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Double Compton scattering in a constant crossed field
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Two-photon emission of an electron in an electromagnetic plane wave of vanishing frequency is calculated.
The unpolarized probability is split into a two-step process, which is shown to be exactly equal to an integration
over polarized subprocesses, and a one-step process, which is found to be dominant over the formation length.
The assumptions of neglecting spin and simultaneous emission, commonly used in numerical simulations, are
discussed in light of these results.
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I. INTRODUCTION

It is well known that when an electron is accelerated by an
electromagnetic field, it radiates [1]. When the wavelength of
the radiation in the rest frame of the electron is much larger
than the Compton wavelength, it is well described by classical
electrodynamics. By photon emission we are referring to those
situations in which shorter wavelengths are generated and a
quantum electrodynamical description is necessary. Single-
photon emission of electrons in a plane-wave background,
commonly referred to as (nonlinear) Compton scattering, was
first calculated five decades ago in monochromatic waves
[2,3] and some time later, the effects of finite pulse shapes
[4–9], electron spin [10], and photon [11] and external-
field polarization [12,13] were investigated. Single Compton
scattering has been experimentally observed in the weakly
nonlinear regime [14,15] and advances in laser technology
have motivated the study of two-photon emission in a pulsed-
plane-wave background with possible experimental signatures
having been discussed in the literature [16,17] (a review of
strong-field QED effects can be found in [18–20]).

In the present paper, we will calculate two-photon emission
of an electron in an electromagnetic plane wave of vanishing
frequency, the so-called constant crossed field. On the one
hand, this allows an analysis of two-photon emission in the
nonperturbative region of large quantum nonlinearity parame-
ter. On the other hand, the constant-crossed-field background is
the one used overwhelmingly in current numerical simulations
that combine particle-in-cell propagation of charged particles
with Monte Carlo generation of quantum events such as
photon emission [21–27]. These simulations iterate single-
vertex processes to approximate higher-order ones and our
double-vertex calculation can assess the faithfulness of this
approximation. In their calculation of the two-loop electron
mass operator in a constant crossed field [28], Morozov
and Ritus produced expressions for the total probability of
polarized two-photon emission. However, their restriction to
total probabilities, brevity of exposition, and emphasis on
infrared behavior differ significantly from the intention of the
present article to study the role of spin and virtual processes in
more depth, which are currently neglected by computational
simulations.

*b.king@plymouth.ac.uk

II. POLARIZED SINGLE COMPTON SCATTERING

We begin by calculating the probability for single Compton
scattering, taking into account the polarization of all incoming
and outgoing particles. Although our analysis is for electrons,
analogous arguments apply to positrons. We consider the
process

e− → e− + γ (1)

in a constant-field background where e− refers to an electron
and γ to a photon. The corresponding Feynman diagram is
given in Fig. 1, where we note that p and q are the incoming
and outgoing electron’s four-momentum, respectively, and sp

and sq the corresponding spin four-vectors, with k and εk

the emitted photon’s four-vector and polarization four-vector
where s2

p = s2
q = ε2

k = −1.
The scattering matrix for single-photon emission can be

written as [29]

Sf i = ie

∫
d4x ψq,σq

(x)

√
4π/ε∗

ke
ik·x

√
2k0V

ψp,σp
(x), (2)

where /v = γ · v for a four-vector v, γ are the gamma matri-
ces [29], σ is a spin index, and e > 0 is the elemental positron
charge and m its mass, with V the normalization volume
(unless otherwise stated, we work with � = c = 1). The wave
function for an electron in a plane-wave electromagnetic
background is given by the Volkov solution to the Dirac
equation [30]

ψp,σp
(x) =

[
1 + e/� /A[ϕ(x)]

2(� · p)

]
up,σp√
2p0V

eiS[p,ϕ(x)], (3)

S(p,ϕ) = −p · x −
∫ ϕ

0
dφ

[
ep · A(φ)

