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Quantum-ionic features in the absorption spectra of homonuclear diatomic molecules
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We show that additional features can emerge in the linear absorption spectra of homonuclear diatomic molecules
when the ions are described quantum mechanically. In particular, the widths and energies of the peaks in the
optical spectra change with the initial configuration, mass, and charge of the molecule. We introduce a model
that can describe these features and we provide a quantitative analysis of the resulting peak energy shifts and
width broadenings as a function of the mass.
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I. INTRODUCTION

Molecular spectroscopy deals with the response of a
molecule interacting with an external electromagnetic field.
The development of attosecond sources [1–3] allows one
to probe in real time coupled electron-ion dynamics after
photoionization processes. Two types of processes are seen
in these experiments. The motion of the ions is associated
with chemical transformations such as dissociation [4] in
the femtosecond domain. The motion of the electrons is
associated with electronic rearrangement processes such as
charge redistribution [5,6] and localization [7,8], as well as
ionization processes such as tunneling [9] in the attosecond
domain.

Modeling coupled electronic-ionic dynamics in photoion-
ization processes is a formidable challenge for most systems.
For this reason, previous studies have been limited to one
(H2

+)- and two (H2)-electron benchmark systems [8,10–13]. A
full coupled electronic-ionic three-dimensional (3D) treatment
has only been achieved for the one-electron system H2

+,
where the ionic motion is confined to the direction of the
laser’s polarization [10,14]. For a full quantum-mechanical
treatment of two-electron, two-ion systems (H2), it is necessary
to confine both the electronic and the ionic motion to the laser’s
polarization direction. This is a reasonable semiclassical
approximation, as the electronic and ionic motion should
be predominantly along this direction [10]. Therefore, for
most molecules, any quantum-ionic features are typically
neglected by instead using classical approximations, e.g.,
the Born-Oppenheimer approximation (BOA) and Ehrenfest
dynamics (ED). These approaches rely on a weak coupling
between the electronic and ionic wave functions. However,
the validity of such approximations breaks down for light
atoms, when hybridization between the electronic and ionic
wave functions must be included. A quantum versus classical
treatment of the ions has been previously used to investigate
the localization [8], nonsequential double ionization [10],
harmonic generation [11], and harmonic spectra and shapes
of attosecond-pulse trains [15] of H2, as well as the disso-
ciation [12], proton kinetic energies [13], and interference
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patterns in high harmonic generation [16] for H2
+. A quantum

vs classical treatment of the ions has also been previously used
to investigate the high-intensity photoionization and harmonic
generation of the one-electron triangular H3

2+ molecular
ion [17]. A very strong signature of nuclear motion is seen on
the attosecond time scale of electronic motion for hydrogen
systems. The time scale of ionic motion only approaches
the electron time scale for light ions. As we shall see, for
a proton in a hydrogen system, the molecular ionic motion
occurs within a few femtoseconds, whereas electronic motion
is on the attosecond time scale.

The aim of this paper is a comparison between a quantum
(QMI) and a classical (BOA/ED) treatment of the ionic motion
to describe coupled electronic and ionic processes [18]. In par-
ticular, we consider three- and four-body systems of electrons
and ions for which a fully quantum-mechanical treatment of
the coupled electron-ion system is feasible. This comparison
with respect to the QMI solution is performed both for the
static spectra and the time-dependent linear response spectra.
In fact, we find significant differences between the QMI
and BOA/ED spectra. These features can be quantitatively
analyzed using a simple two-level, two-parameter model based
on the BOA electronic energy levels and the electron-ion
mass ratio. The results of our work will help us to determine
the domain of applicability of the simplified BOA and ED
approaches to interpret coupled electron-ion experiments for
more complicated systems.

The paper is organized as follows: In Sec. II, we introduce
the theoretical methods and models employed to simulate the
coupled electronic and ionic processes; in Sec. III, we explain
the methodology to obtain both the ground-state and time-
dependent linear response spectra, as well as the computational
details of our calculations; in Sec. IV, we show our results
for both, the H2

+ and H2 molecules, which we then analyze
according to the model we provide; and finally, in Sec. V we
summarize the main conclusions and relevant results of our
work. Atomic units (a.u.) (� = me = e = a0 = 1) are used
throughout, unless stated otherwise.

II. THEORETICAL BACKGROUND

A. Quantum electron-ion approach

A many-body system composed of N ions and n electrons,
where both the electrons and the ions are treated quantum
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mechanically (QMI), is described by the total electron-ion
time-dependent Hamiltonian,

Ĥ (t) = T̂I + T̂e + V̂II + V̂Ie + V̂ee + V̂ext(t), (1)

where T̂I and T̂e are the ionic and electronic kinetic energy
operators, respectively, and V̂II , V̂Ie, V̂ee, and V̂ext(t) are the
ion-ion, ion-electron, electron-electron, and external potential
energy operators, respectively. The kinetic energy operators
take the form

T̂I =
N∑

α=1

− 1

2Mα

∇2
α, (2)

where Mα is the mass of ion α and

T̂e =
n∑

i=1

−1

2
∇2

i . (3)

The interaction between the ions is given by

V̂II = 1

2

N∑
α,β = 1
α �= β

QαQβ

|Rα − Rβ | , (4)

where Qα , Qβ , Rα , and Rβ are the corresponding charges
and positions of ion α and β. Similarly, the electron-electron
repulsion is

V̂ee = 1

2

n∑
i,j = 1
i �= j

1

|ri − rj | , (5)

where ri and rj are the positions of electrons i and j , while
the interaction between electrons and ions is

V̂Ie = −
N∑

α=1

n∑
i=1

Qα

|ri − Rα| . (6)

Finally, V̂ext(t) describes the interaction of the system of
electrons and ions with an external electromagnetic time-
dependent field, defined explicitly in Sec. III B.

The time-dependent Schrödinger equation takes the form

i
∂ψ

∂t
= i

∂

∂t
ψ(R1S1,R2S2, . . . ,RNSN ; r1s1,r2s2, . . . ,rnsn,t)

= Ĥ (t)ψ(R1S1,R2S2, . . . ,RNSN ; r1s1,r2s2, . . . ,rnsn,t),

(7)

where ψ is the time-dependent electron-ion wave function.
This depends on the positions Rα and ri and on the spin
coordinates Sα and si of ion α and electron i, respectively.

For time-independent problems [V̂ext(t) = 0], the general
solution of the time-dependent Schrödinger equation can be
written as

ψ =
∑

k

cke
−iεk tψk(R1S1,R2S2,. . .,RNSN ; r1s1,r2s,. . .,rnsn),

(8)

where εk and ψk are the kth eigenvalue and eigenstate of the
electron-ion stationary Schrödinger equation,

Ĥψk = Ĥψk(R1S1,R2S2, . . . ,RNSN ; r1s1,r2s2, . . . ,rnsn)

= εkψk(R1S1,R2S2, . . . ,RNSN ; r1s1,r2s2, . . . ,rnsn),

(9)

with

Ĥ = T̂I + T̂e + V̂II + V̂Ie + V̂ee. (10)

We next focus on the time-independent solution until intro-
ducing an external field in Sec. III B.

Solving the QMI problem is very demanding computa-
tionally for many-body systems. In fact, it quickly becomes
unfeasible for systems with more than three independent
variables. For this reason, we restrict consideration herein
to one- or two-electron diatomic molecules whose motion
is confined to one direction (see Sec. II D). By applying an
appropriate coordinate transformation, such systems may be
modeled with only two or three independent variables (see
Appendix A). In Secs. II B and II C, we introduce two of
the most widely used approximations to simplify the general
many-body electron-ion problem.

B. Born-Oppenheimer approximation

Within the BOA [19], the total electronic-ionic wave
function ψ is assumed to be separable into an ionic χ and
an electronic ϕ part. Because the electrons move much faster
than the ions, we assume that the kinetic energy of the ions
does not cause the excitation of the electrons to another
electronic state, i.e., an adiabatic approximation. Such an
approximation is valid as long as the ratio of vibrational
to electronic energies, Evib to Eelec, which goes as the root
of the electron-ion mass ratio, i.e., Evib/Eelec ≈ √

me/M , is
small [19] (see Appendix B for details). Since for a proton
Mp ≈ 1836me and Evib/Eelec ∼ 0.02, the BOA is expected to
work quite well for our molecules. We thus may neglect T̂I = 0
from Eq. (10), although the electrons still feel the static field
of the ions (V̂eI ,V̂II �= 0).

The separable BOA solution ψ of the electron-ion station-
ary Schrödinger equation (8) is given by [12]

ψ = χ (R1S1,R2S2, . . . ,RNSN )

×ϕ(R1,R2,...,RN )(r1s1,r2s2, . . . ,rnsn), (11)

where χ depends on the ionic coordinates only and ϕ depends
on both the electronic coordinates and the ionic coordinates,
which, however, only enter into the electronic wave functions
as parameters. As shown in Ref. [12], this may be done for the
Hamiltonian of Eq. (1) without loss of generality.

