for samples
described by a few level systems. In this case, from the exact
solution of the nonequilibrium response function with pump
fields of finite duration we obtain the dipole moment induced
by ultrashort probe fields. The analytic expression shows that
(i) the τ -dependent renormalization of the absorption energies
follows closely the pump envelope and (ii) a spectral substruc-
ture characterized by extra absorption energies emerges.

The paper is organized as follows. In Sec. II, we briefly
review the principles of TR-PA spectroscopy measurements.
We critically discuss the energy approach to PA spectroscopy
in equilibrium systems and highlight the limitations which
hinder a generalization to nonequilibrium situations. The
conceptual problems of the energy approach are overcome
by the Maxwell approach which is reexamined and used to
derive the transmitted probe field emerging from nonmagnetic
samples of arbitrary thickness, without any assumption on the
shape of the incident pulse. The nonequilibrium dipole-dipole
response function χ is introduced in Sec. III and related to the
transmitted probe field. We analyze χ in the nonoverlapping
regime in Sec. IV and in the overlapping regime in Sec. V.
Finally, a class of exact solutions in few-level systems for
overlapping pump and probe fields is presented in Sec. VI.
Summary and conclusions are drawn in Sec. VII.

II. TIME-RESOLVED PHOTOABSORPTION
SPECTROSCOPY

In this section, we briefly revisit the principles of PA
for systems in equilibrium, and subsequently generalize the
discussion to the more recent TR-PA for systems driven away
from equilibrium. The aim of this preliminary section is to
highlight the underlying assumptions of orthodox equilibrium
PA theories, identify the new physical ingredients that a
nonequilibrium PA theory should incorporate, and eventually
obtain a formula for the TR spectrum which is a functional of
both the pump and probe fields. Except for a critical review of
the literature, no original results are present in this section.

A. Experimental measurement

Consider a system in equilibrium and irradiate it with some
feeble light (perturbative probe). In Fig. 1, we show a snapshot

FIG. 1. (Color online) Illustration of a PA experiment.

at time t of a typical equilibrium PA experiment. The incident
light is described by the electric and magnetic fields e(t) and
b(t) (left side of the sample) whereas the transmitted light
is described by the em fields e′(t), b′(t) (right side of the
sample). The experiment measures the total transmitted energy
E′. This quantity is given by the energy flow (or equivalently
the Poynting vector) integrated over time (the duration of the
experiment) and surface. Denoting by S the cross section of
the incident beam we have (here and in the following integrals
with no upper and lower limits go from −∞ to +∞)

E′ = S c

4π

∫
dt |e′(t) × b′(t)|. (1)

The integral in Eq. (1) is finite since the em fields used
in an experiment vanish outside a certain time interval. In
vacuum the electric and magnetic fields are perpendicular
to each other and their cross product is parallel to the
direction of propagation. Taking into account that |b′| = |e′|
the transmitted energy in Eq. (1) simplifies to

E′ = S c

4π

∫
dt |e′(t)|2. (2)

From Eq. (2) we see that the transmitted energy E′ depends
on the temporal shape of the electric field. This dependence can
be exploited to extract the energy of the neutral excitations of
the sample. A typical, systematic way of varying the temporal
shape consists in probing the sample with monochromatic light
of varying frequency. Taking into account that the electric field
is real, its Fourier transform reads as

e′(t) =
∫ ∞

0

dω

2π
ẽ′(ω)e−iωt + c.c., (3)

where c.c. stands for “complex conjugate.” Unless otherwise
defined, quantities with the tilde symbol on top denote
the Fourier transform of the corresponding time-dependent
quantities. Inserting Eq. (3) back into Eq. (2) we find

E′ = S c

2π

∫ ∞

0

dω

2π
|ẽ′(ω)|2. (4)

For monochromatic light of frequency ω0 (in the time interval
of the experiment), the transmitted field ẽ′(ω) is peaked at
ω � ω0 and hence E′ � S c

2π
�ω
2π

|ẽ′(ω0)|2, where �ω is the
width of the peaked function ẽ′(ω). Therefore, the quantity

W̃ ′(ω) ≡ S c

2π
|ẽ′(ω)|2, ω > 0 (5)

can be interpreted as the transmitted energy per unit frequency.
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Alternatively, W̃ ′(ω) could be measured using fields of
arbitrary temporal shape and a spectrometer. As this is also the
technique in TR-PA experiments, and the method to elaborate
the data of the real-time simulations of Sec. VI is based
on this technique, we shortly describe its principles. The
spectrometer, placed between the sample and the detector,
splits the transmitted beam into two halves and generates a
tunable delay δ for one of the halves. The resulting electric
field at the detector is therefore 1

2 [e′(t) + e′(t − δ)], and the
measured transmitted energy is

E′(δ) = S c

4π

∫
dt

∣∣∣∣e′(t) + e′(t − δ)

2

∣∣∣∣
2

. (6)

The PA experiment is repeated for different delays δ, and the
results are collected to perform a cosine transform

Ẽ′(ν) ≡
∫

dδ E′(δ) cos(νδ). (7)

The relation between Ẽ′ and W̃ ′ is readily found. Using Eq. (3)
we get

E′(δ) = S c

2π

∫ ∞

0

dω

2π
|ẽ′(ω)|2 1 + cos(ωδ)

2
. (8)

Inserting this result into Eq. (7) and taking into account the
identity

∫
dδ cos(ωδ) cos(νδ) = π [δ(ω + ν) + δ(ω − ν)] we

find Ẽ′(ν) = πδ(ν)E′ + S c
8π

|ẽ′(ν)|2. Thus, for every ν �= 0
we have W̃ ′(ν) = 4Ẽ′(ν).

The PA experiment can be repeated without the sample to
measure the energy per unit frequency W̃ (ω) of the incident
beam. The difference

S̃(ω) = W̃ (ω) − W̃ ′(ω) > 0 (9)

is therefore the missing energy per unit frequency. How to
relate this experimental quantity to the excited energies and
excited states of the sample is well established and will be
reviewed in the next section.

The main novelty introduced by TR-PA experiments con-
sists in probing the sample in a nonstationary (possibly driven)
state. The sample is driven out of equilibrium by an intense
laser pulse described by the em fields E(t) and B(t), and
subsequently probed with the em fields e(t) and b(t) (see
Fig. 2). We refer to E(t) and B(t) as the pump fields. To extract
information on the missing probe energy, the transmitted pump
field is not measured (see again Fig. 2). As the sample is
not in its ground state, the transmitted beam is also made of
photons produced by the stimulated emission. These photons
have the same frequency and direction of the probe photons
and, therefore, the inequality in Eq. (9) is no longer guaranteed.

FIG. 2. (Color online) Illustration of a TR-PA experiment.

B. Energy approach: PA in equilibrium

In this section, we obtain an expression for the spectrum
S̃(ω) of systems initially in equilibrium in their ground state
(the finite-temperature generalization is straightforward). We
use an approach based on the energy dissipated by the sample
and highlight those parts in the derivation where the hypothesis
of initial equilibrium and weak em field is used. We advance
that this approach cannot be generalized to nonequilibrium
situations.

For a system driven out of equilibrium by an external
(transverse) electric field Eext, the energy absorbed per unit
time, i.e., the power dissipated by the system, is

P(t) = −
∫

dr J(rt) · Eext(rt), (10)

where J is the current density and e = −1 is the electric
charge. This well-known formula is valid only provided that
the electric field generated by the induced current J is much
smaller than Eext. For the time being, let us assume that this is
the case. We also assume that the probed systems are nanoscale
samples like atoms and molecules or thin slabs of solids.
Then, the wavelength of the incident em field is typically
much larger than the longitudinal dimension of the sample
and the spatial dependence of Eext can be ignored. Writing
J = ∇(r · J) − (∇ · J)r, discarding the total divergence, and
using the continuity equation, the power becomes

P(t) = −
∫

dr
∂n(rt)

∂t
r · Eext(t), (11)

where n is the electron density. The integral of the power
between any two times t1 and t2 yields the difference between
the energy of the system at time t2 and the energy of the system
at time t1:

Esys(t2) − Esys(t1) = −
∫ t2

t1

dt Eext(t) · d

dt
d(t), (12)

where we found it convenient to define the dipole moment

d(t) =
∫

dr r n(rt). (13)

We observe that nowhere is the assumption of small external
em fields and/or the assumption of a system in equilibrium
made in the derivation of Eq. (12). It is also important to
emphasize the semiclassical nature of Eq. (12). Suppose that
the sample is initially in its ground state with energy Eg .
We switch the em field on at a time t = ton and switch it
off at a time t = toff . According to Eq. (12), the difference
Esys(t) − Eg remains constant for any t > toff . Physically,
however, this is not what happens. At times t � toff , the sample
is back in its ground state since there has been enough time
to relax (via the spontaneous emission of light). Hence, the
correct physical result should be Esys(t → ∞) − Eg = 0. In
Eq. (12), the description of the em field is purely classical and
does not capture the phenomenon of spontaneous emission.
Nevertheless, a spontaneous emission process occurs on a
time scale much longer than the duration of a typical PA
experiment. The semiclassical formula is therefore accurate
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for times t � toff and, consequently, the quantity

Eabs = −
∫

dt Eext(t) · d

dt
d(t) (14)

can be identified with the increase in the energy of the sample
just after the em field has been switched off. We refer to Eabs

as the absorbed energy. Let us see how to relate Eq. (14) to
the missing energy S̃(ω) measured in an experiment.