� · p
− e2A2(φ)

2(� · p)

]
, (4)

where the external-field phase ϕ = � · x for external-field
wave vector � and vector potential Aμ(ϕ) and the normal-
ization of the electron spinor up will be explained shortly. The
probability for polarized single-photon emission Pγ is then
given by

Pγ = V 2
∫

d3k

(2π )3

d3q

(2π )3
tr|Sf i |2. (5)

When squaring the trace of |Sf i |2, the electron spin is
introduced using a standard method of writing the spin-density
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FIG. 1. Feynman diagram for single Compton scattering.

matrix for electron momentum p as [31]

up,σp
up,σ ′

p
= 1

2 [(/p + m)(1 − γ 5/sp)]σpσ ′
p
. (6)

To calculate Pγ , we employ the method developed by
Nikishov and Ritus (see [2,18] and a more detailed appli-
cation to single Compton scattering in [11]). A key part
of this method is that after momentum conservation has
been applied to the integration of one outgoing particle’s
momentum in Eq. (5), the remaining integrand is independent
of the projection of remaining outgoing particle momenta
on the vector potential. This divergent integral is crucially
reinterpreted as an integral over phase in the following way.
Using the preceding equations, Eq. (2) can be written in the
form

Sf i = ie

∫
d4x K(ϕ)ei(q+k−p)·x, (7)

where the net contribution to the integral from K(ϕ) occurs
for phases around the stationary phase

ϕ∗ = p · a

e a2

(
−1 + � · p

� · k

k · a

p · a

)
. (8)

The divergent remaining integral can then be rewritten∫
d(k · a)

∣∣∣∣
on shell

=
∫

dϕ∗
J

, (9)

where the prescription on shell refers to momentum conserva-
tion having been applied to the integral in q and J = |∂ϕ∗/∂(k ·
a)| is the Jacobian. We have in mind a calculation in a
constant background. In this case, the integrand is independent
of both ϕ∗ and ϕ and since they are members of the same
interval, an integration over one is equivalent to an integration
over the other and the asterisk is hereafter dropped. When
selecting a basis for the electron spin and photon polarization
vectors, it is advantageous to maintain this symmetry so that
the Nikishov-Ritus method can be consistently applied. For
polarized photons but unpolarized electrons, a basis in which
εk� = 0 is sufficient to preserve the symmetry in momentum.
When electron spin is also included, a basis in which sp� = 0
greatly simplifies expressions, but is insufficient alone to
preserve the momentum symmetry. A key difference between
electron spin and photon polarization is that the precession
of the former due to the external field is already included to
all orders by using the dressed Volkov propagator, whereas
the evolution of the latter, described by a dressed photon
propagator, is a higher-order effect in α = e2 ≈ 1/137, the
fine-structure constant, the first corrections of which enter at
O(α2) [32–35]. Since single Compton scattering is to first
order in α, the evolution of photon polarization does not enter
the calculation. Conversely, the evolution of the electron spin
can be described by invoking the Bargmann-Telegedi-Michel

equation [36]

dsp

dτ
= e

m

[
g

2
F · sp +

(
g

2
− 1

)
(sp · F · p)p

m2

]
, (10)

where F is the Faraday tensor [1], g ≈ 2 is the electron’s
gyromagnetic ratio [37,38], and τ is the proper time. By
choosing a spin basis such that dsp/dτ = 0 as well as
sp� = 0, the momentum symmetry is preserved and ensures
that the Nikishov-Ritus method can be applied without
obstacle.

Our choices of vector potential, polarization basis, and spin
basis that allow the Nikishov-Ritus method to be straightfor-
wardly applied are

A(ϕ) = a(1)g(1)(ϕ) + a(2)g(2)(ϕ), (11)

ε
(1,2)
k = a(1,2) − k · a(1,2)

k · �
�, (12)

ζp = a(2) − p · a(2)

p · �
�, (13)

where a(1) · a(2) = 0, a(1) · a(1) = a(2) · a(2) = −1, and
g(2)(x) = 0. That these choices ensure the spin basis ζp

does not precess can be seen from dζp/dτ = 0 or in the
rest frame of the electron ζζζ p ∧ B = 0, where B is the
external-magnetic-field vector.