If we insert Eq. (11) directly into Eq. (9), we obtain the
general coupled electron-ion BOA problem

Ĥψk = −
N∑

α=1

∇2
αχ

2Mα

ϕ − χ

N∑
α=1

∇2
αϕ

2Mα

−
N∑

α=1

∇αχ · ∇αϕ

Mα

+χ

(
n∑

i=1

−∇2
i

2
+ V̂Ie + V̂ee + V̂II

)
ϕ

= Ekψk. (12)
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However, one normally separates Eq. (12) into an electronic
problem only in ϕ and an ionic problem only in χ . To do so, one
first solves the electronic-only BOA frozen-ion Schrödinger
equation, where the ionic coordinates Rα only enter as fixed
parameters in ϕ,

Ĥeϕi = Ĥeϕ
(R1,R2,...,RN )
i (r1s1,r2s2, . . . ,rnsn)

= Ei(R1,R2, . . . ,RN )ϕ(R1,R2,...,RN )
i (r1s1,r2s2, . . . ,rnsn),

(13)

where

Ĥe = T̂e + V̂Ie + V̂ee + V̂II . (14)

In this way, one may find the so-called ith potential energy
surfaces (PESs) Ei(R1,R2, . . . ,RN ). These are representations
of the electronic energy landscape as a function of the ionic
coordinates.

In the next step, the ionic BOA Schrödinger equation is
solved by adding the previously neglected kinetic energy of
the ions to the potential energy surfaces obtained from the
frozen-ion Schrödinger equation

Ĥ i
I χij (R1S1,R2S2, . . . ,RNSN )

= Eijχij (R1S1,R2S2, . . . ,RNSN ), (15)

where

Ĥ i
I =

N∑
α=1

− 1

2Mα

∇2
α + Ei(R1,R2, . . . ,RN ), (16)

and the ionic excitations j depend on the electronic excit-
ations, i.

Comparing Eq. (12) with Eq. (16), we realize that the
second and third terms of Eq. (12) are neglected in the BOA.
This is because we assume that the kinetic energy of the ions
is not affecting the electronic part ϕ, i.e., ∇αϕ ≈ 0.

C. Ehrenfest dynamics

Within the ED scheme [20], we solve the coupled evolution
of the electrons and ions. The electrons evolve quantum
mechanically, whereas the ions evolve classically on a mean
time-dependent PES ϕi(t) weighted by the different BOA PESs
ϕi in Eq. (13),

ϕi(Rα(t)) =
n∑
i

ci(t)ϕi. (17)

The ions are evolved according to Newton’s equation of
motion,

FED(Rα(t)) = Mα

d2Rα(t)

dt2
, (18)

which satisfies the potential energy derivative condition

FED(Rα(t)) = −
n∑
i

|ci(t)|2 �∇αεi(Rα(t))

= −〈ϕ(t)| �∇αHe(Rα(t))|ϕ(t)〉, (19)

where Eq. (17) and the Hellmann-Feynman theorem have been
employed. The Ehrenfest electron-ion scheme consists of the
time propagation of the coupled Eqs. (13) and (19).

D. Model systems: Initial configurations and Hamiltonians

We model the positively charged one-electron H2
+ and

neutral two-electron H2 homonuclear diatomic molecules,
assuming their motion is confined to one direction. Such a
model should provide a reasonable description of a molecule
excited by a laser field, where the electronic and ionic motion
are confined to the polarization axis of the laser field [12].
In this case, the QMI problem described in Sec. II A, where
both electrons and ions are treated quantum mechanically, can
be solved exactly. Furthermore, by working in center-of-mass
coordinates, the computational effort required to solve Eq. (7)
is significantly reduced.

However, the singularity in the bare Coulomb interaction
of Eqs. (4), (5), and (6) in 1D makes the direct numerical
solution of the Schrödinger equation (7) unfeasible. Instead,
one employs the so-called “soft Coulomb interaction” [12,21].
For two particles i and j with charges Qi and Qj , the soft
Coulomb interaction Vint has the general form

Vint(s) = QiQj√
s2 + 	2

, (20)

where s is the separation between the two charges and 	 is
the soft Coulomb parameter [21]. Typically, 	 = a0, although
other values can also be used [10].

In essence, the soft Coulomb interaction amounts to a
displacement of the trajectories of the two particles in an
orthogonal direction. So for a hydrogen atom, a soft Coulomb
interaction of

Vint(s) = − 1√
s2 + a2

0

(21)

is equivalent to having a bare Coulomb interaction with
the electron and proton trajectories required to be parallel,
with a minimum separation of a0. This is a quite reasonable
assumption, as the most probable electron-proton separation
in a hydrogen atom is the Bohr radius a0. Soft Coulomb
parameters correspond to the separation between the 1D
trajectories that each electron and ion will move along in
3D with a bare Coulomb interaction. We may directly map
the 1D soft Coulomb problem to a bare Coulomb problem
in 3D, where the electrons and ions are separated by the soft
Coulomb-parameter distances shown in Fig. 1, while their
motion is confined in one direction. In this way, one clearly
sees that constraint rotations of the molecules are possible in
3D, while their motion is still confined to 1D. As discussed in
Sec. III B, the molecules will be perturbed by a kick confined
in one direction.

In Fig. 1 we show the various configurations we have em-
ployed to model an H2

+ or H2 molecule whose electronic and
ionic motion is confined to one direction. These configurations
are specified by the soft Coulomb parameters between the ions
	II , the electrons 	ee, and the ions and electrons 	Ie. One
such configuration has been used previously [10] to study the
dynamics of a one-dimensional H2 model molecule in strong
laser fields by means of QMI.
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(g) ΔII=1/3; ΔIe=1/3 ; 2/3 ; Δee=1

(e) ΔII=√3
_

 ; ΔIe=1; Δee=1 (f) ΔII=1; ΔIe=1; Δee=√3
_

(h) ΔII=1; ΔIe=1/3 ; 2/3 ; Δee=1/3 (i) ΔII=√2
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FIG. 1. (Color online) Schematic representation of the (a)–(d)
H2

+ and (e)–(i) H2 geometries for the minimum ionic separation 	II ,
ion-electron separation 	Ie, and electron-electron separation 	ee for
each configuration. Protons are shown in red and electrons in black.

An analysis of the effect of the initial configuration on the
optical spectra is shown in Sec. IV. The classical energies
of positively charged and neutral homonuclear diatomic
molecules whose motion is confined to one direction are given
by

E = 1

2
MV 2

1 + 1

2
MV 2

2 + 1

2
v2

1 − 1√
(x1 − X1)2 + 	2

Ie

− 1√
(X2 − x1)2 + 	2

Ie

+ 1√
(X2 − X1)2 + 	2

II

(22)

and

E = 1

2
MV 2

1 + 1

2
MV 2

2 + 1

2
v2

1 + 1

2
v2

2

− 1√
(x1 − X1)2 + 	2

Ie

− 1√
(X2 − x2)2 + 	2

Ie

− 1√
(x2 − X1)2 + 	2

Ie

− 1√
(X2 − x1)2 + 	2

Ie

+ 1√
(X2 − X1)2 + 	2

II

+ 1√
(x2 − x1)2 + 	2

ee

, (23)

respectively. Here M is the ion mass; V1, V2, X1, and X2 are
the ionic velocities and positions for both molecules along the
direction of motion.

The first three and four terms of Eqs. (22) and (23) are the
kinetic energies of the electrons and ions in the molecules,
as explained above. The remaining terms correspond to the
attractive and repulsive electrostatic potential energy terms
between such electrons and ions.

The spatial configuration of positively charged or neutral
homogeneous diatomic molecules in 1D does not change if
the particle positions are translated uniformly. This reduces
our three- and four-body coordinate problems into two- and
three-body ones, respectively.

We rewrite the classical energies in Eqs. (22) and (23)
in terms of the center-of-mass transformation [22] (see
Appendix A) to obtain the two-body (X,ξ ) and three-body
(X,x,ξ ) Hamiltonians

Ĥ (X,ξ ) = − 1

M

∂2

∂X2
− 2M + 1

4M

∂2

∂ξ 2
− 1√(

X
2 + ξ

)2 + 	2
Ie

− 1√(
X
2 − ξ

)2 + 	2
Ie

+ 1√
X2 + 	2

II

(24)

and

Ĥ (X,x,ξ )

= − 1

M

∂2

∂X2
− ∂2

∂x2
− 1 + M

4M

∂2

∂ξ 2

− 1√(
X
2 − x

2 + ξ
)2 + 	2

Ie

− 1√(
X
2 − x

2 − ξ
)2 + 	2

Ie

− 1√(
X
2 + x

2 + ξ
)2 + 	2

Ie

− 1√(
X
2 + x

2 − ξ
)2 + 	2

Ie

+ 1√
x2 + 	2

ee

+ 1√
X2 + 	2

II

, (25)

for positively charged and neutral homogeneous diatomic
molecules, respectively, after removing the center-of-mass
term. Here X and x are the ionic and electronic separations
and ξ is the separation between ionic and electronic centers of
mass along the direction in which their motion is confined.

Although the electrons are treated quantum mechanically
along their direction of motion, the confinement of their motion
and position along one direction is inherently classical. For
this reason, our treatment herein is essentially semiclassical:
quantum mechanical along the direction of motion, and
classical perpendicular to the direction of motion. This has
important repercussions for the H2 configurations shown in
Figs. 1(g) and 1(h). For these cases, the Hamiltonian of Eq. (25)
is no longer symmetric under ion or electron exchange, since

033410-4



QUANTUM-IONIC FEATURES IN THE ABSORPTION . . . PHYSICAL REVIEW A 91, 033410 (2015)

	Ie is either 1
3a0 or 2

3a0. This reflects the limitations of such
a semiclassical treatment. So, although the Hamiltonian of
Eq. (25) is still symmetric under ion or electron exchange
for the H2 configurations shown in Figs. 1(e), 1(f), and 1(i),
the confinement of the electron’s position perpendicular to
its motion may still have an important impact for these
configurations.