In equilibrium PA experiments, Eext = e is the probing
field discussed in Sec. II A. Let E = ∫

dω
2π

W̃ (ω) and E′ =∫
dω
2π

W̃ ′(ω) be the total energy of the incident and transmitted
beam, respectively. Then, the difference E − E′ is the energy
transferred to the sample, i.e., the absorbed energy of Eq. (14):

E − E′ = Eabs. (15)

We write the dipole moment d = deq + dp as the the sum of
the equilibrium value deq and the probe induced variation dp.
Since deq is constant in time, the absorbed energy in frequency
space reads as

Eabs = i

∫ ∞

0

dω

2π
ω ẽ∗(ω) · d̃p(ω) + c.c. (16)

Taking into account Eq. (15) and the definition of S̃ in Eq. (9)
we also have

Eabs =
∫

dω

2π
S̃(ω). (17)

We now show that the right-hand sides of Eqs. (16) and (17) are
the same because the integrands are the same. The transmitted
em field ẽ′(ω) at frequency ω depends, to lowest order in e, only
on ẽ(ω) at the same frequency ω since the system is initially
in equilibrium (hence invariant under time translations). This
implies that if the probe field has N frequencies ω1, . . . ,ωN ,
then the total missing energy E − E′ is the sum of the missing
energies of N independent PA experiments carried out with
monochromatic beams of frequencies ω1, . . . ,ωN . The same
is true for the energy absorbed by the sample: d̃p(ω) depends
only on ẽ(ω) since the probe-induced dipole moment is linear
in e. Therefore, for systems in equilibrium and to lowest order
in the probing fields we can write

S̃(ω) = iω ẽ∗(ω) · d̃p(ω) + c.c. (18)

The approaches to calculate the right-hand side of Eq. (18)
can be grouped into two classes. In one (recently emerging)
class one perturbs the system with an em field e(t), calcu-
lates the time-dependent dipole moment either by solving
the Schrödinger (or Liouville) equation, or by using other
methods [77–87], and then Fourier transforms it. The other
(more traditional) class avoids time propagations and works
directly in frequency space. To lowest order in e, the Kubo
formula gives

dp,i(t) =
∑

j

∫
dt ′χij (t,t ′)ej (t ′), (19)

where χ is the (retarded) dipole-dipole response function. For
a system with Hamiltonian Ĥ in the ground state |
g〉 of

energy Eg we have

iχij (t,t ′)= θ (t − t ′)〈
g|eiĤ t d̂ie
−iĤ (t−t ′)d̂j e

−iĤ t ′ − H.c.|
g〉
= θ (t − t ′)〈
g|d̂ie

−i(Ĥ−Eg)(t−t ′)d̂j − H.c.|
g〉, (20)

where H.c. stands for “Hermitian conjugate” and d̂i is the
ith component of the dipole-moment operator. As expected,
the equilibrium response function χ depends on the time
difference only. Fourier transforming Eq. (19) and inserting
the result into Eq. (18) we get

S̃(ω) = ω
∑
ij

ẽ∗
i (ω)Lij (ω)ẽj (ω), (21)

withLij (ω) ≡ i[χ̃ij (ω) − χ̃∗
ji(ω)]. The response function χ̃ (ω)

can be calculated by several means without performing a time
propagation. From the Lehmann representation of χ it is easy
to verify thatL is positive semidefinite for positive frequencies
and negative semidefinite otherwise. Consequently, S̃ is
manifestly positive, in agreement with Eq. (9).

C. Energy approach: PA out of equilibrium

In a typical TR-PA experiment, both the pump and probe
fields are very short (fs-as) laser pulses with a delay τ between
them. If the pump acts after the probe at delays larger than
the system relaxation time then we recover the equilibrium
PA spectra. Otherwise S̃(ω) acquires a dependence on τ . This
dependence can be used to follow the evolution of the system
in real time. However, for the physical interpretation of what
we are actually following, it is necessary to generalize the
equilibrium PA theory to nonequilibrium situations.

Let the external electric field Eext be the sum of the pump
field E and probe field e, i.e., Eext = E + e. In this case,
Eq. (14) yields the total energy absorbed by the system. As
the experiment detects only the energy of the transmitted
probe field, the use of the energy approach for TR-PA is not
straightforward. One might argue that the energy absorbed
from the probe is given by Eq. (14) in which Eext → e:

Eabs
?= −

∫
dt e(t) · d

dt
d(t). (22)

However, this formula cannot be always correct. Suppose
that the pump field is also feeble and can be treated as a
small perturbation. Then, the transmitted probe field ẽ′(ω)
depends on Ẽ(ω) + ẽ(ω) (linear-response theory). These fields
are independent of position inside the sample. In a larger
space, like that of the laboratory, they do depend on r and
this dependence specifies the direction of propagation. Let
Ẽ(Kω) and ẽ(kω) be the spatial Fourier transform of the pump
and probe fields. For isotropic systems, ẽ′(kω) depends only
on ẽ(kω) since Ẽ(kω) vanishes for k parallel to the direction
of propagation of the probe. This implies that the missing
energy per unit frequency is independent of the pump, a
conclusion which is not in agreement with Eq. (22). In fact,
Eabs depends on E whenever the pump-induced variation of d
is not orthogonal to e.

To cure this problem, we could write d = dP + dp, where
dP is the value of the dipole moment when only the pump field
is present whereas dp is the probe-induced variation, and say
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that the missing probe energy is

Eabs
?= −

∫
dt e(t) · d

dt
dp(t). (23)

This expression is by construction correct for perturbative
pumps. For pumps of arbitrary strength, Eq. (23) cannot be
proved or disproved using exclusively energy considerations.
For the sake of the argument, however, let us assume that
Eq. (23) is the correct missing energy. There is still a
conceptual problem to overcome if we are interested in the
missing energy per unit frequency. For strong pump fields, the
sample is in a nonstationary state and hence the transmitted
probe field ẽ′(ω) depends on the entire function ẽ, not only
on the value ẽ(ω) at the same frequency. Thus, the reasoning
made below Eq. (17) does not apply. In particular, if e is
monochromatic then e′ (as well as dp) is, in general, not
monochromatic. Consequently, S̃ ∝ |ẽ|2 − |ẽ′|2 is, in general,
not monochromatic either. If we used the formula in Eq. (18)
we would instead find that S̃ is peaked at only one frequency
since ẽ is peaked at only one frequency. To overcome these
problems, one has to abandon the energy approach and
calculate explicitly the transmitted probe field.

D. Maxwell approach

To overcome the difficulties of the energy approach, we use
the Maxwell equations to calculate explicitly the transmitted
probe field. In a nonmagnetic medium, the total electric field
E , i.e., the sum of the external and induced field, satisfies the
equation [75,88]

∇2E − 1

c2

∂2E
∂t2

= −4π

c2

∂〈J〉
∂t

, (24)

where 〈J〉(rt) is the macroscopic current density, i.e., the
spatial average of the current density over small volumes
around r. In the derivation of Eq. (24) one uses that ∇ × ∇ ×
E = ∇(∇ · E) − ∇2E and that ∇ · E = 0 since the sample is
charge neutral (in a macroscopic sense). Let N̂ and n̂ be the
unit vectors along the propagation direction of the pump and
probe fields, respectively. In TR-PA experiments, these vectors
are not parallel for otherwise the detector would measure
the transmitted pump intensity too. The time dependence of
the macroscopic current density arises when the pump and
probe fields interact with the electrons in the sample. For
transverse pump and probe fields and for isotropic systems,
〈J〉 is the sum of transverse waves propagating along the
directions QKN̂ + qkn̂ with Q and q integers, and K and k the
pump and probe wave numbers, respectively. Consequently,
the total electric field too is the sum of waves propagating along
QKN̂ + qkn̂, and Eq. (24) can be solved for each direction
separately.

We define Ep and 〈J〉p as the wave of the electric field and
current density propagating toward the detector (hence, Q = 0
and q = 1). The vectors Ep and 〈J〉p depend on the spatial
position r only through x = n̂ · r (transverse fields) and are
parallel to some unit vector εp lying on the plane orthogonal
to n̂ (the generalization to multiple polarization is straightfor-
ward, see Sec. VI B): Ep = εpEp(x t) and 〈J〉p = εpJp(x t).

