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Electron-positron pair creation in low-energy collisions of heavy bare nuclei
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A method for calculations of electron-positron pair-creation probabilities in low-energy heavy-ion collisions
is developed. The approach is based on the propagation of all one-electron states via the numerical solving of
the time-dependent Dirac equation in the monopole approximation. The electron wave functions are represented
as finite sums of basis functions constructed from B-splines using the dual-kinetic-balance technique. The
calculations of the created particle numbers and the positron energy spectra are performed for the collisions of
bare nuclei at the energies near the Coulomb barrier with the Rutherford trajectory and for different values of
the nuclear charge and the impact parameter. To examine the role of the spontaneous pair creation, the collisions
with a modified velocity and with a time delay are also considered. The obtained results are compared with the
previous calculations and the possibility of observation of the spontaneous pair creation is discussed.
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I. INTRODUCTION

The stationary Dirac equation leads to a singularity in the
solution for the ground state of an electron in the field of the
pointlike nucleus with the charge Z > 137. But for an extended
nucleus, the energy of the 1s1/2 state E(Z) goes continuously
beyond the point Z = 137 and reaches the negative-energy
continuum at the critical value ZC ≈ 173 [1–4]. As predicted
independently by Gershtein and Zeldovich [2] and by Pieper
and Greiner [3], if the empty level dives into the negative-
energy continuum, then it turns into a resonance that can lead
to the spontaneous decay of the vacuum via emission of a
positron and occupation of the supercritical K-shell by an
electron. The experimental observation of this effect would
confirm the predictions of quantum electrodynamics in the
highly nonperturbative supercritical domain. Unfortunately,
the charge of the heaviest produced nuclei is far less than the
required one, ZC. However, in the collision of two ions, if their
total charge is sufficiently large, the ground state of the formed
quasimolecular system can become so deeply bound that the
spontaneous pair creation is possible. The most favorable
collision energy for investigation of the supercritical regime
is about the Coulomb barrier [5]. In heavy-ion collisions,
the electron-positron pairs can also be created dynamically
due to the time-dependent potential of the moving ions. In
order to find the signal from the vacuum decay, one needs
to distinguish the spontaneously produced pairs from the
dynamical background.

The experiments for searching the spontaneous pair cre-
ation were performed at GSI (Darmstadt, Germany) using the
collisions of partially stripped ions with neutral atoms, but no
evidence of the vacuum decay was found [6]. It should be
noticed that for studying this phenomenon, the collisions of
bare nuclei would be more favorable due to the empty K-shell.
It is expected that the upcoming Facility for Antiproton
and Ion Research (FAIR) will provide new opportunities for

investigations of low-energy heavy-ion collisions, probably
including the collisions of fully stripped ions [7,8].

To date, a number of approaches to calculations of vari-
ous processes in low-energy heavy-ion collisions have been
proposed [9–25]. In Refs. [9–11], the pair-creation process
was considered in the static approximation, according to
which the corresponding probability is proportional to the
resonance width �(R) which depends on the internuclear
distance R(t). Such an approximation does not take into
account the dynamical effects. A more advanced approach
was based on the propagation of a finite number of initial states
using the time-dependent adiabatic basis set with the Feshbach
projection technique (see Refs. [5,12,13], and references
therein). This method allowed calculations of the pair-creation
probabilities employing small numbers of the basis functions.
However, the small basis size might lead to the low resolution
of the continuum. From the results, which were basically
obtained in the monopole approximation, it was concluded
that the spontaneous contribution is indistinguishable from
the dynamical background in the positron spectra in elastic
collisions, and only in hypothetical collisions with the nuclear
sticking can there be the visible effects of the vacuum
decay [12,13]. Another dynamical approach [15,16] was based
on solving the time-dependent Dirac equation in the monopole
approximation with the mapped Fourier grid method. In
Ref. [16], the pair-creation probabilities were calculated with
propagation of all initial states of a very large basis set,
compared to the previous works, that might improve the
energy resolution of the continuum. For the collisions of
bare uranium nuclei, the results for the positron spectra were
quite different from those in Ref. [13]. The importance of the
dynamical pair-production effects follows also from the recent
perturbative evaluation of Ref. [25].