We now specify the calculation to a constant-crossed-
field background by choosing g(1)(ϕ) = (mξ/e)ϕ, where
ξ = e|p · F |/m|� · p| is the classical nonlinearity parame-
ter [39], which can be written as ξ = mE/�0, with E = E/Ecr

the ratio of the electric-field amplitude E to the critical
field Ecr = m2/e. In a constant field, ξ is formally infinite
as the limit �0 → 0 has been taken to arrive at expressions
for observables. In a constant-crossed-field background, total
rates are functions of another gauge and relativistic invariant
referred to as each particle’s quantum nonlinearity parameter,
which for a momentum p is given by χp = e|p · F |/m3.
Recognizing ξϕ as being independent of the limit �0 → 0,
let us define the rate of single Compton scattering per unit
normalized external-field phase Rγ = Pγ /ξ

∫
dϕ. Suppose we

expand the polarization and spins as

εk = c1ε
(1)
k + c2ε

(2)
k , (14)

sp = σpζp, sq = σqζq, (15)

where c1,2 ∈ {0,1} and σp,q ∈ {−1,0,1}; we then find

Rγ = −α

∫ χp

0
dχk [C ·Ai(z) + C ′Ai′(z) + C1Ai1(z)], (16)

where Ai(x) = 1
π

∫ ∞
0 dk cos(kx + k3/3) is the Airy

function, Ai′(x) its derivative, Ai1(x) = ∫ ∞
x

dk Ai(k),
and

z =
[

χk

χp(χp − χk)

]2/3

,

C · = z

χ2
p

[
(σp + σq)

(
χk − 2c2

kχp

) − 2
(
1 − c2

k

)
σqχk

]
,
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FIG. 2. (Color online) Total rate of polarized single Compton
scattering Rγ . The closed (open) markers on solid (dashed) lines refer
to a photon scattered into a polarization state parallel (perpendicular)
to the external field where the marker-free solid line refers to the
unpolarized rate.

C ′ = χkz
1/2

χ2
p

(1 − cσ cδσpσq) + 2

zχ2
p

(1 + σpσq)(1 − cσ cδ),

C1 = 1

χ2
p

[
1 + σpσq − cσ cδσpσqχ

2
k

χp(χp − χk)

]
, (17)

where the single polarization parameter ck = c1 =
√

1 − c2
2

has been introduced with 2cσ = c1 + c2 and cδ = c2 − c1

simplifying notation. The rate for single Compton scattering
with unpolarized electrons but a polarized photon [11] can
be recovered if one takes the limit in Eq. (16) of zero spin
σp,σq → 0. If one then averages over photon polarizations,
the totally unpolarized rate [2] is acquired. We note the
appearance of an Ai(·) function in the integrand of Rγ , which
is only present if electron spin is taken into account and is
completely absent in standard unpolarized calculations. This
term will appear again in the double Compton scattering
calculation.

The rate of single Compton scattering for different com-
binations of initial and final polarizations of particles is
illustrated in Fig. 2, where solid (dashed) lines correspond to
emitted photons in a polarization state εk = ε

(1)
k (εk = ε

(2)
k )

and ↑ (↓) to spin states σ = 1 (σ = −1). We notice that
in this nonprecessing spin basis, the no-flip polarization
channels in which the spin of the electron is unchanged
after photon emission are in general favored more than the
spin-flip channels, which are suppressed, particularly for
small χp.