Our aim here is to assess the accuracy of the approximations
introduced in Secs. II B and II C, in which the ions are treated
classically. To accomplish this, we vary the ionic mass M

in our homogeneous diatomic molecules for the many-body
problem, while fixing the the ionic charge Q = e. We only
consider Q = e because the repulsion between the ions of
more massive homonuclear diatomic molecules with a single
electron would be so large that the molecules would be
unstable [23]. Furthermore, this allows us to directly compare
absorption spectra between these model systems for a fixed
interaction potential.

E. Symmetries of the many-body wave function

Since for our positively charged homogeneous diatomic
molecules there are one electron and two ions, the antisymme-
try of the many-body wave function must be enforced for the
ions only as

ψ(X1S1,X2S2,xs) = −ψ(X2S2,X1S1,xs) (26)

for the triplet and

ψ(X1S1,X2S2,xs) = ψ(X2S2,X1S1,xs) (27)

for the singlet.
For our neutral homogeneous diatomic molecules there are

two electrons and two ions. Therefore, the antisymmetry of
the many-body wave function must be enforced both for the
ions and the electrons as

ψ(X1S1,X2S2,x1s1,x2s2) = −ψ(X2S2,X1S1,x1s1,x2s2)

(28)

for the ionic triplet,

ψ(X1S1,X2S2,x1s1,x2s2) = ψ(X2S2,X1S1,x1s1,x2s2) (29)

for the ionic singlet,

ψ(X1S1,X2S2,x1s1,x2s2) = −ψ(X1S1,X2S2,x2s2,x1s1)

(30)

for the electronic triplet, and

ψ(X1S1,X2S2,x1s1,x2s2) = −ψ(X1S1,X2S2,x2s2,x1s1)

(31)

for the electronic singlet.
Therefore, due to the exchange symmetry of the many-

body wave function, in order to have a total antisymmetric
many-body wave function, the spatial part of the ionic and
electronic wave function must be odd for the triplet and even
for the singlet under the exchange of two identical particles.
Consequently, we are only concerned with the spatial part of
the wave function, with the spin part already being separated
off due to the exchange symmetry of the many-body wave
function.

III. METHODOLOGY

A. Ground state

The QMI eigenvalues are obtained by inserting Eqs. (24)
and (25) into Eq. (9) for the H2

+ and H2 molecules,
respectively.

To obtain the PES within the BOA and ED, we would
insert Eqs. (24) and (25), neglecting the first term, into
Eq. (13) for the H2

+ and H2 molecules, respectively. For
the BOA and ED ground-state electron-ion level, we do
not compute Eq. (15). Instead, we fit the ground-state PES
around its minimum energy at the interionic distance Xeq

using a harmonic approximation Egs(Xeq) + 1
2k1(X − Xeq)2,

where k1 = ω2
IμI is the harmonic constant, ωI is the harmonic

oscillator vibrational frequency, and μI is the ionic reduced
mass defined in Eq. (A5). From ωI , we obtain the ground-state
electron-ion eigenvalue of a harmonic oscillator ε

BOA/ED
gs =

Egs(Xeq) + 1
2ωI in the BOA and ED PES picture.

The inversion symmetry with respect to the interionic
X coordinate of the potential in Eqs. (24) and (25) leads
to a doubly degenerate solution εk for each state ψk in
Eq. (9), for sufficiently bound global ground-state potentials.
The inversion symmetry with respect to the interelectronic x

coordinate of the potential in Eqs. (24) and (25) is not related to
the statistics of the ions, but to the symmetry of the electronic
molecular orbital.

B. Time-dependent linear response spectra

To obtain the linear response photoabsorption spectra, we
apply an initial impulsive perturbation, or “kick” [24]

K(H2
+) = eiK(X1+X2−x),

(32)
K(H2) = eiK(X1+X2−x1−x2),

to the ground-state wave functions ψgs of our H2
+ and H2

molecules, respectively, for the BOA and QMI approaches.
K is a measure of the strength of the kick. We employ a
converged kick strength of K = 0.001, for which the linear
response spectra does not change if it is decreased further.
Using the center-of-mass coordinates defined in Appendix A,
the terms in Eq. (32) become

K(H2
+) = eiK(XCM2 − 2M+2

2M+1 ξ),
(33)

K(H2) = e−iK2ξ ,

where XCM2 is the global center-of-mass coordinate and ξ

is the separation between the ionic and electronic centers of
mass along the direction in which their motion is confined.
The perturbative kick K will only induce polarization on the
coordinates ξ defined for H2

+ and H2 in Eqs. (A3) and (A8)
for the BOA and QMI methods.

In linear response, we expand Eq. (33) in terms of K ,
neglecting higher order terms

K(H2
+) ≈ 1 + iK

(
XCM2 − 2M + 2

2M + 1
ξ

)
,

(34)
K(H2) ≈ 1 − iK2ξ.

For the ED approach, one should follow the same pro-
cedure starting from Eq. (32), but substituting the electronic
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coordinates x for − 2M+2
2M+1ξ ≈ −ξ when M 
 1 for H2

+ and
x2 + x1 for −2ξ for H2. During the time propagation, the
ions are not kicked, but evolve as parameters according to
Eq. (19). In this case, the electron is kicked relative to the
center of mass of the ions for the H2

+ molecule, and the
two electrons are kicked relative to their distance to the ions
for the H2 molecule. However, the linear response absorption
spectra does not depend on uniform translations of the ions
and electrons.

The enforced time-reversal symmetry evolution opera-
tor [25] we apply to propagate our equations after this external
perturbation has been applied is given by

U (t + 	t,t) = e−i 	t
2 H (t+	t) × e−i 	t

2 H (t), (35)

where the Hamiltonian H (t + 	t) is calculated from

ψ(t + 	t) = e−i	tH (t)ψ(t), (36)

and the kicked initial state we propagate is

ψ(	t) = e−i	tH0Kψgs, (37)

where ψgs is the ground-state eigenstate of the time-
independent Hamiltonian H0 of Eqs. (24) and (25) for H2

+
and H2, respectively.

The time-dependent Hamiltonian H (t) is then obtained by
time propagation at each time step self-consistently according
to Eq. (36), starting from the kicked initial state given in
Eq. (37). The expectation value of the dipole moment d at
time t is

d(t) = 〈ψ(t)|ξ̂ |ψ(t)〉. (38)

If we assume that the Hamiltonian does not evolve in time
and we insert Eq. (34) into Eq. (37), using the completeness
relation

∑
k |ψk〉〈ψk| = 1 and Eq. (8) we get

|ψ(t)〉 ≈ e−iεgst |ψgs〉 − iK
∑

k

e−iεk t

×〈ψk|2M + 2

2M + 1
ξ̂ |ψgs〉|ψk〉 (39)

for the H2
+ molecule and

|ψ(t)〉 ≈ e−iεgst |ψgs〉 − iK
∑

k

e−iεk t 〈ψk|2ξ̂ |ψgs〉|ψk〉 (40)

for the H2 molecule. From Eqs. (39) and (40), we see that only
the ψgs to odd k dipole moment matrix elements are nonzero
by symmetry, i.e., parity, since ξ̂ is an odd operator.

Equation (38) can be written as

d(t) ≈ −2K
2M + 2

2M + 1

∑
k

sin ωkt |〈ψk|ξ̂ |ψgs〉|2 (41)

for the H2
+ molecules using Eq. (39) and

d(t) ≈ −4K
∑

k

sin ωkt |〈ψk|ξ̂ |ψgs〉|2 (42)

for the H2 molecules using Eq. (40), where d(t) depends
linearly on K and ωk ≡ εk − εgs.

However, in the ED approach the ionic coordinates are
updated at each time step. This makes ξ̂ and the Hamiltonian
time dependent. For this reason, the dipole moment from the

ED approach does not necessarily have the form of Eqs. (41)
and (42). As we show in Sec. IV A, the time-dependent effects
of zero-point motion within ED, which are incorporated into
the coordinate ξ (t) = x − XCM1 , have an important impact on
the spectra.

The optical photoabsorption cross section spectra σabs

is obtained by performing a discrete Fourier transform of
d(t) [26]. More precisely,

σabs = 4παωIm

{
1

K

T∑
t=0

	te−iωtf

(
t

T

)
[d(t) − d(0)]

}
,

(43)

where

f (x) = e−25x2
, (44)

is a Gaussian damping applied to improve the resolution of the
photoabsorption peaks, ω is the frequency of the oscillations
of d(t), α is the fine structure constant, T = 1000 is the total
propagation time, and 	t = 0.01 is the time step.

C. Computational details

All numerical calculations have been performed using the
real-space electronic structure code OCTOPUS [27]. We dis-
cretize the configuration space of the H2

+ and H2 molecules,
using a finite set of values (i.e., a so-called grid) for the
coordinates X, x, and ξ in the box intervals X ∈ [−LX,LX],
x ∈ [−Lx,Lx], and ξ ∈ [−Lξ ,Lξ ]. These are discretized as

Xi = −LX + i	X for i = 0,1,2, . . . ,NX,

xj = −Lx + j	x for j = 0,1,2, . . . ,Nx,

ξk = −Lξ + k	ξ for k = 0,1,2, . . . ,Nξ ,

(45)

using NX, Nx , and Nξ equally spaced points, respectively.
The spacing between two adjacent points in the X, x,
and ξ directions are 	X = 2LX

NX
, 	x = 2Lx

Nx
, and 	ξ = 2Lξ

Nξ
,

respectively. Convergence is achieved when a decrease in
	X, 	x, 	ξ and an increase in LX, Lx , Lξ does not change
the electron-ion static and time propagation linear response
spectra.