In the present work, we develop an alternative method for
calculations of the pair-creation probabilities in low-energy
heavy-ion collisions. In this method, the time-dependent Dirac
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equation is solved numerically in the monopole approximation
employing the stationary basis set. The basis functions are
constructed from the B-splines using the dual-kinetic-balance
(DKB) approach [26], which prevents the appearance of
nonphysical spurious states. The DKB B-spline basis set
provides a very accurate representation of the continuum
and previously was successfully used in QED calculations
for the summation over the whole Dirac spectrum (see,
e.g., Refs. [27,28]). All of the eigenvectors of the initial
Hamiltonian matrix are propagated in order to obtain the
one-electron transition amplitudes, which are used to calculate
the particle-production probabilities. The calculations are
performed for the symmetric collisions of bare nuclei with
different values of the nuclear charge at the energy near the
Coulomb barrier.

The paper is organized as follows. The pair-creation process
in a time-dependent external field is briefly discussed in
Sec. II A. The monopole approximation is considered in
Sec. II B. The method for solving the time-dependent Dirac
equation is described in Sec. II C. The obtained results and
their comparison with the previous calculations are presented
in Sec. III.

The relativistic units (� = c = 1) are used throughout the
paper.

II. THEORY

A. Pair creation in external field

In the present work, we take into account the interaction
of electrons with the strong external field nonperturbatively,
but neglect the electron-electron interaction, assuming the
electrons can influence each other only via the Pauli exclusion
principle. The positron states as well as the creation of
electron-positron pairs can be treated within the Dirac original
model where the negative-energy states are considered to
be initially occupied by electrons. The production of an
electron-positron pair appears as a transition of an electron
from the negative-energy continuum to a positive-energy
state, in formal agreement with quantum electrodynamics.
The negative-energy electron states properly transformed
describe the states of positrons, which in the mentioned model
correspond to the holes in the filled lower continuum.

The one-electron dynamics is determined by the time-
dependent Dirac equation,

i
∂ψ(r,t)

∂t
= ĤD(t) ψ(r,t), (1)

where

ĤD(t) = α[ p − eA(t)] + V (t) + meβ, (2)

and the potential [V (t),A(t)] describes the interaction with
the external field. One can define the solutions ψ

(+)
i (r,t) and

ψ
(−)
i (r,t) of Eq. (1) with the following boundary conditions:

ψ
(+)
i (r,tin) = ϕin

i (r), ψ
(−)
i (r,tout) = ϕout

i (r), (3)

ĤD(tin) ϕin
i (r) = εin

i ϕin
i (r), ĤD(tout) ϕout

i (r) = εout
i ϕout

i (r),
(4)

where tin is the initial and tout is the final time moment. In
the final expressions, it will be assumed that tin → −∞ and
tout → ∞.

The formulas for the probabilities of pair creation can be
derived using the second quantization technique [5,29]. In
the Heisenberg picture, one can introduce the time-dependent
field operator �̂(r,t) and the time-independent state vectors
|0,in〉 and |0,out〉, which correspond to the fully occupied
negative-energy continua at tin and tout, respectively. Using the
functions ψ

(+)
i (r,t) and ψ

(−)
i (r,t), the operator �̂(r,t) can be

expanded as

�̂(r,t) =
∑
i>F

b̂
(in)
i ψ

(+)
i (r,t) +

∑
i<F

d̂
(in) †
i ψ

(+)
i (r,t), (5)

�̂(r,t) =
∑
i>F

b̂
(out)
i ψ

(−)
i (r,t) +

∑
i<F

d̂
(out) †
i ψ

(−)
i (r,t). (6)

Here the Fermi level F is the border between the filled
negative-energy states and the vacant positive-energy states
(εF = −me), b̂

(in)
i and b̂

(out)
i are the annihilation operators for

electrons, and d̂
(in) †
i and d̂

(out) †
i are the creation operators for

holes (positrons). They obey the standard anticommutation
relations and their action on the vacuum states is

b̂
(in)
i |0,in〉 = 0, b̂

(out)
i |0,out〉 = 0 for i > F, (7)

and

d̂
(in)
i |0,in〉 = 0, d̂

(out)
i |0,out〉 = 0 for i < F. (8)

It should be noted that these operators refer to the physical
particles only at the corresponding time moments tin and tout.