III. DOUBLE COMPTON SCATTERING

Let us now turn to the calculation of double photon emission
by an electron in a plane-wave field. We are considering the
process

e− → e− + γ + γ ′ (18)

p, sp

k, εk k′, εk′

q, sq
p′, sp′

+ (k ↔ k′)

FIG. 3. Feynman diagram for double Compton scattering. The
prescription on the exchange term (k ↔ k′) also applies to swapping
the polarization vectors.

and the corresponding Feynman diagram is given in
Fig. 3. The transition matrix element for this process
is

Sf i = −→
Sf i + ←−

Sf i, (19)

−→
Sf i = −e2

∫
d4x ′d4x ψp′,σp′ (x

′)

√
4π/ε′∗

k′√
2V k′0 eik′x ′

G(x ′,x)

× eikx

√
4π/ε∗

k√
2V k0

ψp,σp
(x), (20)

G(x ′,x) =
∫

d4q

(2π )4

[
1 + e/� /A(ϕ′)

2� · q

]
eiS(q,ϕ′)

× /q + m

q2 − m2 + i0
e−iS(q,ϕ)

[
1 + e /A(ϕ)/�

2� · q

]
, (21)

where
−→
Sf i corresponds to the first diagram in Fig. 3 and

←−
Sf i

to exchanging (k,εk) ↔ (k′,εk′). The method of calculation is
similar to that in the previous section, with the added com-
plication of having an extra diagram due to bosonic exchange
symmetry of identical outgoing photons as well as a fermionic
propagator (a detailed example of the Nikishov-Ritus approach
being applied to a two-vertex process in a constant crossed
background is given in the calculation of electron-seeded pair
creation in [40]). We will confine ourselves to calculating the
unpolarized double Compton scattering probability Pγγ ,

Pγγ = 1

4
V 3

∫
d3p′

(2π )3

d3k

(2π )3

d3k′

(2π )3
tr|Sf i |2, (22)

with the prefactor including an average over initial electron
spins and symmetry factor due to identical diagrams. The
modulus-squared amplitude contains each exchange term
modulus squared plus interference terms

|Sf i |2 = |−→Sf i |2 + |←−
Sf i |2 + ←−

Sf i

−→
Sf i

∗ + −→
Sf i

←−
Sf i

∗. (23)

Now suppose that the p′ integral in Eq. (22) is performed
by evaluating the standard total momentum-conserving δ

function that arises in scattering matrix calculations and that
the integrals over k and k′ remain. In the standard fashion,
these integrals can be reinterpreted as∫

d(k · a) d(k′ · a)

∣∣∣∣
on shell

=
∫

dϕ+dϕ−
J

. (24)

Here ϕ+ = (ϕx ′ + ϕx)/2 is the average of the stationary phases
in the function describing the probability of photon emission
at space-time points x and x ′ and hence corresponds to the
center in phase between two emissions and ϕ− = ϕx ′ − ϕx > 0
is the phase the electron travels between emissions, where
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J = |∂(ϕ+,ϕ−)/∂(k · a, k′ · a)| is the corresponding Jacobian.
Part of the integrand is completely independent of both these
phases and we term this the two-step process. Part of the
integrand depends only on ϕ− and we term this the one-step
process. The remaining part of the integrand depends on both
phases. Since these phase integrations are formally infinite
in a constant crossed field, the part that depends on both
phases and gives a finite answer will be dropped from the
calculation. It can be shown [40] that this neglected part
corresponds to the interference terms in Eq. (23). As the total
probability includes an integration over both photon momenta,
one can then replace |Sf i |2 → 2|−→Sf i |2 in the total probability
integrand. If we again define the rate Rγγ = Pγγ /ξ

∫
dϕ+

where ϕ = ϕx is the phase of the first emission the total rate
becomes

Rγγ = R(2)
γ γ + R(1)

γ γ , (25)

where the superscripts indicate the two- and one-step rates
accordingly and

R(2)
γ γ = I (2)

γ γ ξ

∫
dϕ−, (26)

R(1)
γ γ = I (1)

γ γ , (27)

where the quantities Iγ γ are free of divergences associated
with the infinite expanse of the background and will be referred
to as the dynamical part of the rate in contrast to the space-time
factors, such as integrations over the external-field phase.