For the H2
+-type molecules, ground-state convergence

is achieved for LX = Lξ = 10a0, 	X = 0.05a0, and 	ξ =
0.1a0. To obtain the PES we have used Lξ = 100a0 and
	ξ = 0.1a0. Generally, the convergence of the QMI optical
spectra requires Lx = 30a0, Lξ = 80a0, 	X = 0.01a0, and
	ξ = 0.5a0. However, for the ionic mass M of the μ

case, convergence required LX = 100a0, Lξ = 80a0, 	X =
0.03a0, and 	ξ = 0.5a0. Finally, for the ED and BOA optical
spectra we have used Lξ = 500a0 and 	ξ = 0.1a0.

For the H2-type molecules, ground-state convergence is
achieved for LX = Lξ = Lx = 10a0, 	X = 0.07a0, 	ξ =
0.2a0, and 	x = 0.5a0. To obtain the PES, we have used
Lξ = Lx = 40a0 and 	ξ = 	x = 0.2a0. The convergence
of the QMI optical spectra requires LX = 10a0, Lx = 80a0,
Lξ = 35a0, 	X = 0.07a0, 	x = 0.5a0, and 	ξ = 0.6a0.
Finally, for the ED and BOA optical spectra we have used
Lξ = Lx = 200a0, and 	ξ = 	x = 0.5a0.

Within the BOA and ED, the X coordinate does not need
to be discretized quantum mechanically. It is either fixed as
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FIG. 2. (Color online) BOA ground-state PESs relative to
E0(Xeq) in eV versus

√
X2 + 	2

II in Å for (a) H2
+ and (b) H2

molecules for the 	II , 	ee, and 	Ie configurations shown as insets.
The 3D ground-state PESs (dotted lines) have been taken from
Ref. [28].

a parameter in BOA or it changes according to the dynamic
equations in ED. As a consequence, the two- and three-variable
bare Coulomb QMI problems confined to 1D trajectories for
the H2

+ and H2 molecules, respectively, become one and two
variable BOA and ED problems. These are easier to compute
numerically, thus providing a more attractive alternative.

IV. RESULTS AND DISCUSSION

A. H2
+ and H2 results

In Fig. 2, we show how the H2
+ and H2 BOA ground-state

PESs change as a function of the ionic separation
√

X2 + 	2
II

for each configuration shown in Fig. 1.
The PES fitted minimum energies at Xeq, E0(Xeq), and

positions
√

X2
eq + 	2

II are shown in Table I for the H2
+ and H2

molecules with the configurations shown in Fig. 1.
The ground-state PESs (dotted black lines in Fig. 2 and

taken from Ref. [28]) have been obtained by solving the

TABLE I. H2
+ and H2 ground-state PES fitted ground-state

energies E0(Xeq) and positions
√

X2
eq + 	2

II obtained from a harmonic
fit around Xeq for the configurations shown in Fig. 1.

	II 	Ie 	ee E0(Xeq)
√

X2
eq + 	2

II

Species (a0) (a0) (a0) (eV) (Å)

1 0.5 −45.757 0.5627
0.5 1 −21.431 1.3510H2

+
1 1 −21.969 1.2697
2 1 26.759 1.0584
1
3

1
3 ; 2

3 1 −60.022 0.7146√
3 1 1 −45.193 0.9166

H2 1 1
√

3 −44.790 0.9004√
2 1

√
2 −45.856 0.8241

stationary Schrödinger equation in 3D using basis sets within
the BOA. Here the electronic and ionic positions were allowed
to vary in all spatial directions. The overall shapes of these 3D
PESs are reproduced qualitatively by configurations (b) and
(c) for H2

+ and (g) for H2 from Fig. 1.
The experimental bond lengths of H2

+ and H2 are 2a0 [29]
and

√
2a0 [28], respectively. The equilibrium distance is best

reproduced by configuration (d) for H2
+ and (g) for H2 from

Fig. 1.
The Hamiltonian for configuration (g) for H2 in Fig. 1(b)

is not invariant under electron exchange. Yet, we still consider
this configuration, because the H2 configurations which are
invariant under electron exchange [Figs. 1(e), 1(f), and 1(i)]
yield PESs that differ qualitatively from the 3D PES, as shown
in Fig. 2(b).

The ions sometimes undergo a strong interionic repulsion
for larger and small X, depending on the initial configuration.
For the strongly repulsive configurations for small X, the ions
are farther apart because the repulsion between the ions is
stronger than the attraction between the ions and the electrons.
For the strongly attractive configurations for larger X, the ions
are closer together because the repulsion between the ions is
weaker than the attraction between the ions and the electrons.
For the latter configurations, more energy is required to
dissociate the molecule.

For H2
+, when 	Ie = a0, the potential becomes less

repulsive for small X as 	II increases. However, when 	Ie =
0.5a0, the potential becomes strongly attractive for larger X.

For H2, the potential becomes strongly repulsive for small X
for the linear configuration (g). When 	II = a0 and 	Ie �= a0,
configuration (d) in Fig. 1, the ground-state PES is unbound.
As the electrons are necessarily very close to each other (	ee =
1
3a0) when the molecule is bound, their repulsion forces the
dissociation of the H2 molecule into two isolated stabler H
atoms. For this reason we disregard this configuration from
here on.

In Fig. 3 we compare the H2
+ and H2 optical spectra we

obtain by classically fixing and letting the ions evolve accord-
ing to ED in time from Xeq. Essentially, including the classical
movement of the ions hardly changes the spectra. However,
new peaks appear before the first electronic excitation for both
the H2

+ and the H2 molecule, at 1 and 12 eV, respectively. For
H2

+, the new peak corresponds to the frequency of the ionic
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FIG. 3. (Color online) Optical spectra for the (a) H2
+ and (b) H2

molecules obtained by classically fixing the ions to their equilibrium
positions (BOA) and evolving the ions (ED) for masses MH and
Mp × 104 with minimum ionic separations (a) 	II = a0 and (b) 	II =
	ee = √

2a0 and electron-ion separations (a), (b) 	Ie = a0 shown as
insets. Evolution of the difference in dipole moment 	d between ED
for MH and BOA in millidebye is shown as an inset of (a).

zero-point motion around Xeq, which vanishes for large masses
(Mp × 104) because heavy ions hardly move around Xeq. On
the other hand, H2’s higher energy peak does not vanish for
large M . Due to its width, the ED and fixed ion spectra do
not overlap completely. We explain the origin of this peak in
Sec. IV C.

The inset of Fig. 3(a) illustrates the time-dependent effects
of zero-point motion. In the BOA the ionic center of mass
XCM1 is fixed, so the electron can only oscillate about it. ED
(and QMI), however, allow ionic motion as long as the global
center of mass XCM2 is conserved. The increasing difference
	d between the ED and the BOA dipole moments thus
demonstrates the ions’ movement, e.g., 	d(24 fs) ∼ 0.7 mD.

In Fig. 4, we show how a quantum-mechanical treatment
of the ions (QMI) affects the optical absorption spectra for
H2

+ and H2 molecules in the configurations of 	II , 	ee, and
	Ie shown in Fig. 1. We see that new features emerge in
the spectra when the ions are treated quantum mechanically
instead of classically. The peaks are broadened and become
asymmetric and their amplitudes and energies change as a
function of the initial configuration and charge of the molecule.
In particular, comparing the BOA and QMI spectra shown
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FIG. 4. (Color online) Absorption spectra obtained from a clas-
sical BOA (dashed lines) or quantum-mechanical QMI (solid lines)
treatment of the ions of an (a)–(d) H2

+ molecule with config-
urations (a) 	II = 1

2 a0; 	Ie = a0 (green), (b) 	II = 2a0; 	Ie = a0

(blue), (c) 	II = a0; 	Ie = a0 (red), and (d) 	II = a0; 	Ie = 1
2 a0

(orange) or an (e)–(h) H2 molecule with configurations (e) 	II =
a0; 	Ie = a0; 	ee = 1

3 a0 (violet), (f) 	II = √
2a0; 	Ie = a0; 	ee =√

2a0 (blue), (g) 	II = √
3a0; 	Ie = a0; 	ee = a0 (red), and (h)

	II = 1
3 a0; 	Ie = 1

3 , 2
3 a0; 	ee = a0 (green) shown as insets. Dotted

vertical lines denote the energies εi of the unoccupied electronic levels
ϕ

Xeq
i (ξ ) relative to the ground-state energy ε0 for each configuration

at Xeq.

in Fig. 4, we find that each peak splits into a lower and a
higher energy contribution. Depending on the energy shift and
amplitude of each contribution, these can appear as separate
peaks or shoulders in the spectra. The shoulders are giving
rise to an asymmetry that can be seen for almost every peak.
These quantum features are not as strong for the neutral
H2 homonuclear diatomic molecule, regardless of the initial
configuration. With a classical description of the ions, we do
not obtain these quantum-mechanical features in the optical
spectra.

Generally, we find treating the ions quantum mechanically
substantially affects both the peak positions and the widths
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in the absorption spectra for most of the configurations
considered. For interionic potentials which are less repulsive
[Figs. 4(b) and 4(e)], the line shape of the QMI peaks is
narrowed and approaches the fixed ion at the Xeq limit.
For potentials which are attractive for larger X [Figs. 4(d)
and 4(f)], all the QMI peaks are blue shifted with respect to
the fixed-ion at Xeq spectra. In this case, the peak excitation
energies are larger because more energy is required to excite
these transitions.

B. Mass dependency

To provide a quantitative analysis of the differences
between a classical (BOA/ED) or quantum (QMI) treatment
of the ions, we compare the total ground-state energies and the
peak positions and widths in the absorption spectra as we vary
the ionic mass over seven orders of magnitude.