Since we assume that at the initial time moment tin,
the negative-energy continuum is occupied and all of the
positive-energy states are free, the system is described by
the vector |0,in〉. The operators should correspond to the
particles produced at tout, which is the measurement time. By
employing Eqs. (5) and (6), and the anticommutation relations
between the annihilation and creation operators, one can derive
the following expressions for the numbers of electrons nk

and positrons np created in the states k > F and p < F ,
respectively [5,29]:

nk = 〈0,in|b̂(out) †
k b̂

(out)
k |0,in〉 =

∑
i<F

|aik|2, (9)

np = 〈0,in|d̂ (out) †
p d̂ (out)

p |0,in〉 =
∑
i>F

|aip|2 , (10)

where

aij (t) =
∫

d3r ψ
(−)†
i (r,t) ψ

(+)
j (r,t) = aij (11)

are the one-electron transition amplitudes, which are time
independent because the functions ψ

(+)
i (r,t) and ψ

(−)
i (r,t)

are solutions of Eq. (1). For calculation of nk and np, we use
the finite-basis-set method and, therefore, in Eqs. (9) and (10)
the summation runs over a finite number of states. In order to
obtain aij , the eigenstates ϕin

i (r) of the initial Hamiltonian
Ĥ (tin), including the bound states and the states of both
discretized continua, are evolved to the time tout via solving
the time-dependent Dirac equation and are then projected on
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the eigenstates ϕout
j (r) of the final Hamiltonian Ĥ (tout):

aij =
∫

d3r ϕ
(out)†
i (r) ψ

(+)
j (r,tout). (12)

The total number of created particles is given by

P =
∑
k>F

nk =
∑
p<F

np. (13)

In the discrete basis set, the positron energy spectrum can be
calculated using the Stieltjes method [30],

dP

dE

(
εout
p + εout

p+1

2

)
= 1

2

np+1 + np

εout
p+1 − εout

p

. (14)

B. Monopole approximation

We consider the low-energy collision of two heavy bare
nuclei A and B which move along the classical trajectories. In
the field of the nuclei, the electron dynamics is described by
Eq. (1) with the two-center potential,

V (r,t) = V A
nucl[r − RA(t)] + V B

nucl[r − RB(t)], (15)

where RA and RB denote the nuclear positions and

Vnucl(r) =
∫

d3r ′ ρnucl(r ′)
|r − r ′| . (16)

In this paper, we use the uniformly charged sphere model
for the nuclear charge-density distribution ρnucl(r). The vector
potential A can be neglected due to the low collision energy.

The numerical solving of the time-dependent Dirac equa-
tion with the two-center potential (15) requires very de-
manding three-dimensional calculations. One may expect,
however, that the main contribution to the pair creation results
from the short internuclear distances, where the symmetric
quasimolecular system is well described within the monopole
approximation [12]. In this approximation, only the spherically
symmetric part of the partial expansion of the potential (15) is
taken into account,

Vmon(r,t) = 1

4π

∫
d�V (r,t). (17)

Here we assume that the origin of the coordinate frame is
chosen at the center of mass. For the central field (17), the
Dirac wave function can be written as

ψκm(r,t) =
⎛
⎝

Gκ (r,t)
r

χκm(�)

i Fκ (r,t)
r

χ−κm(�)

⎞
⎠ , (18)

where Gκ (r,t) and Fκ (r,t) are the large and small radial
components, respectively, χκm(�) is the spherical spinor, and
κ = (−1)j+l+1/2(j + 1/2) is the relativistic angular quantum
number. Substituting the expression (18) into the Dirac Eq. (1)
leads to

i
∂

∂t
φ(r,t) = Ĥ (t) φ(r,t), (19)

where

φ(r,t) =
(

G(r,t)
F (r,t)

)
, (20)

and

Ĥ (t) =
⎛
⎝Vmon(r,t) + me − d

dr
+ κ

r

d
dr

+ κ
r

Vmon(r,t) − me

⎞
⎠ (21)

is the radial Dirac Hamiltonian.
For large nuclear separation, the one-electron energy levels

of the monopole Hamiltonian Ĥ (t) are quite different from the
real two-center ones. However, the vacuum state defined with
respect to the instantaneous monopole Hamiltonian at some
large internuclear distance can be considered as the initial state
of the system since, as assumed above, the particles are mainly
produced at short internuclear distances, where the monopole
approximation is valid. The limitation of the employed model
is that we cannot isolate the final population of a particular
one-electron state belonging to one of the nuclei.