A. Two-step double Compton scattering

The two-step process actually comprises terms from both
the on- and off-shell parts of the fermion propagator, where off-
shell terms are essential to preserve causality [40]. Therefore,
it is incorrect to refer to the two-step process as the on-shell
part. We find

I (2)
γ γ = −α2

∫
dχkdχk′[C ··Ai(z)Ai(z′)

+C ′′Ai′(z)Ai′(z′) + C ′1Ai′(z)Ai1(z′)

+C1′Ai1(z)Ai′(z′) + C11Ai1(z)Ai1(z′)], (28)

where we have defined

z =
[

χk

χpχq

]2/3

, z′ =
[

χk′

χp′χq

]2/3

; (29)

C ·· = −zz′χpχp′

(χpχq)2
, (30)

C ′′ = 1

(χpχq)2

(
2

z′ + χk′z′1/2

)(
2

z
+ χkz

1/2

)
, (31)

C ′1 = 1

(χpχq)2

(
2

z
+ χkz

1/2

)
, (32)

C1′ = 1

(χpχq)2

(
2

z′ + χk′z′1/2

)
, (33)

C11 = 1

(χpχq)2
, (34)

with χq = χp − χk and χp′ = χp − χk − χk′ . Written in this
way, upon comparison with the probability for unpolarized
single-photon scattering [averaging over photon polarization
and setting σp,σq → 0 in Eq. (17)], one can see that the
two-step process is the integral over the product of single
Compton scattering. We find that the unpolarized two-step rate
can indeed be exactly factorized in terms of single Compton
scattering processes, when the intermediate electron’s spin is
taken into account and assumed in an unchanged state when
the second photon is emitted (we note here the relevance of
choosing a nonprecessing spin basis)

R(2)
γ γ = 1

2

∑
σq

∫
dχq

∂Rγ (χp)

∂χq

Rγ (χq)
ξ

2

∫
dϕ−. (35)

B. One-step double Compton scattering

The one-step process involves an extra integration over a
variable related to the virtuality of the propagating electron

I (1)
γ γ = − α2

4π

∫
dχkdχk′dt

A(t) + A(−t) − 2A(0)

t2
, (36)

A(t) = C ··
t Ai(zt )Ai(z′

t )

+C ′′
t Ai′(zt )Ai′(z′

t ) + C ′1
t Ai′(zt )Ai1(z′

t )

+C1′
t Ai1(zt )Ai′(z′

t ) + C11
t Ai1(zt )Ai1(z′

t ), (37)

zt = z + t

z1/2
, z′

t = z′ − t

z′1/2
, (38)

where we have defined

C ··
t

C ·· = 1 − t

2

χq(χp + χq)(χq + χp′ )

χkχk′
, (39)

C ′′
t

C ′′ = 1, (40)

C ′1
t

C ′1 = 1 + tχk

2
, (41)

C1′
t

C1′ = 1 − tχk′

2
, (42)

C11
t

C11
= 1 + t

χ2
q − χkχk′

2χq

+ t2

4
(χpχp′ − χkχk′). (43)

After integrating over the propagator variable t and over χk′ ,
the remaining integral in χk diverges ∼1/χk for χk → 0. This
well-known infrared divergence was reported in other calcula-
tions in double Compton scattering [16,41,42] and should be
canceled when self-energy corrections are included [28].

It can be shown [40] that the one-step process can be
written as a term originating from the interference between
two- and one-step parts of the amplitude plus a term origi-
nating solely from the one-step part of the amplitude. Here,
as in electron-seeded pair creation in a constant crossed
field, the one-step probability is negative. However, since
the phase factor multiplying the two-step term is formally
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divergent, the total probability is non-negative. Unlike for
electron-seeded pair creation, we find no threshold value
of χp above which the total one-step process becomes
positive.