Equation (24) implies that

∂2Ep

∂x2
− 1

c2

∂2Ep

∂t2
= −4π

c2

∂Jp

∂t
, (25)

which is a one-dimensional wave equation that can be solved
exactly without assuming slowly varying probe envelopes [71]
or ultrathin samples [73]. The electric field Ep is the sum of an
arbitrary solution h(t − x/c) of the homogeneous equation and
of an arbitrary special solution s(x t): Ep(x t) = h(t − x/c) +
s(x t). Without loss of generality, we take the boundaries of
the sample at x = 0 and L. Let e(t − x/c) be the amplitude
of the incident probe field which at time t = 0 is localized
somewhere on the left of the sample. Imposing the boundary
condition Ep(x 0) = e(−x/c) we then obtain

Ep(x t) = e(t − x/c) − s(x − ct 0) + s(x t). (26)

The special solution s(x t) is found by inverting the one-
dimensional d’Alambertian � ≡ ∂2

∂x2 − 1
c2

∂2

∂t2 . The Green’s
function G(x t) solution of �G(x t) = δ(x)δ(t) is

G(x t) = − c

2
θ (t)χ[−ct,ct](x), (27)

where χ[a,b](x) = 1 if x ∈ (a,b) and zero otherwise. Therefore,
the special solution reads as

s(x t) = 2π

c

∫ t

−∞
dt ′

∫ x+c(t−t ′)

−x−c(t−t ′)
dx ′ ∂Jp(x ′t ′)

∂t ′
. (28)

Without any loss of generality, we can choose the time t = 0
as the time before which neither the pump nor the probe have
reached the sample. Then, Jp = 0 for t < 0 and hence s(x 0) =
0 for all x. We conclude that

Ep(x t) = e(t − x/c) + s(x t), (29)

with s given in Eq. (28).
We are interested in the electric field on the right of the

sample, i.e., in x = L, since this is the detected field. Let us
therefore evaluate Eq. (28) in x = L. Taking into account that
Jp(x ′t ′) is nonvanishing only for x ′ ∈ (0,L) and t ′ > 0 we have

s(L t) = 2π

c

∫ t

0
dt ′

∫ L

0
dx ′ ∂Jp(x ′t ′)

∂t ′

= 2π

Sc
εp ·

∫
V

dr 〈J〉p(rt), (30)

where in the second line we integrated over the volume
V = SL of the sample. Using again the identity 〈J〉p =
∇(r · 〈J〉p) − r(∇ · 〈J〉p) and extending the integral over all
space (outside V the current density vanishes), we can rewrite
Eq. (30) as s(L t) = − 2π

Sc
εp · ∫

dr r (∇ · 〈J〉p). Substituting
this result into Eq. (29) and taking into account the con-
tinuity equation ∇ · 〈J〉p = −∂〈n〉p/∂t , where 〈n〉p is the
macroscopic probe-induced change of the electronic density
propagating along n̂, we eventually obtain the transmitted
electric field

Ep(L t) = e(t) + 2π

Sc
εp · d

dt

∫
dr r 〈n〉p(rt), (31)

where we discarded the delay L/c in the first term on the right-
hand side. The volume integral is the probe-induced dipole
moment propagating along n̂. In general, this is not the same

033416-5



E. PERFETTO AND G. STEFANUCCI PHYSICAL REVIEW A 91, 033416 (2015)

as the full probe-induced dipole moment dp defined above
Eq. (23) since, to lowest order in the probe field, dp is the
sum of waves propagating along kn̂ + QKN̂. Although it is
reasonable to expect that the wave propagating along n̂ (i.e.,
with Q = 0) has the largest amplitude, it is important to bear
in mind this conceptual difference. In fact, in equilibrium PA
experiments dp and

∫
dr r 〈n〉p are the same due to the absence

of the pump. For not introducing too many symbols we redefine
dp ≡ ∫

dr r 〈n〉p. Then, by definition, dp is parallel to εp and
we can cast Eq. (31) in vector notation as

e′(t) = e(t) + 2π

Sc

d

dt
dp(t). (32)

Equation (32) relates the transmitted probe field to the
quantum-mechanical average of the probe-induced dipole
moment, and it represents the fundamental bridge between
theory and experiment. The result has been derived without
assuming that the wavelength of the incident field is much
larger than the longitudinal dimension of the sample (for
thick samples, Ep can be substantially different from e and
the quantum electron dynamics should be coupled to the
Maxwell equations). Equation (32) can be used to calculate
the missing energy per unit frequency of pump-driven systems.
Noteworthy, Eq. (32) is valid for positive and negative delays
between pump and probe, as well as for situations in which
pump and probe overlap in time or even for more exotic
situations in which the pump is entirely contained in the time
window of the probe.

III. NONEQUILIBRIUM RESPONSE FUNCTION

From the definition in Eq. (9) the spectrum of a (equilibrium
or nonequilibrium) PA experiment is given by

S̃(ω) = S c

2π
[|ẽ(ω)|2 − |ẽ′(ω)|2]. (33)

Since e = εpe and dp = εpdp are both parallel to εp, so it
is e′ = εpe′. Then, the Fourier transform of Eq. (32) yields
ẽ′(ω) = ẽ(ω) − i 2π

Sc
ω d̃p(ω), and the spectrum in Eq. (33) can

be rewritten as

S̃(ω) = −2 Im[ω ẽ∗(ω)d̃p(ω)] − 2π

Sc
|ω d̃p(ω)|2. (34)

At the end of Sec. II C we criticized the energy approach
since it predicts a single-peak spectrum for monochromatic
probes. Let us analyze Eq. (34) for the same case. For
monochromatic probes of frequency ω0 the first term in
Eq. (34) vanishes for ω �= ω0, whereas the second term is
nonvanishing at the same frequencies of the transmitted probe
field [see Eq. (32)], in agreement with the discussion at the
end of Sec. II C. The quadratic term in the dipole moment
is usually discarded in equilibrium PA calculations since
dp and e oscillate at the same frequencies, and typically
|ẽ(ω)| � (2π/Sc)|ωd̃p(ω)|. If we discard the last term in
Eq. (34), then we recover the spectrum of Eq. (18) of the
energy approach.

For the physical interpretation of nonequilibrium PA spectra
it is crucial to understand the physics contained in the
nonequilibrium dipole-dipole response function. In fact, dp

can be calculated from the scalar version of the Kubo formula

in Eq. (19), i.e. [89],

dp(t) =
∫

dt ′χ (t,t ′)Ep(t ′). (35)

Here, the scalar dipole-dipole response function χ is defined
according to χ = ∑

ij εp,iχij εp,j and Ep is the total electric
field (Ep � e if the induced field is small). Unfortunately, for
pump-driven systems a Lehmann-type formula for χ does
not exist due to the presence of a strong time-dependent
perturbation in the Hamiltonian. By introducing the evolution
operator Û(t,t ′) from t ′ to t of the system without the probe,
the nonequilibrium dipole-dipole response function reads as

iχ (t,t ′)= θ (t − t ′)

×〈
g|Û(t0,t)d̂ Û(t,t ′)d̂ Û(t ′,t0) − H.c.|
g〉, (36)

where d̂ = εp · d̂ and t0 is any time earlier than the switch-
on time of the pump and probe fields. As anticipated, the
nonequilibrium χ depends on t and t ′ separately. It is clear
from Eq. (36) that χ does not have a simple representation
in terms of the many-body eigenstates and eigenenergies of
the unperturbed system. It is also easy to verify that Eq. (36)
agrees with Eq. (20) in the absence of the pump.

As a final remark before presenting some exact properties
of χ , we observe that in equilibrium [see Eq. (21)], the
ratio S̃(ω)/|ẽ(ω)|2 is independent of the probe field, i.e.,
it is an intrinsic property of the sample. This is not true
in nonequilibrium, even if we discard the last term in
Eq. (34) and approximate E � e. The physical interpretation of
nonequilibrium PA spectra cannot leave out of consideration
the shape and duration of the probe, and the relative delay
between pump and probe. In the next sections, we discuss two
relevant situations for interpreting the outcome of a TR-PA
experiment.

IV. NONOVERLAPPING PUMP AND PROBE

Let us consider the case of a probe pulse acting after the
pump pulse. We take the time origin t = 0 as the switch-
on time of the probe. Then, the pump acts at some time
t = −τ < 0. For t > 0, the probe-induced variation of the
dipole moment can be calculated from Eq. (35) with lower
integration limit t ′ = 0. As we only need χ for t,t ′ > 0 we have
Û(t0,t) = Û(t0,0)eiĤ t and similarly Û(t ′,t0) = e−iĤ t ′ Û(0,t0),
with Ĥ the unperturbed Hamiltonian of the system. Defining
|
〉 ≡ Û(0,t0)|
g〉 as the quantum state of the system at time
t = 0, the response function in Eq. (36) becomes

iχ (t,t ′) = θ (t − t ′)〈
|eiĤ t d̂ e−iĤ (t−t ′)d̂ e−iĤ t ′ − H.c.|
〉,
(37)

which closely resembles the equilibrium response function of
Eq. (20). In fact, without pump fields |
〉 = eiEgt0 |
g〉 and
Eq. (37) reduces to the equilibrium response function. We
emphasize that in the presence of pump fields, Eq. (37) is
valid only for t,t ′ > 0.

We expand the quantum state |
〉 = ∑
α cα|
α〉 in terms

of the many-body eigenstates |
α〉 of Ĥ with eigenenergy Eα .
The coefficients cα = c̄αe−iEατ depend on the delay τ between
the pump and the probe, c̄α being the expansion coefficients
of the state of the system at the end of the pump. Inserting
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the expansion in Eq. (37) and using the completeness relation∑
γ |
γ 〉〈
γ | = 1, we find

iχ (t,t ′) = θ (t − t ′)
∑
αβγ

c∗
αcβei�αγ t ei�γβ t ′dαγ dγβ − c.c., (38)

where we defined the dipole matrix elements dαγ =
〈
α|d̂|
γ 〉 and the energy differences �αγ = Eα − Eγ . In
the following, we use this result to study the outcome of a PA
experiment in two limiting cases, i.e., an ultrashort probe and
a monochromatic probe.