The accuracy of the static BOA and ED calculations can
be understood from a perturbation theory argument in terms
of the small parameter κ = (me/M)

1
4 , defined as the ratio

between the ionic and the electronic displacement [30], where
X = Xeq + κζ . We illustrate this in detail in Appendix B.

To test the accuracy of the BOA and ED approximations,
we first compare the BOA and ED ground-state electron-ion
eigenvalues to those obtained from QMI. We expect that the
BOA and ED should be accurate around the minimum of the
ground-state PES, as the exact eigenvalues of the electron-ion
problem can be interpreted in terms of the ionic vibrational
levels for the electronic ground-state PES. As discussed in
Sec. III A, the ionic contribution comes from the ground-state
level of a quantum harmonic oscillator where the mass is
included via ωI .

The ground-state electron-ion eigenvalue for H2
+ and H2

molecules whose motion is confined in one direction is given
by

εBOA
gs ≈ ε(0) + ε(2)(κ2) + O(κ4), (46)

where ε(0) and ε(2) correspond to the electronic and ionic
motion eigenvalues and ε(1) and ε(3) are equal to zero by
symmetry (see Appendix B). The first-order correction to the
ground-state energy for the full electron-ion problem using the
BOA/ED is the term of fourth-order in κ .

TABLE II. M2
+ ground-state eigenvalues obtained from diago-

nalization of the QMI approach εQMI
gs and ground-state harmonic BOA

and ED εBOA/ED
gs eigenvalues obtained from a harmonic fit around the

minimum of the ground-state PES. We show these results for different
ionic masses M and 	II = 	Ie = a0.

M εQMI
gs (eV) εBOA/ED

gs (eV) me

M

μ −21.703 395 −21.697 297 0.004 836
H −21.970 225 −21.969 323 0.000 545
D −22.009 642 −22.009 272 0.000 272
T −22.027 041 −22.026 787 0.000 182
Li −22.053 541 −22.053 420 0.000 079
Na −22.076 626 −22.076 580 0.000 023
K −22.083 189 −22.083 160 0.000 014

TABLE III. M2 ground-state eigenvalues obtained by electron-ion
QMI diagonalization εQMI

gs and ground-state harmonic BOA and ED
εBOA/ED

gs vibration levels obtained from a harmonic fit around the
minimum of the ground-state PES. We show these results for different
electron-ion mass ratios me

M
and 	II = √

2a0 and 	Ie = a0.

M εQMI
gs (eV) εBOA/ED

gs (eV) me

M

μ −45.621 166 −45.440 564 0.004 836
H −45.739 425 −45.722 955 0.000 545
D −45.772 460 −45.763 130 0.000 272
T −45.786 936 −45.779 126 0.000 182
Li −45.810 176 −45.807 442 0.000 079
Na −45.831 319 −45.830 529 0.000 023
K −45.837 552 −45.837 070 0.000 014

To check the dependence of the static ground-state eigen-
value accuracy of the BOA and ED approaches, on the
electron-ion mass ratio, we use the following power-law
relation

εBOA/ED
gs − εQMI

gs ≈ aκ4b = a

(
me

M

)b

. (47)

Note that most of the molecules used in this analysis are
fictitious because we do not change the charge of the ions
as explained in Sec. II D, except for H, D, and T, as these have
a positive electric charge of e.

Fitting the ground-state error from Eq. (47) to the data
in Tables II and III, we obtain a power law of b ≈ 0.92(2)
and b ≈ 1.05(2) for the BOA/ED approaches, as shown in
Fig. 5. This means the BOA and ED energy expression gives
the correct total ground-state energy of the full electron-ion
problem up to fourth order in κ .

In Figs. 6 and 7 we show how the absorption spectra
depends on the mass for the H2

+ and H2 configurations
for which the overall PES shape is closest to that from the
3D treatment in Ref. [28]. Specifically, we analyze the H2

+
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FIG. 5. (Color online) The difference in ground-state total energy
between QMI and BOA/ED approaches 	εgs in eV versus the
electron-ion mass ratio me/M for H2

+ (	II = 	Ie = a0; ) and
H2 (	II = 	ee = √

2a0 and 	Ie = a0; ). Solid lines are a power-law
fit a (me/M)b.
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FIG. 6. (Color online) QMI electron-ion absorption spectra for a
positively charged homonuclear diatomic molecule with ionic mass
M of e, μ, H, D, T, Li, Na, K, or 104 p in the configuration (a) 	II =
1
2 a0; 	Ie = a0 or (b) 	II = 	Ie = a0. Dotted vertical lines denote the

energies εi of the unoccupied electronic levels ϕ
Xeq
i (ξ ) (shown in blue

as insets) relative to the energy ε0 of the ground-state electronic level
ϕ

Xeq
0 (ξ ) (shown in green as insets) for each configuration. Note that

the spectra have been scaled with decreasing mass for clarity. Portions
of (b) have been adapted from Ref. [31].

configurations shown in Figs. 1(b) and 1(c), and the H2

configuration shown in Fig. 1(g).
In Fig. 6(b) we see that in the large mass limit (M ≈ 104 ×

Mp), the QMI spectra exhibits even to odd transitions which
are allowed by the symmetry of the electronic wave functions
ϕi(ξ ), shown as insets. For every allowed transition in Figs. 6
and 7, we have a redshifted and a blueshifted contribution.

The position of the first, second, and fourth peaks in
Figs. 6(a) and 6(b) (ω1, ω2, and ω4) are redshifted and the
third and fifth peaks (ω3 and ω5) are blueshifted with respect
to the fixed-ion at Xeq spectra. As the mass increases, all peaks
tend towards the fixed ion at the Xeq limit. In Fig. 7 all the peaks
are redshifted, although the second peak is also a classical peak
as shown in Fig. 4(h), which disappears for smaller masses.

In Fig. 8, we show the symmetry of the occupied electronic
wave function ϕ0(ξ,x) and the first ten unoccupied electronic
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FIG. 7. (Color online) QMI electron-ion absorption spectra for a
neutral homonuclear diatomic molecule with ionic mass M of H,
D, T, or Li in the configuration 	II = 1

3 a0, 	ee = a0, and 	Ie =
1
3 ; 2

3 a0. Dotted vertical lines denote the energies εi of the unoccupied

electronic levels ϕ
Xeq
i (ξ,x) (shown as insets) relative to the ground-

state energy ε0 for each configuration. Note that the spectra have been
scaled with decreasing mass for clarity.

wave functions ϕi(ξ,x) for H2. Only transitions to unoccupied
electronic wave functions that are even functions of x and odd
functions of ξ should contribute to the absorption spectra by
symmetry, i.e., 〈ϕi(ξ,x)|ξ̂ |ϕ0(ξ,x)〉 > 0. However, Fig. 4(h)
shows there is an absorption peak in the BOA spectra for the
ϕ0 → ϕ3 transition, despite ϕ

Xeq

3 (ξ,x) being an odd function
of x, as shown in Fig. 8. This is because the Hamiltonian for
the configuration 	II = 1

3a0, 	ee = a0, and 	Ie = 1
3 ; 2

3a0 is
not invariant under electron exchange.

From the ED spectra in Fig. 3(b), we also have an additional
peak at a lower energy. When the ions are fixed, this peak is less
intense than when they are allowed to evolve. In this case, the
peaks’ energy is given by the first excited transition (ϕ0 → ϕ1),
as seen from the energy of the vertical dotted frozen-ion lines
in Fig. 4(f). However, the unoccupied wave function ϕ1(ξ,x)
is even with respect to ξ and odd with respect to x, as shown
in Fig. 8. This suggests such a transition should initially be
parity forbidden.

To calculate the dipole moment for H2 and different M ,
we only kick our molecules along ξ , as shown in Sec. III B.

ξ

x

1

6

0

FIG. 8. (Color online) Electronic wave functions ϕ
Xeq
i (ξ,x) for

i = 0, . . . ,10 of an H2 molecule in the configuration 	II =
1
3 a0; 	ee = a0.
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104 p of a positively charged homonuclear diatomic molecule in
the configuration 	II = 	Ie = a0. (Bottom inset) After 20 fs, the
amplitude has decreased by a factor of 106.

When calculating the spectra in the BOA, the ionic coordinate
is frozen at Xeq and cannot evolve in time. The electronic
coordinate x forms part of the integral, but can evolve in time.
When we apply a kick along ξ , the distribution of the charge
in the molecule will change with time. The electrons and ions
will feel the charge distribution of the other particles. Thus,
the electronic coordinate x can evolve in time, although this
effect is not taken into account when the dipole moment is
calculated. Essentially, the (ξ,x) basis is rotated by the kick to
a (ξ ′,x ′) basis.

As ξ is time dependent within ED, the ϕ1(ξ ′,x ′) rotated
basis has a mixture of even and odd components in both x and
ξ , removing the parity constraint on the ϕ0 → ϕ1 transition.

As shown in Fig. 3(b), this extra parity forbidden peak
is not as intense as the other peaks which are allowed by
symmetry. This peak is rather weak because the electrons and
ions are close to each other, but not on the same plane, for the
configuration shown in Fig. 1(i). Additionally, as the ϕ0 → ϕ1

transition is initially forbidden by symmetry for both x and ξ ,
the rotated contribution with even and odd symmetry in x and
ξ is small.

Overall, heavier ions have narrower peaks as we approach
the classical limit. Figure 9 presents this effect in the time
domain. Energy transfer between the excited electrons and
the ionic system is already clearly seen after a few fs. Even
in the large-mass limit (Mp × 104) energy transfer is clearly
evident. Oscillatory behavior, including beat frequencies, is
still present 24 fs after the initial kick.

