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Ruben Van Boxem,* Bart Partoens, and Jo Verbeeck
EMAT & CMT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium

(Received 3 February 2015; published 16 March 2015)

Recent theoretical and experimental developments in the field of electron-vortex-beam physics have raised
questions about what exactly this novelty in the field of electron microscopy (and other fields, such as particle
physics) really provides. An important part of the answer to these questions lies in scattering theory. The present
investigation explores various aspects of inelastic quantum scattering theory for cylindrically symmetric beams
with orbital angular momentum. The model system of Coulomb scattering on a hydrogen atom provides the
setting to address various open questions: How is momentum transferred? Do vortex beams selectively excite
atoms, and how can one employ vortex beams to detect magnetic transitions? The analytical approach presented
here provides answers to these questions. OAM transfer is possible, but not through selective excitation; rather,
by pre- and postselection one can filter out the relevant contributions to a specific signal.
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I. INTRODUCTION

The field of phase vortices in beams has a relatively short
but vibrant history, beginning in optics and ending in all forms
of wave mechanical systems. A good overview of theory
and applications in optics can be found in Refs. [1] and [2].
Interesting aspects include the quantization of orbital angular
momentum (OAM) [3], the optomechanical effects of these
beams [3,4], quantum information, computing, and communi-
cation uses [5,6], and, of course, scattering applications [7–9].
Various ways of obtaining electron vortex beams have been
demonstrated [10–17] since their inception on paper in 2007
[18] and experimentally in 2010 [12,19]. Several investigations
into the scattering aspects of electron vortex beams have been
published [20,21], and this work aims to add to that list a
thorough and general analysis of inelastic electron vortex
scattering.

The main questions we investigate in this paper pertain to
the detection of and mechanism of OAM transfer of a fast
vortex electron to an atomic system. The results presented in
this paper describe the result of a detailed investigation into
the quantum dynamics of OAM transfer from an incoming
electron vortex beam to an atomic electron. It is an attempt to
describe what the incoming and outgoing OAM and transverse
momentum do to the scattering amplitude and how these
can be exploited in discovering what happened during a
scattering event. In what follows, inelastic scattering of fast
electron Bessel beams is calculated for the model system
of a hydrogen atom, for which several transition amplitudes
are explicitly calculated. Although we consider a spherically
symmetric atomic system, we prefer to discuss everything
relevant to the beam axis, and we treat transitions with OAM
transfer in that view. Special attention is given to how and
when selection rules are present, and if they are not, we
describe the physical reasons behind their vanishing outside
of special circumstances. We put the emphasis on what vortex
beams contribute to scattering and what they do not. To this
effect, two alternative approaches are pursued, allowing for
a sufficiently nuanced and accurate report on the properties
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of electron-vortex-beam atomic excitations. Critical are the
concepts of pre- and postselection on the scattered wave, and
special attention is given to transitions in which the beam’s
OAM is transfered to the atomic electron. Effects related
to relativity, spin, or recoil of the nucleus are ignored. This
treatment is also more simplistic than the more advanced
treatments based on the density matrix [22,23] and relate more
closely to earlier theoretical advances in inelastic electron-
atom scattering [24–26].

The next section quickly reviews various inelastic scattering
concepts and puts special emphasis on the details often omitted
in a textbook treatment of quantum scattering on atomic
systems, which are important here. Section III presents the
two methods developed to attack this problem analytically.
Section IV is a discussion of the most important results. The
final section presents our conclusions.

Notation

In order to remove clutter from crucial steps in the
calculation, strict notational conventions are defined here.
Real-space coordinates are denoted r = (x,y,z) = (r⊥,ϕ,z).
Basis vectors are written as ei , where i is the relevant
coordinate. Momentum-space coordinates are denoted k =
(kx,ky,kz) = (k⊥,φ,kz). It is often advantageous to split any
three-dimensional (3D) vector v into a z component, vz,
and a perpendicular component, v⊥ = (vx,vy), with size v⊥.
Primed variables are denoted r ′ = (x ′,y ′,z′) = (r ′

⊥,ϕ′,z′), and
similarly for k′. Partial derivatives are denoted ∂x = ∂

∂x
and are

taken to act on everything to the right of the symbol. Primed
coordinates and quantum numbers refer to the final (outgoing)
state. Momentum transfer is denoted q and is equal to k − k′.
OAM transfer is denoted �m and is equal to m − m′.

II. A CYLINDRICAL VIEW OF INELASTIC ELECTRON
PLANE-WAVE SCATTERING

A. Inelastic scattering of an electron on an atom

In this section, various entities are defined and plane-wave
scattering theory is briefly reviewed. Certain often forgotten
aspects which are important to the cylindrical-wave case are
brought forward.
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1. Interaction potential

The interaction potential for an electron scattering on a
single-electron atomic system is given by

V = e2

(
1

|r − r ′| − Z

r ′

)
. (1)

Here, r ′ is the laboratory coordinate for the scattering electron
with respect to the nucleus, and r is the atomic electron’s
coordinate relative to the nucleus (which is located at the
origin). Extending this to multiple single-electron atomic states
is formally trivial: summing over every electron’s coordinate
suffices, so that r → ∑

rj . The relative distance |r − r ′| com-
plicates the cylindrical scattering treatment in the next sections.

2. Single-electron atomic wave functions

To clarify the role of the atomic system’s OAM, we assume
that the (projected) OAM is a good quantum number and
separate the atomic wave functions into an azimuthal part and
the remaining (r⊥,z) part:

|i〉 = eimϕ

√
2π

|α〉, |f 〉 = eim′ϕ
√

2π
|β〉. (2)

For a hydrogen-like atom with (effective) nuclear charge Z

and atomic radius aμ = a0me/μ (μ is the reduced mass of the
atomic system), orthonormal wave functions have the form

〈r|nlm〉 =
√

η3
(n − l − 1)!