A. Ultrashort probe

The probe fields used in TR-PA experiments are ultrashort
laser pulses. For optically thin samples, the em field generated
by the probe-induced dipole moment is negligible and does
not substantially affect the quantum evolution of the system.
Therefore, we can calculate dp from Eq. (35) with E = e. For
a deltalike probe e(t) = e0δ(t), hence ẽ(ω) = e0, we find

dp(t) = −ie0

∑
αβγ

c∗
αcβei�αγ t dαγ dγβ + c.c., (39)

where we used the explicit form of the response function
in Eq. (38). Fourier transforming this result we obtain the
spectrum

S̃(ω) = −2ωe2
0

∑
αβγ

Im

[
ei�αβτ c̄∗

αc̄βdαγ dγβ

×
(

1

ω − �γα + iη
− 1

ω + �γβ + iη

)]
, (40)

where η is a positive infinitesimal and we discarded the
quadratic term in dp (thin samples). In Eq. (40), the dependence
on the delay τ enters exclusively through the phase factors
and, consequently, it is only responsible for modulating the
amplitude of the absorption peaks. The position of the peaks is
instead an intrinsic property of the unperturbed system. Thus,
a change in the peak position (discrete spectrum) or in the
onset of a continuum (continuum spectrum) due to τ should
not be attributed to a change of the many-body energies but to
a redistribution of the spectral weights.

Let us discuss Eq. (40) in some detail. For a system in
equilibrium in the ground state (no pump) cα = 1 for α = g

and cα = 0 otherwise, and the spectrum reduces to

S̃(ω) = 2πωe2
0

∑
γ

|dgγ |2[δ(ω − �γg) − δ(ω + �γg)]. (41)

Since Eγ > Eg the spectrum is non-negative, in agreement
with Eq. (9). In particular, the height of the peak at some fre-
quency ω0 is given by hg = 2π |ω0|e2

0

∑
γ :�γg=|ω0| |dgγ |2 � 0.

It is also interesting to consider the hypothetical situation of
a pump pulse which brings the system from the ground state
to an excited state |
〉 = |
x〉 with energy Ex . As the system
is stationary, this is the simplest example of a nonequilibrium
situation. In the stationary case we have cα = 1 for α = x

and cα = 0 otherwise, and hence the spectrum is again given
by Eq. (41) with the only difference that the subscript “g”
is replaced by the subscript “x.” Since Ex is not the lowest
energy, the positivity of the spectrum is no longer guaranteed.

In fact, the height of the peak at frequency ω0 is

hx = 2πω0e
2
0

⎛
⎝ ∑

γ :�γx=ω0

|dxγ |2 −
∑

γ :�γx=−ω0

|dxγ |2
⎞
⎠ , (42)

which can be either positive or negative. The sign is positive
if the absorption rate is larger than the rate for stimulated
emission and negative otherwise. We observe that in the
stationary case, the spectrum is independent of the delay.

The most general situation is a system in a nonstationary
state. From Eq. (40) the peak intensity at some frequency ω0

reads as

h = 2πω0e
2
0

∑
αβ

∑
±

±
∑

γ :�γα=±ω0

Re[ei�αβτ c̄∗
αc̄βdαγ dγβ],

(43)

where we introduced the shorthand notation
∑

± A± = A+ +
A−, with A an arbitrary mathematical expression. If |
〉
is a superposition of degenerate eigenstates, hence c̄α �= 0
for Eα = E and c̄α = 0 otherwise, then the system is stationary
and the height is independent of the delay. The dependence on
τ is manifest only for |
〉 a superposition of nondegenerate
eigenstates. The simplest example is a system in a superposi-
tion of two eigenstates with energy Ea and Eb, real coefficients
c̄a and c̄b, and real dipole matrix elements. In this case, Eq. (43)
yields h = ha + hb + hab cos(�abτ ) where hx=a,b is defined
as in Eq. (42) and

hab = 2πω0e
2
0 c̄a c̄b

∑
α=a,b

∑
±

±
∑

γ :�γα=±ω0

daγ dbγ .

The spectral fingerprint of a nonstationary system is the
modulation of the peak intensities with τ . These coherent
oscillations have been first observed in Ref. [54].

B. Monochromatic probe

The induced electric field of thick samples is not negligible
and can last much longer than the external probe pulse. In
this case, the quantum evolution of the system should be
coupled to the Maxwell equations to determine the total
field self-consistently [23,35,40,70,75,90–97]. For a typical
sub-as pulse e(t) centered around a resonant frequency ω0

the total probe field E(t) is dominated by oscillations of
frequency ω0 decaying over the same time scale of the induced
dipole moment (in atomic gases this time scale can be as
long as hundreds of fs). Let us explore the outcome of a
TR-PA experiment for a total probe field of the form, e.g.,
E(t) = E0θ (t) sin(ω0t), ω0 > 0. Taking into account Eq. (38)
we find

dp(t) = i

2
E0

∑
αβγ

∑
±

c∗
αcbdαγ dγβ

ei(�αβ±ω0)t − ei�αγ t

±(�γβ ± ω0)
+ c.c.

(44)

If |
〉 = |
x〉 (stationary system), then cα = δαx and the
dominant contributions in Eq. (44) come from eigenstates with
energy Eγ = Ex + ω0 in the “−” sum and from eigenstates
with energy Eγ = Ex − ω0 in the “+” sum. Therefore,
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Eq. (44) is well approximated by

dp(t) = E0 t cos(ω0t)
∑
±

±
∑

γ :�γx=±ω0

|dxγ |2. (45)

As expected, the dipole moment oscillates at the same
frequency of the electric field. Unlike the spectrum of an
ultrashort probe, in the monochromatic case S̃(ω) has at most
one peak. For x = g (ground state), the “−” sum vanishes
since �γg > 0, and we recover the well-known physical
interpretation of equilibrium PA experiments: peaks in S̃(ω)
occur in correspondence of the energy of a charge-neutral
excitation. This remains true for x �= g, but the sign of the
oscillation amplitude can be either positive or negative. Notice
that the oscillation amplitude is proportional to hx in Eq. (42)
and it is independent of the delay.

In the nonstationary case, |
〉 is a superposition of
nondegenerate eigenstates. For a fixed β in Eq. (44), the dom-
inant contributions come from eigenstates with energy Eγ =
Eβ + ω0 in the “−” sum and from eigenstates with energy
Eγ = Eβ − ω0 in the “+” sum. Writing �αγ = �αβ + �βγ

it is straightforward to show that

dp(t) = E0
t

2

∑
αβ

∑
±

± c∗
αcβei�αβ t

×
⎛
⎝e∓iω0t

∑
γ :�γβ=±ω0

dαγ dγβ + e±iω0t
∑

γ :�γα=±ω0

dαγ dγβ

⎞
⎠ .

(46)

As anticipated below Eq. (34) dp(t) is not monochromatic in
a nonstationary situation, the frequencies of the oscillations
being ω0 ± �αβ . Can these extra frequencies be seen in the
TR-PA spectrum? The answer is affirmative since ẽ(ω) is
a broad function centered in ω0 and hence for |�αβ | not
too large Im[ẽ∗(ω0 ± �αβ)d̃p(ω0 ± �αβ)] is nonvanishing.
Furthermore, the induced electric field is sizable and hence
the second term in the right-hand side of Eq. (34) cannot be
discarded.

The dipole moment in Eq. (46) is substantially different
from the ultrafast probe-induced dp of Eq. (39). In order to
appreciate the difference, we calculate the amplitude of the
dipole oscillation of frequency ω0 and compare it with the
height h in Eq. (43). By restricting the sum over α,β to states
with �αβ = 0 in Eq. (46), we obtain the harmonics dp,ω0 (t)
with frequency ±ω0:

dp,ω0 (t) = E0 t cos(ω0t)
∑

αβ:�αβ=0

c̄∗
αc̄β

∑
±

±
∑

γ :�γα=±ω0

dαγ dγβ. (47)

The main difference between the amplitude of t cos(ω0t) in
Eq. (47) and the peak height in Eq. (43) is that in the former we
have a constrained sum over α,β. Consequently, no coherent
oscillations as a function of the delay τ are observed in the TR-

PA spectrum around frequency ω0, in agreement with recent
experimental findings in Ref. [35].

V. OVERLAPPING PUMP AND PROBE

In the overlapping regime, the difficulty in extracting phys-
ical information from the nonequilibrium response function
is due to the presence of the pump in the evolution operator.
Nevertheless, some analytic progress can still be made for the
relevant case of ultrashort probes. If the pump is active for
a long enough time before and after the probe then we can
approximate it with an everlasting field. In this section, we
study the nonequilibrium response function of systems driven
out of equilibrium by a strong periodic pump field. As we
shall see in Sec. VI, this analysis will help the interpretation
of TR-PA spectra.