When the ions evolve quantum mechanically, the electrons
can transfer part of their dipole moment to the ions. The
amplitude of the dipole moment thus decreases at different
rates depending on the ionic mass. This process will take longer
as the mass of the ions increases and it becomes more difficult
to displace the ions. For very large ion masses, the interaction
with the electronic motion becomes nearly elastic. This allows
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Gaussian fit

FIG. 10. (Color online) QMI electron-ion absorption spectra for
an H2

+ molecule in the configuration 	II = 	Ie = a0 obtained with
(red solid lines) and without (green dashed lines) imposing symmetry
in X on the ionic wave functions. Lorentzian (blue dotted lines) and
Gaussian (black solid line) fits to the first three peaks of the spectra
are also provided.

the electrons to oscillate back and forth without the influence
of any external ionic displacements. Since the widths of the
absorption peaks are proportional to the energy transfer from
the electrons to the ions, we expect the widths to scale as
the electron-ion mass ratio to the one-fourth, as discussed in
Sec. II B and Appendix B.

C. Spectral line shape

To quantify the width and energy of the peaks in the spectra,
we have employed both Gaussian,

3∑
i=1

Iie
− (ω−ωi )2

2σ2
i , (48)

and Lorentzian,
3∑

i=1

Ii

(�i/2)2

(ω − ωi)2 + (�i/2)2
, (49)

functions. Here Ii is the intensity, ωi the position, σi the
standard deviation, and �i the full width at half maximum
of the first three peaks of the QMI spectra.

From Fig. 10, in which we show the QMI spectra for H2
+,

we clearly see that the tails of the peaks of the QMI spectra
are Gaussian. Moreover, the three peaks can only be fitted
simultaneously with Gaussian functions, as the Lorentzian fit
to the first peak decays so slowly that the second and third
peaks are completely obscured. Furthermore, the ionic wave
packet on the ground-state PES is a solution of a harmonic
eigenvalue problem and thus should have a Gaussian line
shape. This means the spectral line shape arises from the shape
of the PES, rather than the coupling between ionic vibrations
of the molecule.

Note that the width of the fixed ion at Xeq spectra in
Fig. 3 is due to the artificial damping introduced in the
spectra. The electronic transitions should be δ-like functions,
but are convoluted with a Gaussian function to plot the spectra
[see Eqs. (43) and (44)]. However, the widths in the QMI
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FIG. 11. (Color online) Two-level model fits to the first four peaks in the QMI electron-ion absorption spectra ωi for a positively charged
diatomic molecule with ionic mass M in the configuration 	Ie = a0 and 	II = 1

2 a0 ( ) or 	II = a0 ( ). Level coupling has the form α(me/M)
1
4 ,

and the decoupled levels are obtained from the ground-state electronic eigenenergies εi . Gray regions denote a ±0.1-eV estimated accuracy.

spectra are physical, and the Gaussian line shape is due to the
electron-electron coupling via the ionic displacements.

To ensure that the optical spectra we obtain are only affected
by the external perturbation K , we have used a symmetrized
initial wave function

ψsymm(X,ξ ) = ψ(X,ξ ) + ψ(−X,ξ )√
2

. (50)

Thus, we always excite from a ground state which is symmetric
in the ionic coordinate. In Fig. 10, we show that symmetrizing
the wave function does not change the calculated optical
absorption spectrum. This means that we already obtain a
nearly symmetric ground-state starting configuration from the
stationary Schrödinger equation (9). However, the data shown
in Fig. 6(b) have been symmetrized for every M .

D. Model

To explain why a quantum treatment of the ions has such a
strong effect on the absorption spectra for H2

+, we propose a
simple two-level model. Using this model, we show how the
observed QMI spectral peaks and widths can be extracted from
the electronic BOA eigenenergies εi at equilibrium Xeq of the
ground state through the electron-ion mass ratio me/M .

When an external kick is applied, a charge separation is
induced in the molecule, which will oscillate back and forth
with time. As discussed in Sec. III B, the applied kick is simply
a transformation of the ground-state wave functions, through
the application of a phase factor e−iKξ , to eigenstates of the
system with momentum K along the direction of motion. This
leads to a transition dipole moment between an initial and a
final electronic state.

The electronic wave functions with even indices ϕ2i are
even functions of ξ , while the electronic wave functions with
odd indices ϕ2i+1 are odd functions of ξ . This parity of the
electronic wave functions means that the transition dipole
moment is zero for transitions from the ground state to even
unoccupied states, i.e., 〈ϕ2i+2|ξ̂ |ϕ0〉 = 0. Essentially, optical
transitions ϕ0 → ϕ2i+2 are forbidden as long as ϕ2i+2 is an
even function of ξ .

This is the case when the ions are treated classically. In fact,
Figs. 4(a)–4(d) clearly show that the peaks in the absorption
spectra obtained from a classical BOA treatment are always
aligned with the energies of odd-parity unoccupied electronic
levels ε2i+1, i.e., the Franck-Condon transitions ϕ0 → ϕ2i+1.

When the ions are treated quantum mechanically, every
allowed transition is split into redshifted and blueshifted
contributions, with the shifts increasing as the mass decreases.
The level splitting we observe in Fig. 6 is reminiscent of level
hybridization.

This motivates us to employ a simple two-level
model [32,33] to describe the energies and widths of the QMI
peaks.

To do so, for each odd-parity unoccupied electronic level
ϕ2i+1 at ε2i+1, we artificially introduce a level at ε̃2i+1 to which
it couples.

As mentioned in Sec. II B and Appendix B, the ratio
between the vibrational and electronic energies, Evib/Eelec,
scales as the square of the ratio between the ionic and electronic
displacement (δ/a0)2 [30]. This means the ionic displacement
scales as the electron-ion mass ratio to the one-fourth, δ ≈
(me/M)

1
4 . Since the probability of coupling is directly related

to the quantum-ionic displacement, we expect the coupling
between the energy levels to scale as δ ≈ (me/M)

1
4 . Further,

the width of the peaks in the absorption spectra should also
be related to the ionic displacement. We thus assume that the
coupling between the energy levels is proportional to the ionic
displacement δ ∼ M− 1

4 , i.e., αM− 1
4 , where α is the constant

of proportionality.
The resulting two-level Hamiltonian[

ε2i+1
α

M
1/4

α

M
1/4

ε̃2i+1

]
has a solution for the ε2i+1 allowed peak’s energy of

ω2i,2i+1 ≈ ε2i+1 + ε̃2i+1

2
−

√(
ε2i+1 − ε̃2i+1

2

)2

+
(

α

M
1
4

)2

.

(51)
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FIG. 12. (Color online) Two-level model fits to the first three
peaks in the QMI electron-ion absorption spectra ωi for a neutral
diatomic molecule with ionic mass M in the configuration 	Ie =
1
3 ; 2

3 a0, 	II = 1
3 a0, and 	ee = a0 ( ). Level coupling has the form

α(me/M)
1
4 , and the decoupled levels are obtained from the ground-

state electronic eigenenergies εi . Gray regions denote a ±0.1-eV
estimated accuracy.

This two-level model yields two peaks that are lower
and higher in energy, through level repulsion. As the mass
decreases, ionic displacements become larger. This leads to a
greater coupling. The coupling between the energy levels will
be larger when the mass decreases and the energy separation
between the two coupling energy levels will also increase.

In Figs. 11 and 12 we use the two-level model to fit the
calculated QMI peaks for various ionic masses M . Specifically,
we employ Eq. (51) to fit ω1, ω2, and ω3 for H2

+ and H2. In
general, the calculated peak positions are within 0.1 eV of
the two-level model fit, which is also the expected accuracy
of such calculations. In each case, we find the coupling
between the transitions has a constant of proportionality of
α ≈ 11 eV. Furthermore, the artificial level ε̃3 ≈ 23.5 eV for
both configurations of H2

+.
For H2

+, we find the first peak depends on M− 1
2 , since

α2/M
1
2 � ε̃1 − ε1 ≈ 9.7 eV. In other words,

ω1 ≈ ε1 − α2/M
1
2

ε̃1 − ε1
, (52)

where ε̃1 ≈ 20 eV.
For the second and third peaks, as long as ε3 − ε̃3 �

2α/M
1
4 , we may further approximate the peaks by

ω2,3 ≈ ε3 + ε̃3

2
±

[
α

M
1
4

+ (ε3 − ε̃3)2M
1
4

8α

]

≈ ε3 + ε̃3

2
± α

M
1
4

. (53)

As we see in Fig. 11, this is indeed the case for the second and
third peaks in the absorption spectra, ω2 and ω3, of H2

+ in the
configuration 	Ie = a0 and 	II = 1

2a0, as ε3 − ε̃3 ≈ 0.4 eV.
Essentially, all the peak positions in the QMI spectra are fit

using only two parameters, the artificial level’s energy ε̃2i+1,
and the coupling constant α. However, we are not always
able to decouple the two peaks’ redshifted and blueshifted
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FIG. 13. (Color online) Full width at half maximum (FWHM) of
the Gaussian fits (FWHM = 2

√
2σi) to the first and third peaks of

the absorption spectra for a positively charged homonuclear diatomic
molecule with ionic mass M of μ, H, D, T, Li, Na, or K versus
the fourth root of the electron-ion mass ratio (me/M)

1
4 in the

configuration 	Ie = a0 and 	II = 1
2 a0 ( ) or 	II = a0 ( ). Black

lines are linear fits to each peak for both configurations. Gray regions
denote a ±0.1-eV estimated accuracy.

contributions because of their overlap due to their finite width.
This is particularly true for H2. As a result, we have fewer
data points for the H2 peaks, as shown in Fig. 12, reducing the
reliability of the fit to Eq. (51).