IV. APPROXIMATIONS USED IN SIMULATION

We turn now to a comparison of the analytical results
for double Compton scattering with approximations used
in numerical simulations. In particular, we investigate two
assumptions. First is the neglect of electron spin, which we
found essential to correctly factorize the two-step part of
double Compton scattering and which produced new terms
in the integrand. Second is the neglect of the one-step process,
also known as simultaneous two-photon emission by an
electron.

A. Electron spin

As an example of employing the constant-crossed-field
approximation, the unpolarized probability of the two-step
process in a slowly varying external field can be written as a
double iteration of single-photon emission

P
(2)
CCF = 1

2

∑
σq

∫
dϕξ ′dϕξdχq Pγ [χq]

∂Pγ [χp,χq]

∂χq

, (44)

where we have allowed the external field to depend on
the phase by defining ϕξ = ϕ ξ (ϕ), ϕξ ′ = ϕ′ ξ (ϕ′), ϕξ ′ > ϕξ ,
χp = χp(ϕξ ), χq = χq(ϕξ ′), and χq < χp. If the external
field is taken to be exactly constant ξ (ϕ) = ξ , Eq. (44) is
synonymous with Eq. (35). The two-step process can therefore
be consistently included in numerical simulation by allowing
for single Compton scattering to occur multiple times. To
investigate the importance of including electron spin, we plot
the dynamical part of two-step double Compton scattering
I (2)

γ γ using Eq. (35) alongside the case when the propagating
electron is forced to be unpolarized by setting σq → 0 in

Eq. (35), which we label I (2)
γ γ . These are then compared with

the χp → 0 asymptotic limit of Morozov and Ritus’s polarized
calculation and the χp → ∞ asymptotic limit derived from the
current unpolarized analysis

Ĩ (2)
γ γ (χp) =

⎧⎨
⎩

25α2

12 , χp < 1
196α2

135
π3/2

31/6�(1/3)�(5/6)

(
2
χ2

p

)1/3
, χp > 1,

(45)

where χp < 1 (χp > 1) is the 1/χp → ∞ (χp → ∞) asymp-
totic limit. In Fig. 4 we note that the intermediate elec-
tron’s spin seems to make very little difference to the total
probability for double Compton scattering. We highlight the
property of Compton scattering in a constant crossed field,
that ∂Pγ /∂χk ∼ χ

−2/3
k for χk → 0. Although the differential

probability diverges as χk → 0, the total probability remains
finite (the softening of this well-known infrared divergence has
recently been studied in [43–45]). How to take into account this
divergent number of photons is handled in a variety of ways by
numerical simulations, but often a hard energy or χk cutoff is
introduced, below which the effects of the emitted radiation are
included using the classical equations of electrodynamics. By

-3 -2 -1 0 1 2 3
log10 χp

-6.0

-5.5

-5.0

-4.5

-4.0

-3.5

log10 I(2)
γγ

log10 I(2)
γγ

log10
˜I(2)

γγ

FIG. 4. (Color online) Dynamical part of the two-step probability

I (2)
γ γ with the approximation of using unpolarized electrons I (2)

γ γ and

the asymptotic limits Ĩ (2)
γ γ .

introducing a cutoff in our analysis, for example, neglecting
photons with χk < 0.1 (several orders of magnitude larger
than what is usually considered [46]), the effect of the electron
spin to the total probability is still only at the few percent
level. Therefore, it seems that, within this approach, treating
the propagating particle as a scalar in numerical simulations
of multiphoton emission of electrons in intense laser pulses is
a consistent approximation.