Let us consider a periodic Hamiltonian Ĥ (t) = Ĥ (t +
TP ) = ∑

n einωP t Ĥ (n), with ωP = 2π/TP . According to the
Floquet theorem, the evolution operator can be expanded
as [98]

U(t,t ′) =
∑

α

e−iQα (t−t ′)|
α(t)〉〈
α(t ′)|. (48)

In this equation, |
α(t)〉 = |
α(t + TP )〉 = ∑
n einωP t |
(n)

α 〉
are the quasieigenstates and Qα are the quasienergies.
They are found by solving the Floquet eigenvalue problem∑

k ĤF,nk|
(k)
α 〉 = Qα|
(n)

α 〉 with ĤF,nk ≡ Ĥ (n−k) + nωP δnk .
It is easy to show that if {Qα,|
(n)

α 〉} is a solution, then {Q′
α =

Qα + mωP ,|
 ′(n)
α 〉 = |
(n−m)

α 〉} is a solution too. These two
solutions, however, are not independent since e−iQαt |
α(t)〉 =
e−iQ′

αt |
 ′
α(t)〉. In Eq. (48), the sum over α is restricted to

independent solutions. For time-independent Hamiltonians
(Ĥ (n) = 0 for all n �= 0) the independent solutions reduce to
the eigenvalues Eα and eigenvectors |
α〉 of Ĥ = Ĥ (0).

We expand the ground state |
g〉 = ∑
α bαe−iQαt0 |
α(t0)〉

in quasieigenstates and insert Eq. (48) into Eq. (36) to
derive the following Lehmann-type representation of the
nonequilibrium response function:

iχ (t,t ′) = θ (t − t ′)
∑
αβγ

b∗
αbβei�αγ t ei�γβ t ′dαγ (t)dγβ(t ′) − c.c.

(49)

In this formula, �αβ = Qα − Qβ are the quasienergy dif-
ferences and dαβ(t) = 〈
α(t)|d̂|
β(t)〉 are the time-periodic
dipole matrix elements in the quasieigenstate basis.

Let us compare the response function during the action
of the pump [Eq. (49)] with the response function after the
action of the pump [Eq. (38)]. Unlike the coefficients cα of the
expansion of |
〉 (this is the state of the system after a time
τ from the switch-off time of the pump), the coefficients bα

of the expansion of the ground state |
g〉 are independent of
the delay. Bearing this difference in mind, we can repeat step
by step the derivations of Secs. IV A and IV B with Eα → Qα

and dαβ → dαβ(t) = ∑
n einωP td

(n)
αβ . We then conclude that the

absorption regions occur in correspondence of the quasienergy
differences and of their replicas (shifted by integer multiples
of ωP ).
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It would be valuable to relate the quasienergies to the period and intensity of the pump field. In general, however, this relation
is extremely complicated. In the following, we discuss the special case of monochromatic pumps, which is also relevant when
treating other periodic fields in the rotating wave approximation [99–102].

A. Monochromatic pumps

For a monochromatic pump, the time-dependent light-matter interaction Hamiltonian has the general form ĤP (t) = P̂ e−iωP t +
P̂ †eiωP t . Hence, Ĥ (0) = Ĥ is the Hamiltonian of the unperturbed system, Ĥ (−1) = P̂ , Ĥ (1) = P̂ †, and Ĥ (n) = 0 for all |n| > 1.
Then, the Floquet operator reads as

ĤF =

⎛
⎜⎜⎜⎜⎜⎜⎝

...
...

...
...

...
. . . P̂ † Ĥ − ωP P̂ 0 0 . . .

. . . 0 P̂ † Ĥ P̂ 0 . . .

. . . 0 0 P̂ † Ĥ + ωP P̂ . . .
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎠

. (50)

The operator ĤF acts on the direct sum of infinite Fock spaces. The tridiagonal block structure allows for reducing the
dimensionality of the Floquet eigenvalue problem. With a standard embedding technique it is easy to show that the quasienergies
Qα and the zeroth harmonic |
(0)

α 〉 of the quasieigenstates are solutions of Ĥeff(Q)|
(0)〉 = Q|
(0)〉 where

Ĥeff(Q) = Ĥ + P̂ † 1

Q − Ĥ − ωP − P̂ † 1
Q−Ĥ−2ωP −P̂ † 1

Q−Ĥ−3ωP −··· P̂
P̂

P̂ + P̂
1

Q − Ĥ + ωP − P̂ 1
Q−Ĥ+2ωP −P̂ 1

Q−Ĥ+3ωP −··· P̂
† P̂

†
P̂ † .

(51)

In the large-ωP limit, the leading contribution is Ĥeff(Q) =
Ĥ + 1

ωP
[P̂ ,P̂ †], which can be diagonalized to address the

high-energy spectral features [103,104].
The Floquet eigenvalue problem simplifies considerably if

we retain only matrix elements Pαβ ≡ 〈
α|P̂ |
β〉 with Eα −
Eβ � ωP , and if the subsets of indices α and β are disjoint. In
this case, the Fock space can be divided into two subspaces A

and B with the property that P̂ = ∑
α∈A,β∈B Pαβ |
α〉〈
β |.

We write a state |
〉 in Fock space as |
A〉 + |
B〉 with
|
X〉 = ∑

ξ∈X |
ξ 〉〈
ξ |
〉, X = A,B. Similarly, we split

the total Hamiltonian Ĥ = ĤA + ĤB into the sum of an
operator ĤA = ∑

α∈A Eα|
α〉〈
α| acting on subspace A and
an operator ĤB = ∑

β∈B Eβ |
β〉〈
β | acting on subspace B. It
is straightforward to verify that the Floquet eigenvalue problem
decouples into pairs of equivalent equations involving two
consecutive blocks. Choosing for instance the blocks with
n = 0 and 1 we find(

ĤA P̂

P̂ † ĤB + ωP

) (∣∣
(0)
ξA

〉
∣∣
(1)

ξB

〉
)

= Qξ

(∣∣
(0)
ξA

〉
∣∣
(1)

ξB

〉
)

. (52)

The 2 × 2 matrix on the left-hand side is known as the Rabi
operator. From the solutions of Eq. (52) we can construct the
full set of quasieigenstates according to |
ξ (t)〉 = |
(0)

ξA〉 +
eiωP t |
(1)

ξB〉 [105]. Thus, the quasieigenstates contain only a
single replica. Notice that in the absence of pump fields the
solutions are either Qξ = Eξ , |
(0)

ξA〉 = |
ξ 〉, and |
(1)
ξB〉 = 0

or Qξ = Eξ + ωP , |
(0)
ξA〉 = 0, and |
(1)

ξB〉 = |
ξ 〉.
The single replica of the quasieigenstates reflects into a

single replica of the time-dependent dipole matrix elements.
In fact, the given form of the operator P̂ implies that the dipole
operator d̂ couples states in subspace A to states in subspace
B and vice versa. Therefore,

dαβ(t) = eiωP t
〈



(0)
αA

∣∣d̂∣∣
(1)
βB

〉 + e−iωP t
〈



(1)
αB

∣∣d̂∣∣
(0)
βA

〉
. (53)

Inserting this result into Eq. (49), we obtain the nonequilibrium
response function (t > 0)

iχ (t,0) =
∑
αβγ

b∗
αbβ

[
ei(�αγ +ωP )t

〈



(0)
αA

∣∣d̂∣∣
(1)
γB

〉

+ ei(�αγ −ωP )t
〈



(1)
αB

∣∣d̂∣∣
(0)
γA

〉]
dγβ(0) − c.c. (54)

For ultrashort probes e(t) = e0δ(t), the induced dipole moment
dp(t) = e0χ (t,0), and we can easily deduce the position of the
absorption regions in the TR-PA spectrum from Eq. (54).

We conclude this section by discussing the paradigmatic
situation of a pump coupling only two states, say a and b.
Then, Pαβ = P for α = a and β = b, and zero otherwise. The
quasienergies are

Q± = Ea + Eb + ωP ±
√

(Ea − Eb − ωP )2 + 4P 2

2
, (55)

and for ξ �= a,b, Qξ = Eξ for ξ ∈ A and Qξ = Eξ + ωP

for ξ ∈ B. In the limit of zero pump intensity P → 0 the
quasienergies Q+ → Ea and Q− → Eb + ωP , as it should
be. Let us analyze with the help of Fig. 3 the various time-
dependent contributions in Eq. (54). For both α and γ different
from ± the square bracket is nonvanishing only provided
that α ∈ A [B] and γ ∈ B [A]. More precisely, only the
first [second] term is nonvanishing, and it contributes with an
oscillating exponential of frequency Eα − Eγ − ωP + ωP =
Eα − Eγ [Eα + ωP − Eγ − ωP = Eα − Eγ ]. Thus, the ab-
sorption energy between “pump-invisible” states is preserved
(and hence not shown in Fig. 3). The situation is more
interesting for α ∈ A [B] a “pump-invisible” state and γ = ±
(see Fig. 3 where the “pump-invisible” state is α = 2 ∈ B).
Again, only the first [second] term in the square bracket
is nonvanishing and the corresponding oscillation frequency
is Eα − Q± + ωP [Eα − Q±]. We observe that for P = 0
the quasieigenstate |
+(t)〉 = |
a〉 is in the A subspace
whereas the quasieigenstate |
−(t)〉 = eiωP t |
b〉 is in the B
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FIG. 3. (Color online) Absorption energies as a function of the
pump intensity P ∈ [0,0.2] for ωP = 0 [dc (gray) region] and as
a function of ωP ∈ [0,0.9] for P = 0.2 [ac region] of a four-level
quantum system consisting of the states 1,a ∈ A with energy E1 = 0,
Ea = 21.2, and states b,2 ∈ B with energies Eb = 20.6, E2 = 23.1
(energies in eV). The absorption at energy �12 is independent of P

and not shown. The color scale indicates the oscillator strength of the
transition [〈
 (0)