In Fig. 13, we also show that the width of the first and third
peaks for the configurations shown in Figs. 1(b) and 1(c) scale
as the electron-ion mass ratio to the one-fourth, i.e., FWHM ≈
(me/M)

1
4 , as expected from our model. The FWHM for the

first peak has a larger constant of proportionality than the
third peak, but the widths for both configurations may be fit
simultaneously. Altogether, this demonstrates the predictive
power of the simple two-level model for describing the QMI
spectra as a function of the ionic mass.

V. CONCLUSIONS

We have shown that additional features may appear in
the linear response spectra of charged H2

+ and neutral H2

homonuclear diatomic molecules when the ionic motion is
described quantum mechanically. Such features are strongly
dependent on the molecules’ configuration, i.e., the shape
of the PES. The widely used classical ionic motion BOA
and ED approaches fail to describe such features. We also
demonstrate that these features may be understood using a
predictive two-level model. These results demonstrate how,
for light atoms, the quantum nature of the ions may play an
important role when describing absorption processes.
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APPENDIX A: CENTER-OF-MASS TRANSFORMATION

Here we present in detail the coordinate transformations
applied in our description of a homonuclear diatomic molecule
whose electronic and ionic motion has been confined to one
direction. First, we perform a center-of-mass transformation
of the two ionic coordinates X1 and X2

XCM1 = X1 + X2

2
; VCM1 = V1 + V2

2
,

X = X2 − X1; VX = V2 − V1, (A1)

where XCM1 is the center-of-mass coordinate of the ions and
X is the distance between the ions. Here the velocities are the
time derivatives of the positions.

1. Positively charged homonuclear diatomic molecule

For a positively charged homonuclear diatomic molecule
with one electron, the electronic coordinate and velocity are
simply

x = x1; v = v1. (A2)

Next we perform a global center-of-mass transformation of the
center of ionic mass and electronic coordinates XCM1 and x,
keeping the ionic separation X fixed,

XCM2 = 2MXCM1 + x

2M + 1
; VCM2 = 2MVCM1 + v

2M + 1
,

ξ = x − XCM1 ; Vξ = v − VCM1 , (A3)

where XCM2 is the global center-of-mass coordinate and ξ is
the distance between the electron x and the ionic center of
mass XCM1 . Here the velocities are the time derivatives of the
positions.

By substituting Eqs. (A1), (A2), and (A3) into Eq. (22),
we obtain for the classical energy of a positively charged
homonuclear diatomic molecule

E = 1

2
(2M + 1)V 2

CM2
+ 1

2
μpV 2

X + 1

2
μeV

2
ξ

− 1√(
X
2 + ξ

)2 + 	2
Ie

− 1√(
X
2 − ξ

)2 + 	2
Ie

+ 1√
X2 + 	2

II

,

(A4)

where μe is the reduced mass of the two ions plus electron
system and μI is the reduced mass of the two ions,

μe = 2M

2M + 1
; μI = M

2
. (A5)

If we rewrite Eq. (A4) in terms of the momenta given by

P̂XCM2
= (2M + 1)VCM2 = −i

∂

∂XCM2

,

P̂X = μIVX = −i
∂

∂X
, (A6)

P̂ξ = μeVξ = −i
∂

∂ξ
,

we obtain the two-body Hamiltonian in Eq. (24).

2. Neutral homonuclear diatomic molecule

For a neutral homonuclear diatomic molecule with two
electrons, we also perform a center-of-mass transformation
of the two electronic coordinates x1 and x2,

xCM1 = x1 + x2

2
; vCM1 = v1 + v2

2
,

x = x2 − x1; v = v2 − v1,

(A7)

where xCM1 is the center-of-mass coordinate of the electrons
and x is the distance between the electrons. Here the velocities
are the time derivatives of the positions.

We now perform a global center-of-mass transformation
of the two ionic and electronic center of mass coordinates
coordinates XCM1 and xCM1 , keeping the ionic and electronic
separations X and x fixed,

XCM2 = 2MXCM1 + 2xCM1

2M + 2
; VCM2 = 2MVCM1 + 2vCM1

2M + 2
,

ξ = xCM1 − XCM1 ; Vξ = vCM1 − VCM1 , (A8)

where XCM2 is the global center-of-mass coordinate and ξ is
the distance between XCM1 and xCM1 . Here the velocities are
the time derivatives of the positions.

By substituting Eqs. (A1), (A7), and (A8) into Eq. (23),
we obtain for the classical energy of a neutral homonuclear
diatomic molecule,

E = 1

2
(2M + 2)V 2

CM2
+ 1

2
μIV

2
X + 1

2
μeIV

2
ξ + 1

2
μ̃ev

2

− 1√(
X
2 − x

2 + ξ
)2 + 	2

Ie

− 1√(
X
2 − x

2 − ξ
)2 + 	2

Ie

− 1√(
X
2 + x

2 + ξ
)2 + 	2

Ie

− 1√(
X
2 + x

2 − ξ
)2 + 	2

Ie

+ 1√
X2 + 	2

II

+ 1√
x2 + 	2

ee

, (A9)

where μI is the reduced mass of the two ions, μeI is the
reduced mass of the two ions plus two electron system, and μ̃e

is the reduced mass of the two electrons,

μI = M

2
; μeI = 2M

1 + M
; μ̃e = 1

2
. (A10)
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If we rewrite Eq. (A9) in terms of the momenta given by

P̂XCM2
= (2M + 2)VCM2 = −i

∂

∂XCM2

,

P̂X = μIVX = −i
∂

∂X
,

P̂ξ = μeIVξ = −i
∂

∂ξ
,

P̂x = μ̃ev = −i
∂

∂x
,

(A11)

we obtain the three-body Hamiltonian (X,x,ξ ) in Eq. (25).

APPENDIX B: ACCURACY OF THE BOA

Here we provide a detailed analysis of the accuracy of the
BOA [19] for the case of a homonuclear diatomic molecule
whose electronic and ionic motion is confined to one direction.
In general, the ratio of vibrational to electronic energies, Evib

to Eelec, depends on the electron-ion mass ratio me/M as [34]

Evib

Eelec
≈

√
me

M
≈ δ2

a2
0

, (B1)

where δ is the length scale of vibrational motion, and a0 is
the length scale of electronic motion, i.e., the Bohr radius.
This means the ratio of ionic to electronic motion is of the
order δ/a0 ≈ (me/M)

1
4 . With this in mind, we may expand the

Hamiltonian in Eq. (25) as a function of the small parameter
κ ≡ (me/M)

1
4 [30] to third order as follows:

Ĥ (Xeq + κζ,x,ξ )

≈ − 1

2μ̃e

∂2

∂x2
− 1

2μep

∂2

∂ξ 2
+ V (Xeq,x,ξ )

+ κ
∂

∂X
V (X,x,ξ )

∣∣∣∣
X=Xeq

ζ

− κ2 ∂2

∂ζ 2
+ 1

2!
κ2 ∂2

∂X2
V (X,x,ξ )

∣∣∣∣
X=Xeq

ζ 2

+ 1

3!
κ3 ∂3

∂X3
V (X,x,ξ )

∣∣∣∣
X=Xeq

ζ 3 + O(κ4). (B2)

Sorting the Hamiltonian in different powers of κ , i.e.,

Ĥ (Xeq + κζ,x,ξ ) ≈ Ĥ (0) + κĤ (1) + κ2Ĥ (2) + κ3Ĥ (3),

(B3)

we obtain

Ĥ (0) = − 1

2μ̃e

∂2

∂x2
− 1

2μep

∂2

∂ξ 2
+ V (Xeq,x,ξ ),

Ĥ (1) = ∂

∂X
V (X,x,ξ )

∣∣∣∣
X=Xeq

ζ,

Ĥ (2) = − ∂2

∂ζ 2
+ 1

2!

∂2

∂X2
V (X,x,ξ )

∣∣∣∣
X=Xeq

ζ 2,

Ĥ (3) = 1

3!

∂3

∂X3
V (X,x,ξ )

∣∣∣∣
X=Xeq

ζ 3.

(B4)

Expanding the time-independent Schrödinger equation (9)
in powers of κ to the third order, we obtain

3∑
n=0

(κnĤ (n))[κnψ (n)] =
3∑

n=0

(κnε(n))[κnψ (n)]. (B5)

Decomposing Eq. (B5) in terms of κ , we find

O(κ0) : Ĥ (0)|ψ (0)〉 = ε(0)|ψ (0)〉, (B6)

O(κ1) : Ĥ (0)|ψ (1)〉 + Ĥ (1)|ψ (0)〉 = ε(0)|ψ (1)〉 + ε(1)|ψ (0)〉,
(B7)

O(κ2) : Ĥ (0)|ψ (2)〉 + Ĥ (1)|ψ (1)〉 + Ĥ (2)|ψ (0)〉
= ε(0)|ψ (2)〉 + ε(1)|ψ (1)〉 + ε(2)|ψ (0)〉, (B8)

O(κ3) : Ĥ (0)|ψ (3)〉 + Ĥ (1)|ψ (2)〉 + Ĥ (2)|ψ (1)〉 + Ĥ (3)|ψ (0)〉
= ε(0)|ψ (3)〉 + ε(1)|ψ (2)〉 + ε(2)|ψ (1)〉 + ε(3)|ψ (0)〉.