B. Simultaneous photon emission

With simultaneous photon emission, we are referring to the
one-step process given by the integral in Eq. (36). It has already
been commented that this is divergent and negative. Therefore,
comparison of the factorized two-step process with the rest
of the probability of two-photon emission is not possible at
O(α2) without including self-energy terms. Although it makes
little sense to compare two- and one-step processes without
including self-energy terms, as they may also appreciably
affect photon emission for large χ values, we can assess how
much of the one-step process is neglected in simulation codes
when a cutoff in the emitted photons’ χ parameter is used.
For example, in the simulation of photon emission by a single
electron in [46], a cutoff of χk = �k = 10−5 was chosen. In
Fig. 5 we compare the total probability of the one- and two-step
processes using χk and χk′ cutoffs of �k = �k′ = � = 10−5.
For χp � 1, I (1)

γ γ agrees with the scaling and sign given by
Morozov and Ritus for this limit, although we were unable
to compare results in a quantitative way. We note that the
absolute ratio of dynamical parts of the one- to the two-step
probabilities becomes larger than unity already at χp ≈ 0.1
and linearly increases to more than an order of magnitude for
χp � 50. After repeating the calculation for a range of cutoffs
� ∈ [10−7,10−2], although the exact ratio is weakly cutoff
dependent, for χp ∈ [1,1000], the linear increase in the ratio
appears cutoff independent. Also in Fig. 5 is the total rate
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FIG. 5. (Color online) Absolute dynamical part of the one-step
probability I (1)

γ γ compared to equivalent two-step I (2)
γ γ and single

Compton scattering I (1)
γ = R(1)

γ quantities when an infrared cutoff
�k = �k′ = 10−5 is included.

of single Compton scattering, which is dominant for all χp

investigated.
Over the formation length 1/ξ�0, the one-step process can

clearly be dominant compared to the two-step process, which
implies that current numerical approaches are inappropriate for
simulating double photon emission in this parameter regime.
For an N -cycle pulse, with a wavelength on the order of the
formation length, one would have to consider the integral over
the entire pulse to determine when the two-step process is
dominant. We recall that the total rate for two-photon emission
in a constant crossed field is given by

Rγγ = I (2)
γ γ

ξ

2

∫
dϕ− + I (1)

γ γ + I (0)
γ γ

ξ
∫

dϕ−
, (46)

where I (0)
γ γ is the interference between exchange terms, ne-

glected as the phase factor is formally infinite, but reintroduced
here when discussing approximating more complicated fields
as constant crossed. The constant-crossed approximation to an
arbitrary field is expected to be valid when ξ � 1 and χp is
much larger than the two electromagnetic invariants e2F 2/m4

and e2FF ∗/m4 for the Faraday tensor F and its dual F ∗ [18].
The present results imply that the further assumption made in
simulations of the rate of generating n photons being due to the
n-step process is questionable for n = 2 when ξ � O(102) and
χp � 1. To demonstrate this, we use the constant-crossed-field
approximation in Eq. (44) and

P
(1)
CCF =

∫
dϕξ R(1)

γ γ [χp(ϕξ )] (47)

to estimate double Compton scattering in the field of a laser
pulse E = E0 cos4(πϕ/2�) cos ϕ for pulse width � = �0τ .
In Fig. 6 the relative difference in photon yield due to including

-1.0 -0.5 0.0 0.5 1.0
ϕ/Φ

-2

-1

0

1

2

3

4

5

6
×10−3

Pccf

P
(2)

ccf

P
(1)

ccf

FIG. 6. (Color online) Few-cycle pulse with field strength equiv-
alent to 500 TeV focused to a focal width of 10 μm with a
910-nm wavelength with peak ξ = 10 and pulse duration of 5 fs
counterpropagating with 10-GeV seed electrons.

the one-step process is −25%, however the main qualitative
difference due to including the one-step process is the instant
when two-photon emission starts to become significant, which
is predicted to occur a half cycle later. One could speculate
whether this has implications for the dynamics of QED
cascades. In electron-seeded QED cascades, single-photon
processes are initially dominant and after a length 1/αξ�0,
two-photon processes are expected to dominate. However, this
length is much larger than the formation length, so again
the suppression due to including virtual processes will be
negligible.