αA|d̂|
 (1)
γB〉 for �αγ + ωP , 〈
 (1)

αB |d̂|
 (0)
γA〉 for �αγ − ωP ,

and the sum of the two for ωP = 0, see Eq. (54)] normalized to D ≡
〈
α|d̂|
β〉 with α = 1,a and β = b,2. In the ac region we also display
the absorption energy ωP with oscillator strength

∑
α〈
 (0)

αA|d̂|
 (1)
γB〉,

and −ωP with oscillator strength
∑

α〈
 (1)
αB |d̂|
 (0)

γA〉.

subspace. Therefore, the absorption at energy Eα − Q+ + ωP

[Eα − Q− (see the line E2 − Q− in Fig. 3)] is prohibited
by the dipole selection rule. The pump field mixes a and
b, thereby giving rise to the appearance of a new peak for
every equilibrium-forbidden transition between the “pump-
invisible” state α ∈ B [A] and the state b [a]. For ωP far from
the resonant frequency �ab ≡ Ea − Eb the (allowed) equi-
librium transition Eα − Eb → Eα − Q− + ωP [Eα − Ea →
Eα − Q+], thereby undergoing a shift known as the ac Stark
shift [106,107]. At the resonance frequency ωP = �ab, the
quasienergies Q± = Ea ± P and the equilibrium peak at
Eα − Eb [Eα − Ea] is replaced by two peaks of equal intensity
at energy Eα − Eb ∓ P [Eα − Ea ∓ P ]. This spectral feature
is known as the Autler-Townes doublet or splitting (since the
original equilibrium peak appears split in two) [106,108]. A
similar analysis applies for α = ± and γ ∈ B [A] a “pump-
invisible” state. Finally, we consider the contributions with
α = + and γ = − [α = − and γ = +] in Eq. (54). In this
case, both terms in the square brackets contribute and the
equilibrium peak at energy �ab = Ea − Eb [�ba = Eb − Ea]
splits into two peaks at energy Q+ − Q− ± ωP [Q− − Q+ ±
ωP ] (see Fig. 3). It is worth noticing that this splitting and the

Autler-Townes splitting have different origin. In the latter, a
prohibited transition becomes an allowed transition whereas
in the former a genuinely new transition appears. At the
resonance frequency, the spectrum exhibits two peaks of equal
intensity at energies Q+ − Q− ± ωP = 2P ± (Ea − Eb)
[Q− − Q+ ± ωP = −2P ± (Ea − Eb)]. Therefore, in this
case too the equilibrium peak at energy �ab [�ba] appears
split in two. Unlike in the Autler-Townes splitting, however,
the distance between the peaks is 4P instead of 2P , with
the peak at energy �ab + 2P [�ba − 2P ] stemming from a
shift of the equilibrium peak at energy �ab [�ba], and the
peak at energy �ab − 2P [�ba + 2P ] stemming from the
newly generated transition associated to the equilibrium peak
at energy �ba [�ab]. In addition to all the aforementioned
absorption frequencies, we have the pump frequency. In fact,
for α = γ = ±, the square bracket in Eq. (54) is the sum of
two oscillating exponentials with frequency ±ωP . Thus, at the
resonance frequency the spectrum exhibits a three-prong fork
structure known as the Mollow triplet [106,109]: the side peaks
at energy �ab ± 2P [�ba ± 2P ] and a peak in the middle at
energy ωP = �ab [−ωP = �ba].

VI. MORE ANALYTIC RESULTS
AND NUMERICAL SIMULATIONS

The analysis of the nonequilibrium response function χ

carried out in the previous section is useful for the physical
interpretation of TR-PA spectra. In practice, however, it is
numerically more advantageous to calculate the probe-induced
dipole moment dp directly. In this section, we present some
more analytic results for systems consisting of a few levels
and single out the effects on the TR-PA spectrum of a finite
duration of the pump.

Let ρ be the many-body density matrix in, e.g., the
eigenbasis of the unperturbed Hamiltonian. The (α,β) matrix
element of ρ is therefore 〈
α|ρ̂|
β〉. In the same basis,
the matrix which represents the unperturbed Hamiltonian is
diagonal and reads as H = diag({Eα}). We use the convention
that an underlined quantity O represents the matrix of the
operator Ô in the energy eigenbasis. The time evolution of the
density matrix is determined by the Liouville equation

i
d

dt
ρ(t) = [H + HP (t) + Hp(t),ρ(t)] − i

2
{�,ρ(t)}, (56)

where � is a decay-rate matrix accounting for radiative,
ionization, and other decay channels. In Eq. (56), the matrices
HP and Hp represent the pump and probe interaction
Hamiltonians, and the symbol [. . . , . . .] ({. . . , . . .}) is a
(anti)commutator. We set the switch-on time of the pump
at t = 0 (hence the probe is switched on at time t = τ ).
As we are interested in the solution of Eq. (56) to lowest
order in the probe field we write ρ = ρ

P
+ ρ

p
, where ρ

P
(t)

is the time-dependent density matrix with Hp = 0. Then,
the probe-induced variation ρ

p
satisfies (omitting the time

argument)

i
d

dt
ρ

p
= [H + HP ,ρ

p
] + [Hp,ρ

P
] − i

2
{�,ρ

p
}, (57)
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which should be solved with boundary condition ρ
p

(τ ) = 0.
For ultrashort probes Hp(t) = δ(t − τ )e0d and for times
t > τ , Eq. (57) simplifies to

i
d

dt
ρ

p
= [H + HP ,ρ

p
] − i

2
{�,ρ

p
}, (58)

which should be solved with boundary condition ρ
p

(τ ) =
−ie0[d,ρ

P
(τ )]. Once ρ

p
is known, the probe-induced dipole

moment can be calculated by tracing dp = Tr[ρ
p
d].

A. Two-level system

We consider a two-level system with unperturbed Hamil-
tonian H = diag(Ea,Eb), decay-rate matrix � = diag(γa,γb),
and an exponentially decaying pump field which is suddenly
switched on at time t = 0:

HP (t) = θ (t)Pe−γP t

(
0 e−iωP t

eiωP t 0

)
. (59)

At time t < 0 the state of the system is |
a〉 and hence the
density matrix ρ

P
(t < 0) = diag(1,0). In Fig. 4, we show

the TR-PA spectrum S̃(ω) for γP � γ , ωP = �ab and for
an ultrashort probe Hp(t) = δ(t − τ )e0d , where the dipole
matrix has off-diagonal elements dab = dba = D and zero
on the diagonal. The spectrum is calculated from Eq. (34)
without the inclusion of the quadratic term in dp (thin samples).
We clearly distinguish a Mollow triplet for small τ . As the
delay increases, the side peaks approach the peak at ωP and
eventually merge with it. The τ -dependent shift of the side
peaks is a consequence of the finite duration of the pump. In
the resonant case, we have found a simple analytic solution for
the probe-induced dipole moment (for simplicity we consider
γa = γb = γ )

dp(t) = 2e0D
2e−γ t

[
cos(ωP τ ) sin(ωP t) cos

(
2P

1 − e−γP t

γP

)

− sin(ωP τ ) cos

(
2P

1 − e−γP τ

γP

)
cos(ωP t)

]
, (60)

FIG. 4. (Color online) TR-PA spectrum (normalized to the max-
imum) for the two-level system described in the main text. The
parameters are �ab = Ea − Eb = 7, P = 0.7, γa = γb = γ = 0.2,
γP = 0.02, and ωP = �ab. Energies in eV and times in fs.

for t > τ and zero otherwise. As the Fourier transform d̃p(ω)
is dominated by the behavior of dp(t) for times τ � t � 1/γ

we study Eq. (60) in this range.
We write t = τ + s and define the function α(t) ≡ 2P (1 −

e−γP t )/γP . For γP � γ (this is the situation in Fig. 4), we can
approximate

α(t) = α(τ ) + 2Pe−γP τ s + · · · . (61)

We then see that for a fixed τ , the first term in the square
brackets in Eq. (60) oscillates (as a function of s) at frequencies
ωP ± 2Pe−γP τ , whereas the second term oscillates at fre-
quency ωP . This explains the shrinkage of the splitting between
the two side peaks with increasing τ shown in Fig. 4. Another
feature revealed by Eq. (60) is that the side-peak intensity is
proportional to cos(ωP τ ) while the central-peak intensity is
proportional to sin(ωP τ ) (antiphase). The Mollow triplet is
therefore best visible only for delays τ = (2n + 1)π/(4ωP ),
with n integers.