(B9)

Ĥ (0) is the electronic frozen-ion Hamiltonian at Xeq and
ε(0) is the zeroth-order eigenvalue which corresponds to the
electronic motion. Therefore, we choose the zeroth-order wave
function as

ψ (0)(Xeq,ξ,ζ ) = χ (ζ )ϕ(0)(Xeq,ξ ), (B10)

where ϕ(0) is the electronic ground-state wave function of Ĥ (0)

and χ (ζ ) is the ionic wave function which will be specified
later.

Based on Eqs. (B7) and (B10) and the Hellmann-Feynman
theorem, ε(1) vanishes. This is because the first derivative with
respect to the eigenvalue ε(0) at Xeq is zero. More explicitly,

ε(1) = 〈ψ (0)|Ĥ (1)|ψ (0)〉

= 〈ϕ(0)| ∂

∂X
V (X,ξ )|X=Xeq |ϕ(0)〉〈χ |ζ |χ〉

= ∂

∂X
ε(0)(X)

∣∣∣∣
X=Xeq

〈χ |ζ |χ〉 = 0. (B11)

From Eq. (B8) we obtain the second-order correction to the
energy,

ε(2) = 〈ψ (0)|Ĥ (2)|ψ (0)〉 + 〈ψ (0)|Ĥ (1)|ψ (1)〉

= 〈χ | − ∂2

∂ζ 2
|χ〉

+ 〈ϕ(0)| 1

2!

∂2

∂X2
V (X,x,ξ )

∣∣∣∣
X=Xeq

|ϕ(0)〉〈χ |ζ 2|χ〉

−
∑
n>0

∣∣〈ϕ(0)
n

∣∣ ∂
∂X

V (X,x,ξ )
∣∣
X=Xeq

∣∣ϕ(0)
0

〉∣∣2

ε
(0)
n − ε

(0)
0

〈χ |ζ 2|χ〉,

(B12)
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where the first-order correction to the wave function is obtained from Eqs. (B7) and (B10):

|ψ (1)〉 = −
∑
n>0

〈
ψ (0)

n

∣∣Ĥ (1)
∣∣ψ (0)

0

〉
ε

(0)
n − ε

(0)
0

∣∣ψ (0)
n

〉 = −
∑
n>0

〈
ψ (0)

n

∣∣ ∂
∂X

V (X,x,ξ )
∣∣
X=Xeq

|ϕ(0)〉ζ |χ〉
ε

(0)
n − ε

(0)
0

∣∣ψ (0)
n

〉
. (B13)

Here ε(0)
n and |ψ (0)

n 〉 are the nth electronic eigenvalue and eigenstate of the Hamiltonian Ĥ (0).
We now choose χ (ζ ) [see Eq. (B10)] to be the lowest eigenfunction of the harmonic oscillator problem. We can then express

ε(2) in the form

ε(2) = 〈χ | − ∂2

∂ζ 2
|χ〉 + 1

2!
k1〈χ |ζ 2|χ〉 = 1

2
ωI , (B14)

where

k1 = 〈ϕ(0)| ∂2

∂X2
V (X,x,ξ )

∣∣∣∣
X=Xeq

|ϕ(0)〉 − 2
∑
n>0

∣∣〈ϕ(0)
n

∣∣ ∂
∂X

V (X,x,ξ )
∣∣
X=Xeq

∣∣ϕ(0)
0

〉∣∣2

ε
(0)
n − ε

(0)
0

(B15)

is the harmonic oscillator constant. Second-order corrections to the energy thus correspond to the ionic vibrations.
Finally, from Eqs. (B9), (B10), and (B13) we obtain for the third-order correction to the energy,

ε(3) = 〈ψ (0)|Ĥ (1)|ψ (2)〉 + 〈ψ (0)|Ĥ (2)|ψ (1)〉 + 〈ψ (0)|Ĥ (3)|ψ (0)〉 = 〈ϕ(0)| ∂

∂X
V (X,x,ξ )

∣∣∣∣
X=Xeq

|ϕ(2)〉〈χ |ζ 2|χ〉 − 〈χ | ∂2

∂ζ 2
|χ〉

+ 〈ϕ(0)| 1

2!

∂2

∂X2
V (X,x,ξ )

∣∣∣∣
X=Xeq

|ϕ(1)〉〈χ |ζ 2|χ〉 + 〈ϕ(0)| 1

3!

∂3

∂X3
V (X,x,ξ )

∣∣∣∣
X=Xeq

|ϕ(0)〉〈χ |ζ 3|χ〉, (B16)

where the second-order correction to the wave function is from Eqs. (B8) and (B13):

∣∣ψ (2)
0

〉 =
∑
n>0

(〈
ψ (0)

n

∣∣Ĥ (1)
∣∣ψ (0)

0

〉
ε

(0)
n − ε

(0)
0

)2 ∣∣ψ (0)
n

〉∣∣ψ (0)
n

〉 + ∑
n>0

〈
ψ (0)

n

∣∣ε(2) − Ĥ (2)
∣∣ψ (0)

0

〉
ε

(0)
n − ε

(0)
0

∣∣ψ (0)
n

〉∣∣ψ (0)
0

〉
. (B17)

All the terms from Eq. (B16) using Eqs. (B13) and (B17) vanish by parity. This is because they are all proportional to
〈ψ (0)|Ĥ (3)|ψ (0)〉, which is zero by parity since Ĥ (3) is odd in ζ and ψ (0) is even in ζ . For this reason ε(3) = 0, and the error in the
BOA ground-state energy, after including the zero-point energy correction, is O(κ4) ∼ me/M , as shown in Fig. 5.

For the neutral homonuclear diatomic molecule we follow the same procedure as above using Eq. (24), so that expanded in
terms of κ gives the Hamiltonian

Ĥ (Xeq + κζ,ξ ) ≈ − 1

2μe

∂2

∂ξ 2
+ V (Xeq,ξ ) + κ

∂

∂X
V (X,ξ )

∣∣∣∣
X=Xeq

ζ − κ2 ∂2

∂ζ 2
+ 1

2!
κ2 ∂2

∂X2
V (X,ξ )

∣∣∣∣
X=Xeq

ζ 2

+ 1

3!
κ3 ∂3

∂X3
V (X,ξ )

∣∣∣∣
X=Xeq

ζ 3 + O(κ4). (B18)

Again, after including zero-point energy corrections, the error in the BOA ground-state energy is O(κ4) ∼ me/M , as shown in
Fig. 5.
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Zherebtsov, I. Znakovskaya, A. L’Huillier, M. Yu. Ivanov, M.
Nisoli, F. Martin, and M. J. J. Vrakking, Electron localiza-
tion following attosecond molecular photoionization, Nature
(London) 465, 763 (2010).

[9] M. Uiberacker, Th. Uphues, M. Schultze, A. J. Verhoef, V.
Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik,
H. Schroder, M. Lezius, K. L. Kompa, H.-G. Muller, M. J.
J. Vrakking, S. Hendel, U. Kleineberg, U. Heinzmann, M.
Drescher, and F. Krausz, Attosecond real-time observation
of electron tunneling in atoms, Nature (London) 446, 627
(2007).

[10] M. Lein, T. Kreibich, E. K. U. Gross, and V. Engel, Strong-field
ionization dynamics of a model H2 molecule, Phys. Rev. A 65,
033403 (2002).

[11] T. Kreibich, M. Lein, V. Engel, and E. K. U. Gross, Even-
harmonic generation due to beyond-Born-Oppenheimer dynam-
ics, Phys. Rev. Lett. 87, 103901 (2001).

[12] A. Abedi, N. T. Maitra, and E. K. U. Gross, Exact factorization of
the time-dependent electron-nuclear wave function, Phys. Rev.
Lett. 105, 123002 (2010).

[13] T. D. G. Walsh, F. A. Ilkov, S. L. Chin, F. Châteauneuf,
T. T. Nguyen-Dang, S. Chelkowski, A. D. Bandrauk, and
O. Atabek, Laser-induced processes during the coulomb ex-
plosion of H2 in a Ti-sapphire laser pulse, Phys. Rev. A 58, 3922
(1998).

[14] S. Chelkowski, T. Zuo, O. Atabek, and A. D. Bandrauk,
Dissociation, ionization, and coulomb explosion of H+

2 in
an intense laser field by numerical integration of the time-
dependent Schrödinger equation, Phys. Rev. A 52, 2977
(1995).

[15] A. D. Bandrauk, S. Chelkowski, S. Kawai, and H. Lu, Effect
of nuclear motion on molecular high-order harmonics and on
generation of attosecond pulses in intense laser pulses, Phys.
Rev. Lett. 101, 153901 (2008).

[16] S. Chelkowski, T. Bredtmann, and A. D. Bandrauk, High-
harmonic generation from a coherent superposition of electronic
states: Controlling interference patterns via short and long
quantum orbits, Phys. Rev. A 88, 033423 (2013).

[17] C. Lefebvre, H. Z. Lu, S. Chelkowski, and A. D. Bandrauk,
Electron-nuclear dynamics of the one-electron nonlinear poly-
atomic molecule H2+

3 in ultrashort intense laser pulses, Phys.
Rev. A 89, 023403 (2014).

[18] A. Crawford-Uranga, Non-adiabatic effects in one-dimensional
one and two electron systems: The cases of the one-dimensional
H+

2 and H2 molecules, Master’s thesis, University of the Basque
Country UPV/EHU, San Sebastián, Spain, 2011, pp. 1–83.

[19] M. Born and R. Oppenheimer, Zur Quantentheorie der
Molekeln, Ann. Phys. 389, 457 (1927) [translated by S. M.
Blinder, On the quantum theory of molecules (1998)].

[20] P. Ehrenfest, Bemerkung über die angenäherte Gültigkeit der
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