C. Dirac equation in a finite basis set

For solving Eq. (19), we employ the time-independent finite
basis set {uk(r)}:

φ(r,t) = Ck(t) uk(r), (22)

iSjk

dCk(t)

dt
= Hjk(t)Ck(t), (23)

where Sjk = 〈uj |uk〉, Hjk(t) = 〈uj |Ĥ (t)|uk〉, and the Hamil-
tonian Ĥ (t) is defined by Eq. (21). Here and below, the
summation over the repeated indices is implied. Equation (23)
is solved using the Crank-Nicolson method [31]. According
to this method, for a short time interval �t , the coefficients
Ck(t + �t) can be found from the system of linear equations[

Sjk + i�t

2
Hjk(t + �t/2)

]
Ck(t + �t)

=
[
Sjk − i�t

2
Hjk(t + �t/2)

]
Ck(t). (24)

We solve the system (24) employing the iterative biconjugate
gradient squared (BiCGS) algorithm [32]. It should be noted
that the Crank-Nicolson method conserves the norm of the
wave function at each time step [21].

In order to obtain the initial states, one can start from the
variational principle

δF = 0, (25)

F = 〈φ|(Ĥ0 − ε)|φ〉, (26)

which is equivalent to the stationary Dirac equation. The
Lagrange multiplier ε corresponds to the energy of an
eigenstate of the instantaneous Hamiltonian Ĥ0 = Ĥ (tin) at
the initial time moment tin. Substituting the expansion (22)
into Eq. (25), one gets the system of equations

dF
dCk

= 0. (27)

This system leads to the generalized eigenvalue problem

HjkCk = εSjkCk, (28)
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which can be solved using the standard numerical routines.
A disadvantage of the straightforward implementation of

the finite-basis-set method is the presence of nonphysical
spurious states for κ > 0. To avoid such states, we employ
the DKB approach [26]. According to this approach, the basis
functions are constructed as

uk(r) =

⎛
⎜⎜⎝

πk(r)

1
2me

(
d
dr

+ κ
r

)
πk(r)

⎞
⎟⎟⎠ , k � n, (29)

uk(r) =

⎛
⎜⎝

1
2me

(
d
dr

− κ
r

)
πk−n(r)

πk−n(r)

⎞
⎟⎠ , k > n, (30)

where 2n is the size of the basis set and πk are linear-
independent functions which are assumed to be square
integrable and satisfy the proper boundary conditions. In
the present work, we have chosen B-splines as πk . The
B-splines of any degree can be easily constructed using the
recursive algorithm [33,34]. With this basis, the Hamiltonian
and overlapping matrices are sparse, which facilitates the
numerical calculations.

III. RESULTS

In this section, we present the results of our calculations
of the pair-creation probabilities in the collisions of two
identical bare nuclei at the energy near the Coulomb barrier.
Unless stated otherwise, the nuclei are assumed to move
along the classical Rutherford trajectories. The nuclear charge
distribution is given by a uniformly charged sphere of radius
Rn = 1.2 × A1/3 fm, where A is the atomic mass number. The
calculations were performed employing the method described
in Sec. II for the states with the relativistic quantum number
κ = −1 and κ = 1. There is no coupling between these sets
in the monopole approximation and they are expected to give
the dominant contribution to the pair creation [12]. We used
410 basis functions constructed from B-splines of ninth order
defined in a box of size L = 105 fm. The B-spline knots were
distributed exponentially in order to better describe the wave
functions in the region of the closest approach of the nuclei.
It was found that this basis set is sufficient to obtain the
convergent results. All of the initial states, including 10 bound,
195 positive-continuum, and 205 negative-continuum ones,
were propagated in order to obtain the one-electron transition
amplitudes. The particle numbers were calculated according
to the formulas (9) and (10) for a fixed projection m of the
total angular momentum j = 1/2 and were then doubled in
order to take into account the contributions of channels with
both values of m.

In Fig. 1, we present the obtained positron energy spectra
for the U−U collision for the different values of the impact
parameter b at kinetic energy Ecm = 740 MeV in the center-of-
mass frame. These results are very similar to those presented
in Ref. [13]. The collisions with b = 30 and b = 40 fm
are subcritical, and with b � 25 fm, they are supercritical.
However, the calculated positron spectra do not exhibit any
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FIG. 1. (Color online) Positron energy spectrum for the U − U
collision at energy Ecm = 740 MeV for the different values of the
impact parameter b.

qualitative difference between the subcritical and supercritical
regimes.