Although we have seen that only when the spatial extent of
the external field is less than two orders of magnitude of the
formation length (100/ξ�0) and χp � 1, the one-step process
can be comparable to the two-step one, the analysis raises the
question of how accurate it is to simulate an n-photon emission
including just the n-step process.

V. TRANSVERSE MOMENTUM DISTRIBUTION

In a calculation of electron-seeded pair creation in a con-
stant crossed field, it was suggested that the significantly dif-
ferent transverse momentum distributions could be a method to
experimentally separate the one- and two-step processes [40].
The same method is investigated here for double Compton
scattering. The distribution in the emitted photons’ dimen-
sionless transverse momentum ky = k · a(2)/m and k′

y = k′ ·
a(2)/m can be related to the inclusive rate by the integral

R(j )
γ γ =

∫
dky dk′

y

∂2R(j )

dkydk′
y

, (48)

where j ∈ {1,2} for the one- and two-step rates. Figure 5
suggests that at χp > 0.1, the one- and two-step rates could
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FIG. 7. (Color online) Logarithm to base 10 of the differential
rate for the two-step process ∂2R(2)

γ γ /dky dk′
y when (a) χp = 0.1 and

(b) χp = 10.

become distinguishable over a formation length. For this
reason, we numerically calculate the transverse momentum
distribution for χp = 0.1 and 10 for the two-step and
one-step processes, which are displayed in Figs. 7 and 8,
respectively. We note the symmetry in the distributions
under the substitution (ky,k

′
y) → (k′

y,ky) is due to exchange
symmetry. In [17] it was asserted that any photons measured
outside the emission cone of single Compton scattering would
reveal a double Compton scattering signal. A semiclassical
explanation was given based on the modified trajectory in dou-
ble Compton scattering. In Fig. 9 we have explored whether a
similar approach can be used in a constant-crossed-field back-
ground to distinguish the one-step process from single Comp-
ton scattering. Although the ratio of single to double Compton
scattering can be an order of magnitude larger than the factor
of α one might naively expect, it appears that single Compton
scattering dominates also in the transverse momentum
plane.
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k · a(2)/m
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1

k
·a

(2
) /

m
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−20 −15 −10 −5 0

0 1
k · a(2)/m
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FIG. 8. (Color online) Logarithm to base 10 of the differential
rate ∂2(−R(1)

γ γ )/dky dk′
y for the one-step process for (a) χp = 0.1 and

(b) χp = 10.
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FIG. 9. (Color online) Comparison of the integrated differential
rate

∫
dk′

y[∂2(−R(1)
γ γ )/dkydk′

y] of the one-step process (solid line)
compared with the differential rate for single Compton scattering
∂Rγ /∂ky (dashed line) for (a) χp = 0.1 and (b) χp = 10.

VI. CONCLUSION

Using a nonprecessing spin basis to describe electron
polarization, the probability of a spin flip following single
Compton scattering in a constant crossed field was found
to be suppressed. The unpolarized rate for double Compton
scattering in a constant crossed field was written as a
sum of a two-step process, which is exactly factorizable as
single Compton scattering integrated over the longitudinal
momentum of a polarized intermediate electron, and a one-
step process, which is entirely negative and dominates the
total probability over the formation length 1/ξ�0 = λEcr/E.
Regarding numerical simulation of double photon emission,
we found the assumption that the intermediate electron is
unpolarized, to be accurate to the few percent level, depending
on the photon energy cutoff used. Numerical simulation in
its current form appears unsuitable to describe higher-order
processes when the quantum nonlinearity parameter χ is
large and the external-field dimensions are less than a couple
of orders of magnitude of the formation length, due to the
effects of virtual processes. However, even when the emitted
photons’ transverse momentum distribution was calculated, an
indication of when the virtual process of simultaneous double
Compton scattering is more probable than single Compton
scattering was not found. Moreover, when external-field
dimensions are much larger than the single-vertex formation
length, the sequential process dominates the simultaneous
process.
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