Equation (60) is valid for arbitrary γ and γP . Hence, it
can be used to investigate regimes other than γP � γ . In the
opposite regime γP � γ we can approximate α(t) � 2P/γP ,
and only one peak at frequency ωP is visible in the spec-
trum. The intermediate regime γP � γ is definitely the most
interesting as it is characterized by a nontrivial subsplitting
structure. In Fig. 5, we show the transient spectrum for γ =
γP = 0.04 at delay τ = π/(4ωP ) for different pump strengths
P . The results are obtained from the solution of Eq. (58). We
considered a resonant pump frequency ωP = �ab, as well as
an off-resonant one ωP = �ab + �ω. Although an analytic
formula for dp exists in the nonresonant case too, it is much
less transparent than Eq. (60) and not worth it to present.
After a careful study of Eq. (60) we found that the number
of peaks in the frequency range [−2P + ωP ,2P + ωP ] grows
roughly like 0.6 × P/γP and that the peak positions tend to
accumulate around ωP (in the limit P/γP → ∞ the frequency
ωP becomes an accumulation point). The same qualitative

FIG. 5. (Color online) TR-PA spectrum (normalized to the max-
imum) for the two-level system described in the main text at a
delay τ = π/4ωP . The parameters are �ab = Ea − Eb = 7, γa =
γb = γP = 0.04. Different panels refer to different pump intensity
P = 0.2, 0.4, 0.6, 0.8 and the solid (dashed) line refers to the resonant
(off-resonant) pump frequency ωP = �ab + �ω. Energies in eV.
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FIG. 6. (Color online) TR-PA spectrum (normalized to the max-
imum) for the two-level system described in the main text. The
parameters are �ab = Ea − Eb = 7, γa = γb = γP = 0.04, P = 0.4,
and ωP = �ab. Energies in eV and times in fs.

behavior is observed for an off-resonant pump frequency,
the main difference being a shift by �ω of the subsplitting
structure. The subpeaks are probably the most remarkable
feature of the complicated functional dependence of the TR-PA
spectrum on the pump and probe fields. The subpeaks are not
related to transitions between light-dressed states and they can
be observed only for pump pulses of duration comparable with
the dipole decay time.

The full transient spectrum in the intermediate regime is
shown in Fig. 6. We use the same parameters as in Fig. 5 and
set the pump intensity P = 0.4. Thus, for τ = π/(4ωP ) the
spectrum is identical to the one shown in the top-right panel
of Fig. 5. The subsplitting structure evolves similarly as the
main side peaks. We observe periodic revivals of the subpeaks
whose positions get progressively closer to ωP and whose
intensities decrease with τ . Another interesting feature is that
for finite γP , the broadening of the peaks depends on τ . It is
therefore important to take into account the finite duration of
the pump when estimating the excitation lifetimes from the
experimental widths.

B. Three-level system

We consider a three-level system with unperturbed Hamil-
tonian H = diag(E1,Eb,Ea) and decay-rate matrix � =
diag(0,γ,γ ). The system is perturbed by an exponentially
decaying pump field which is suddenly switched on at time
t = 0 and couples levels a and b:

HP (t) = θ (t)Pe−γP t

⎛
⎜⎝

0 0 0

0 0 eiωP t

0 e−iωP t 0

⎞
⎟⎠ . (62)

In the absence of the probe the system is in the ground state
|
1〉 before the pump is switched on, hence ρ

P
(t < 0) =

diag(1,0,0). At time τ we switch on an ultrashort probe field

FIG. 7. (Color online) TR-PA spectrum (normalized to the max-
imum) for the three-level system described in the main text. The
parameters are E1 = 0, Eb = 20.6, Ea = 21.2, P = 0.7, γ = 0.2,
γP = 0.04, and ωP = �ab (top panel) and ωP = �ab − 0.5 (bottom
panel). Energies in eV and time in fs.

Hp(t) = e(t)d where e(t) = e0δ(t − τ ) and, for simplicity, we
take the dipole matrix of the form

d =

⎛
⎜⎝

0 0 D

0 0 0

D 0 0

⎞
⎟⎠ (63)

(we therefore neglect the matrix element 〈
a|d̂|
b〉). For
ωP � Ea − Eb in the near-infrared region and Ea − E1 in the
extreme ultraviolet, a similar model has been considered by
several authors in studies of TR-PA of He atoms (in this case
1 = 1s2, b = 1s2s, a = 1s2p represent the first three levels of
He) [26,29,31,35,70,72,110–112], although in these cases the
time-dependent pump and probe fields were different.

In Fig. 7, we show the TR-PA spectrum for a resonant (top
panel) and off-resonant (bottom panel) pump frequency ωP .
The spectrum is again calculated from Eq. (34) without the in-
clusion of the quadratic term in dp (thin samples). For negative
τ we only see the equilibrium peak at frequency �a1, which
corresponds to the excitation from the occupied level 1 to the
empty level a [given the choice of the dipole matrix in Eq. (63),
this is the only possible transition]. For small positive τ , we
recognize the Autler-Townes splitting discussed in Sec. IV B.
The finite duration of the pump causes the collapse of the
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Autler-Townes splitting as τ increases; for τ → ∞ we even-
tually recover the equilibrium PA spectrum. The τ -dependent
shift of the Autler-Townes peaks can be studied quantitatively
in the resonant case. In fact, the differential equation for
ρ

p
[Eq. (58), can be solved analytically for ωP = �ab]

and the corresponding probe-induced dipole moment reads
as

dp(t) = θ (t − τ )2e0D
2e−γ (t−τ ) sin[�1a(t − τ )]

× cos

(
Pe−γP τ 1 − e−γP (t−τ )

γP

)
. (64)

Interestingly, dp(τ + s) depends on τ only through the
exponentially renormalized pump intensity Pe−γP τ : the PA
spectrum at finite τ and pump intensity P is the same as the
PA spectrum at τ = 0 and pump intensity Pe−γP τ . Therefore,
the Autler-Townes splitting follows the exponential decay of
the pump, in agreement with the numerical simulation in Fig. 7.

In the TR-PA spectrum of Fig. 7 we have γP � γ . However,
the analytic solution in Eq. (64) is valid for all γ and γP .
Like in the two-level system, a subsplitting structure emerges
in the intermediate regime γ � γP (not shown). A similar
finding was recently found for trigonometric and square pump
envelopes [111].

The TR-PA spectra shown so far have been calculated
under the assumption that the total probe field acting on the
electrons is the same as the external (bare) field. As discussed
in Sec. IV B, this approximation makes sense for thin samples.
For samples of thickness much larger than the inverse transition
energies of interest, the Liouville equation for the density
matrix (56) should be coupled to the equation for the total
electric field (24) [23,35,40,70,75,90–97]. To appreciate the
qualitative difference introduced by a self-consistent treatment
of the probe field, we consider again the system of Fig. 7 and
add to the bare δ-like probe an induced exponentially decaying
plane wave of frequency �a1. We enforce (for simplicity)
monochromaticity on the probe Hamiltonian (or equivalently
we work in the rotating wave approximation) and take a
total probe field Ep(t) = (Ex(t − τ ),Ey(t − τ ),0), where the
components

Ex(t) = e0δ(t) + θ (t)λe−γP t cos �a1t,

Ey(t) = θ (t)λe−γP t sin �a1t (65)

decay on the same time scale of the pump field. Choosing the
dipole components d = (dx,dy,dz) with

dx =

⎛
⎜⎝

0 0 D

0 0 0

D 0 0

⎞
⎟⎠ ; dy =

⎛
⎜⎝

0 0 iD

0 0 0

−iD 0 0

⎞
⎟⎠ , (66)

the probe Hamiltonian reads as

Hp(t) = E(t) · d = D

⎛
⎜⎝

0 0 Ep(t − τ )

0 0 0

E∗
p(t − τ ) 0

⎞
⎟⎠ , (67)

with Ep(t) = e0δ(t) + θ (t)λei�a1t−γP t . Our modeling of the
induced probe field is based on the self-consistent results of
Ref. [35]. We instead assume that the pump field does not need
to be dressed.

FIG. 8. (Color online) Linear term in dp of the TR-PA spectrum
(normalized to the maximum) of Eq. (34) for the three-level system
described in the main text. The probe Hamiltonian is given in Eq. (67)
with λ/e0 = 0.01. The rest of the parameters are the same as in Fig. 7.
The pump frequency is ωP = �ab (top panel) and ωP = �ab − 0.5
(bottom panel). Energies in eV and time in fs.

The formula for the spectrum [Eq. (34)] has been derived
for linearly polarized probe fields. It is straightforward to show
that for e = ∑

n ε(n)
p e(n), the generalization is

S̃(ω) = −2
∑

n

Im
[
ω ẽ(n)∗(ω)d̃ (n)

p (ω)
] − 2π

Sc
|ω d̃p(ω)|2,

(68)

where d̃ (n)
p ≡ ε(n)

p d̃ (n)
p . In Fig. 8, we display the first term (linear

in dp) of the transient PA spectrum of Eq. (68). The main
difference with the spectrum in Fig. 7 is the appearance of an
extra peak at frequency �1a . It is therefore the induced-probe
field to generate the central peak. Furthermore, the height
of the central peak increases monotonically (no coherent
oscillations), in agreement with the findings in Sec. IV B.
One more remark is about the exponential shrinkage of the
Autler-Townes splitting already observed in Fig. 7. According
to our calculations, the Autler-Townes splitting and the pump
intensity decay on the same time scale [see Eq. (64)]. This
implies that a spectral shift can occur only provided that the
amplitude of the pump field is delay dependent as is, for
instance, the case in thick samples where the pump is dressed
by an exponentially decaying dipole moment.
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FIG. 9. (Color online) Plot of |ω d̄p(ω)|2 (normalized to the
maximum) for the three-level system described in the main text.
Same parameters as in the top panel of Fig. 8. Energies in eV and
time in fs.