In Table I, the obtained numbers of created pairs for
the U−U collision at Ecm = 740 and Ecm = 680 MeV are
presented and compared with the corresponding values from
Ref. [13]. The results are in good agreement with each other,
but in our case the contribution of pairs with a free electron is
relatively larger. This can be due to a more dense representation
of the continuum states in our calculations. Nevertheless, as
one can see from Table I, the created electrons are mainly
captured into the bound states.

In order to study possible evidences of the spontaneous pair
creation, we considered the collisions of nuclei with different
charge Z. Figure 2 shows the obtained positron spectra for
the Fr−Fr (Z = 87), U−U (Z = 92), and Db−Db (Z = 105)
head-on collisions at Ecm = 674.5, 740, and 928.4 MeV,
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FIG. 2. (Color online) Positron energy spectrum for the Fr−Fr,
U−U, and Db−Db head-on collisions at energies 674.5, 740, and
928.4 MeV, respectively.
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TABLE I. Number of created pairs in the U−U collision at energy Ecm as a function of the impact parameter b. Pt is the total number of
pairs and Pb is the number of pairs with an electron captured into a bound state.

Müller et al. [13] This work

Ecm (MeV) b (fm) Pb Pt Pb Pt

740 0 1.23 × 10−2 1.26 × 10−2 1.25 × 10−2 1.29 × 10−2

5 1.04 × 10−2 1.06 × 10−2 1.05 × 10−2 1.08 × 10−2

10 7.04 × 10−3 7.15 × 10−3 7.03 × 10−3 7.26 × 10−3

15 4.41 × 10−3 4.47 × 10−3 4.39 × 10−3 4.51 × 10−3

20 2.71 × 10−3 2.73 × 10−3 2.70 × 10−3 2.75 × 10−3

25 1.67 × 10−3 1.68 × 10−3 1.66 × 10−3 1.69 × 10−3

30 1.04 × 10−3 1.04 × 10−3 1.03 × 10−3 1.04 × 10−3

40 4.11 × 10−4 4.11 × 10−4 4.09 × 10−4 4.12 × 10−4

680 0 1.04 × 10−2 1.06 × 10−2 1.05 × 10−2 1.07 × 10−2

5 8.86 × 10−3 8.97 × 10−3 8.87 × 10−3 9.10 × 10−3

10 6.05 × 10−3 6.12 × 10−3 6.03 × 10−3 6.17 × 10−3

15 3.80 × 10−3 3.83 × 10−3 3.78 × 10−3 3.85 × 10−3

20 2.33 × 10−3 2.34 × 10−3 2.32 × 10−3 2.35 × 10−3

25 1.43 × 10−3 1.43 × 10−3 1.42 × 10−3 1.44 × 10−3

30 8.80 × 10−4 8.80 × 10−4 8.75 × 10−4 8.82 × 10−4

40 3.42 × 10−4 3.42 × 10−4 3.41 × 10−4 3.43 × 10−4

respectively. For these energies, the minimal distance between
the nuclear surfaces is the same for all three cases (about
1.6 fm). The Fr−Fr collision is subcritical and has the purely
dynamical positron spectrum. In the Db−Db collision, one can
expect an enhancement of the spontaneous pair creation due
to the deep supercritical resonance [16]. However, all three
curves in Fig. 2 have a similar shape. The obtained positron
spectra are quite different from those in Ref. [16], especially
for the small positron energies.

In Fig. 3, we present the number of created pairs P in head-
on collisions of two identical nuclei as a function of the nuclear
charge numbers ZA = ZB = Z for the projectile energy E0 =
6.2 MeV/u in the nuclear rest frame, which corresponds to
Ecm = 740 MeV for the U−U collisions. There is a very strong
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Z

FIG. 3. Number of created pairs P in the head-on collision of
identical nuclei as a function of the nuclear charge numbers ZA =
ZB = Z for the projectile energy E0 = 6.2 MeV/u in the nuclear rest
frame.

dependence of P on Z, which in the subcritical region 78 �
Z � 87 can be parametrized by Zγ with γ ≈ 28. The function
P (Z) smoothly continues into the supercritical region Z > 87,
but its growth is slowing down for the higher Z. This result is
very close to the corresponding one in Ref. [12], where it was
found that in collisions of bare nuclei, the positron production
is proportional to (ZA + ZB)γ with γ ≈ 29.

In order to demonstrate the ability of our method to
describe the spontaneous pair creation, we considered the
supercritical U−U and subcritical Fr−Fr collisions with
artificial trajectories at Ecm = 674.5 and Ecm = 740 MeV,
respectively. First, we introduce the new trajectory Rα(t),

Ṙα(t) = αṘ(t), (31)
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FIG. 4. Number of created pairs P in the head-on collision with
the artificial trajectory Rα(t), defined by Eq. (31), as a function of the
dimensionless parameter α. The solid line indicates the results for the
Fr − Fr collision at Ecm = 674.5 MeV; the dashed line corresponds
to the U − U collision at Ecm = 740 MeV.
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FIG. 5. (Color online) Positron energy spectrum for the Fr−Fr
head-on collision at Ecm = 674.5 MeV with different time delays T .

where R(t) is the classical Rutherford trajectory. In Fig. 4,
we present the number of created pairs P as a function of the
dimensionless parameter α for the U−U and Fr−Fr head-on
collisions. It can be seen that in both cases, P (α) grows
monotonically for large α, which can be explained by an
enhancement of the dynamical pair production due to the fast
variation of the potential. For small values of α, where the
dynamical mechanism is suppressed, P (α) increases for the
U−U collision and goes to zero for the Fr−Fr collision, which
indicates the existence of the spontaneous pair creation in the
supercritical case.

We also considered the trajectories with the time delay T

at the closest approach of the nuclei. Such trajectories can
be used to model the hypothetical collisions with the nuclear
sticking [5]. In the supercritical case, the time delay should
enhance the spontaneous pair creation. The obtained positron
spectra for the pure Rutherford trajectory (T = 0) and for
the different time delays in the head-on Fr−Fr and U−U
collisions are shown in Figs. 5 and 6, respectively. As can
be seen from Fig. 5, the shape of the positron spectrum is
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FIG. 6. (Color online) Positron energy spectrum for the U−U
head-on collision at Ecm = 740 MeV with different time delays T .

changed significantly with growing T . However, the variations
of the total number of created pairs P for the Fr−Fr collisions
are less than 15% and are oscillating. In the supercritical
U−U collisions, P increases monotonically as T grows,
which demonstrates the enhancement of the spontaneous pair
creation. It can be seen from the figures that some additional
peaks appear for large T in both cases. However, in the
supercritical case, the main peak is much higher than the others
and steadily grows and shifts towards the low energies with
increasing T . This leads to the conclusion that the spontaneous
mechanism predominantly contributes to the region of the
main peak for the largest T . Our results for the positron
spectra in the U−U collisions with the time delay are in good
agreement with the corresponding ones from Ref. [13], and
differ from the values obtained in Ref. [16], especially for the
small positron energies.

IV. CONCLUSION

We presented a method for calculations of pair production
in low-energy collisions of bare nuclei. Using this method,
the energy spectra of emitted positrons and the numbers of
created pairs in collisions of identical nuclei were calculated in
the monopole approximation for different values of the impact
parameter and the nuclear charge. The ability of the method to
describe the spontaneous pair creation was demonstrated by
calculations for the collisions with the modified velocity and
with the time delays.

The obtained results for the U−U collisions are in good
agreement with the corresponding values from Ref. [13] for
all considered impact parameters. The calculations showed
a very strong dependence of the dynamical pair creation on
the nuclear charge, which confirms the results of Ref. [12].
The calculated positron energy spectra for the U−U, Fr−Fr,
and Db−Db head-on collisions disagree with those presented
in Ref. [16]. The reason for this discrepancy is unclear
to us.

A comparison of the different subcritical and supercritical
scenarios leads to the conclusion that no direct evidence of the
spontaneous pair creation can be found in the positron energy
spectra for the heavy-ion collisions with the Rutherford trajec-
tory. We expect, however, that the detailed studies of various
processes that take place in low-energy heavy-ion collisions,
including the angular-resolved positron energy spectra, can
examine the validity of QED at the supercritical regime. For
these studies, more elaborated full three-dimensional methods
are needed. To date, such methods have been developed
for calculations of the electron-excitation and charge-transfer
probabilities only [17–22]. The extension of these methods to
calculations of pair-production probabilities is one of the main
goals of our future work.
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G. Plunien, and Th. Stöhlker, Phys. Scr. T156, 014053 (2013).

[20] I. A. Maltsev, G. B. Deyneka, I. I. Tupitsyn, V. M. Shabaev,
Y. S. Kozhedub, G. Plunien, and Th. Stöhlker, Phys. Scr. T156,
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