For thick samples, the quadratic term in dp in the TR-PA
spectrum of Eq. (68) can become relevant. This term is always
negative and hence it can either suppress a positive peak or even
turn a positive peak into a negative one. The induced dipole
moment scales linearly with the sample volume V = SL. If
we introduce the dipole density per unit volume d̄p = dp/V ,
then the TR-PA spectrum in Eq. (68) can be rewritten as

S̃(ω)

V
= −2

∑
n

Im
[
ω ẽ(n)∗(ω) ˜̄d (n)

p (ω)
] − 2πL

c
|ω ˜̄dp(ω)|2,

(69)

from which we see that the contribution of the last term grows
linearly with the sample thickness. The quantity |ω ˜̄dp(ω)|2 is
shown in Fig. 9 in the resonant case ωP = �ab. As expected,
the spectral regions where the linear (top panel of Fig. 8)
and quadratic (Fig. 9) terms are nonvanishing are the same.
Nevertheless, the mathematical structure of the peaks is very
different, as it should be. In fact, in the absence of damping,

d̃p(ω) is the sum of Dirac δ functions and hence its square is
the sum of Dirac δ functions squared.

VII. SUMMARY AND CONCLUSIONS

We have provided a detailed analysis of the nonequilibrium
dipole response function χ , the fundamental physical quantity
to be calculated and simulated for interpreting TR-PA spectra.
Exact and general properties of χ have been elucidated and
then related to transient spectral features. In the nonoverlap-
ping regime, the height of the absorption peaks is strongly
affected by the shape of the probe pulse. For ultrashort
probes, the peak heights exhibit quantum beats as a function
of the delay, a signature of the coherent electron motion in
the nonstationary state created by the pump. As the probe
duration increases, the effects of coherence are progressively
washed out, and the spectrum is progressively suppressed
away from the probe frequency. The absorption regions are
instead independent of the delay and occur in correspondence
of the neutral excitation energies (not necessarily involving
the ground state) of the equilibrium system. For overlapping
pump and probe, the absorption regions cease to be an intrinsic
property of the equilibrium system and, more generally, the
interpretation of the transient spectrum becomes intricate.
Analytic results for everlasting periodic pump fields are
available and, at the same time, useful for the interpretation
of TR-PA spectra. The Lehmann-type representation of χ in
terms of light-dressed states provides a unifying framework for
a variety of well-known phenomena, e.g., the ac Stark shift,
the Autler-Townes splitting, the Mollow triplet, the photon
replicas, etc. The effects of the finite duration of the pump pulse
are difficult to address in general terms. We have considered
the two- and three-level systems extensively studied in the
literature and derived an exact analytic expression for the time-
dependent probe-induced dipole moment. Our solution shows
that for strong enough pump intensities, a rich subsplitting
structure emerges, in agreement with the recent theoretical
findings in Ref. [111]. We also find agreement with recent
experimental results on He: for long (induced) probe fields,
like those occurring in thick samples, the absorption peak at
the probe frequency does not exhibit coherent oscillations [35].
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Persson et al., Nature (London) 418, 620 (2002).
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R. Santra et al., Nat. Phys. 6, 69 (2010).

[25] S. Gilbertson, M. Chini, X. Feng, S. Khan, Y. Wu, and Z.
Chang, Phys. Rev. Lett. 105, 263003 (2010).

[26] P. Ranitovic, X. M. Tong, C. W. Hogle, X. Zhou, Y. Liu, N.
Toshima, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett.
106, 193008 (2011).

[27] M. Tarana and C. H. Greene, Phys. Rev. A 85, 013411 (2012).
[28] M.-F. Lin, A. N. Pfeiffer, D. M. Neumark, O. Gessner, and

S. R. Leone, J. Chem. Phys. 137, 244305 (2012).
[29] S. Chen, M. J. Bell, A. R. Beck, H. Mashiko, M. Wu, A. N.

Pfeiffer, M. B. Gaarde, D. M. Neumark, S. R. Leone, and K. J.
Schafer, Phys. Rev. A 86, 063408 (2012).

[30] M. Chini, B. Zhao, H. Wang, Y. Cheng, S. X. Hu, and Z. Chang,
Phys. Rev. Lett. 109, 073601 (2012).

[31] S. Chen, M. Wu, M. B. Gaarde, and K. J. Schafer, Phys. Rev.
A 87, 033408 (2013).

[32] S. Chen, M. Wu, M. B. Gaarde, and K. J. Schafer, Phys. Rev.
A 88, 033409 (2013).

[33] J. Herrmann, M. Weger, R. Locher, M. Sabbar, P. Riviére, U.
Saalmann, J.-M. Rost, L. Gallmann, and U. Keller, Phys. Rev.
A 88, 043843 (2013).

[34] M. Chini, X. Wang, Y. Cheng, Y. Wu, D. Zhao, D. A. Telnov,
S.-I. Chu, and Z. Chang, Sci. Rep. 3, 1105 (2013).

[35] A. N. Pfeiffer, M. J. Bell, A. R. Beck, H. Mashiko,
D. M. Neumark, and S. R. Leone, Phys. Rev. A 88, 051402
(2013).

[36] X. Wang, M. Chini, Y. Cheng, Y. Wu, X.-M. Tong, and Z.
Chang, Phys. Rev. A 87, 063413 (2013).

[37] B. Bernhardt, A. R. Beck, E. R. Warrick, M. Wu, S. Chen,
M. B. Gaarde, K. J. Schafer, D. M. Neumark, and S. R. Leone,
New J. Phys. 16, 113016 (2014).

[38] M. Wickenhauser, J. Burgdörfer, F. Krausz, and M. Drescher,
Phys. Rev. Lett. 94, 023002 (2005).

[39] J. Zhao and M. Lein, New J. Phys. 14, 065003 (2012).
[40] W.-C. Chu and C. D. Lin, Phys. Rev. A 87, 013415 (2013).
[41] C. Ott, A. Kaldun, P. Raith, K. Meyer, M. Laux, J. Evers, C. H.

Keitel, C. H. Greene, and T. Pfeifer, Science 340, 716 (2013).
[42] C. Ott, A. Kaldun, L. Argenti, P. Raith, K. Meyer, M.

Laux, Y. Zhang, A. Blättermann, S. Hagstotz, T. Ding et al.,
Nature (London) 516, 374 (2014).

[43] L. Argenti, C. Ott, T. Pfeifer, and F. Martı́n, J. Phys.: Conf. Ser.
488, 032030 (2014).

[44] R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter,
and A. Leitenstorfer, Nature (London) 414, 286 (2001).

[45] M. Hase, M. Kitajima, A. M. Constantinescu, and H. Petek,
Nature (London) 426, 51 (2003).

[46] A. Borisov, D. Sánchez-Portal, R. Muı̃no, and P. Echenique,
Chem. Phys. Lett. 387, 95 (2004).

[47] A. S. Moskalenko, Y. Pavlyukh, and J. Berakdar, Phys. Rev. A
86, 013202 (2012).

[48] A. Srivastava, R. Srivastava, J. Wang, and J. Kono, Phys. Rev.
Lett. 93, 157401 (2004).

[49] B. Nagler et al., Nat. Phys. 5, 693 (2009).
[50] M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V.

Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U.
Heinzmann, and F. Krausz, Nature (London) 419, 803 (2002).

[51] H. Niikura, D. M. Villeneuve, and P. B. Corkum, Phys. Rev.
Lett. 94, 083003 (2005).

[52] O. Smirnova, Y. Mairesse, S. Patchkovskii, N. Dudovich, D.
Villeneuve, P. Corkum, and M. Y. Ivanov, Nature (London)
460, 972 (2009).

[53] O. Smirnovaa, S. Patchkovskiia, Y. Mairessea, N. Dudovich,
and M. Y. Ivanov, Proc. Natl. Acad. Sci. USA 106, 16556
(2009).

[54] E. Goulielmakis, Z. Loh, A. Wirth, R. Santra, N. Rohringer,
V. S. Yakovlev, S. Zherebtsov, T. Pfeifer, A. M. Azzeer, M. F.
Kling et al., Nature (London) 466, 739 (2010).

[55] S. Pabst, L. Greenman, P. J. Ho, D. A. Mazziotti, and R. Santra,
Phys. Rev. Lett. 106, 053003 (2011).

[56] M. Breusing, C. Ropers, and T. Elsaesser, Phys. Rev. Lett. 102,
086809 (2009).

[57] M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner,
W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger,
V. Apalkov, V. S. Yakovlev et al., Nature (London) 493, 75
(2013).

[58] M. Schultze, K. Ramasesha, C. D. Pemmaraju, A. Sato, D.
Whitmore, A. Gandman, J. S. Prell, L. J. Borja, D. Prendergast,
K. Yabana et al., Science 346, 1348 (2014).

[59] A. H. Zewail, J. Phys. Chem. A 104, 5660 (2000).
[60] L. Chen, Annu. Rev. Phys. Chem. 56, 221 (2005).
[61] G. Sansone, F. Kelkensberg, J. F. Pérez-Torres, F. Morales,
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