2n(n + 1)!

eimϕ

√
2π

(ηr)lL2l+1
n−l−1(ηr)e− ηr

2 , (3)

where η = 2Z/(naμ), and n = 1,2,3 . . . , l = 0, . . . n − 1, and
m = −l, . . . l are the radial, angular, and magnetic quantum
numbers, respectively. The OAM of a state, determined by the
operator L̂, is given by l, and the projected OAM, given by L̂z

and the one of primary interest here, is given by m. In what
follows, we assume that μ ≈ me and so aμ ≈ a0 but keep Z

so that any dependence on atomic number is clear.

3. Scattering amplitude

The inelastic scattering amplitude in the first Born
approximation can be written as

ff i[k′,
] = −2meN

4π�2
〈k′|〈f |V |i〉|
〉, (4)

where N takes care of the normalization of the scattering
electron’s states [27], |i〉 and |f 〉 are the initial and final atomic
states, and |
〉 is the incoming state (traditionally taken to be
a plane wave). The outgoing plane wave is defined as

〈r|k′〉 = eik′ ·r

(2π )3/2
. (5)

The scattering amplitude determines the modulation of the
outgoing (scattered) spherical wave so that the total wave
function obeys the following relation:

�(r) = 
(r) + ff i[k′,
]
eik·r

r
. (6)

The scattering amplitude, Eq. (4), depends on the atomic states
involved in a certain transition, and thus the probability of scat-
tering an electron in a certain direction depends on these states.

Filling in Eq. (4) with Eq. (1), we obtain

f B
f i[k

′,
]

= −mee
2N

2π�2

(
〈k′|〈f | 1

|r − r ′| |i〉|
〉 − Z〈f |i〉〈k′| 1

r ′ |
〉
)

.

(7)

4. The final state

The outgoing electron’s momentum k′ is related to the in-
coming electron’s momentum k through the energy transferred
to the atomic system �E as follows:

k′2 = k2 − 2me

�2
�E. (8)

The scattering angle θ can be introduced by substituting

q2 = k2 + k′2 − 2kk′ cos θ. (9)

Using the above with Eq. (7) and Eq. (3), one can plot the
angular dependence of the scattering amplitudes for various
hydrogen transitions. These are shown in Fig. 1(a). The
different final states (s/p/d/ . . .) result in specific angular
regions in which some dominate or are suppressed with respect
to others, which implies that some transitions can be filtered
out roughly by postselection on θ (which directly corresponds
to the outgoing transverse momentum). This can be exploited
to map anisotropic bonding in crystals [28,29].

We now consider a ground-state excitation to a state with
fixed (n′,l′), e.g., the 2p orbitals, and see if the outgoing wave’s
OAM can be used to provide more details of the final state.
The question we ask ourselves is: What determines scattering
to a particular (projected) OAM? This example final state
consists of three substates: 2pz, 2p+, and 2p−. The orientation
of these final states is determined by the direction of the z′
axis, along which their angular momentum is projected to
give the quantum number m′. This is crucial to the whole
analysis. Using the Fourier translation theorem, the plane-wave
scattering amplitude becomes

f PW
f i (q) = −2mee

2

�2
〈f |e

iq·r ′ − Z

q2
|i〉. (10)

This can be calculated in position space by aligning the z′ axis
along the momentum transfer vector q:

f PW
f i (q) = −2mee

2

�2

∫
d3r ′ ψ∗

f (r ′)
eiqr ′ cos θ ′ − Z

q2
ψi(r ′).

(11)

The final states are thus automatically quantized along the
direction of q, when expressed in the r ′ coordinate system
[30]. Furthermore, due to the integration over the azimuthal
coordinate ϕ′ in Eq. (11), only the tilted states for which �m =
0 contribute. In our example of ground-state excitation, this
means that for a certain (n′,l′), only the state with m′ = 0
gives a nonzero contribution. Indeed, the transition amplitude
for 1s → 2p is given by the following expression:

χ,φ′ 〈2pz|e
iq·r

q2
|1s〉 =

(
Z

a0

)5 12i
√

2

q
[
q2 + (

3Z
2a0

)2]3 . (12)
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FIG. 1. (Color online) (a) Plane-wave scattering amplitudes for
120-keV electrons for various transitions from the ground state. One
can see the relative size of the amplitudes shifts depending on the
exact scattering angle in question. (b) Separate cross sections for 2pz

and 2p± excitation. The typical Lorentz profile appears [28]. The
total 1s → 2p cross section is the sum of the other three. Note that
the θ scale in (b) is a factor of 100 times smaller than the one in (a).
This tiny scale is due to the relatively small �E for pure hydrogen.
More realistic systems will show the same features at a much larger
scale.

The subscript χ expresses that the quantization axis is tilted
over an angle of χ , defined by

tan χ = q⊥
qz

= k′ sin θ

k − k′ cos θ
, (13)

and rotated around the beam’s z axis by an angle φ′. This
scattering geometry is shown in Fig. 2. The reader can verify
that Eq. (12) is 0 for the other tilted substates (in our example,
these are 2p+ and 2p−). This tilted state (z′ is rotated with
respect to the beam’s z axis) can be projected onto untilted
states which are quantized along the beam direction.

As the atomic orbitals are determined by a radial function
multiplied with an OAM eigenstate, |l,m〉, their rotation
properties are fully determined by the Wigner d matrix:

〈l,m|R̂(α,β,γ )|l′,m′〉 = δl′,lD
(l)
m,m′ (α,β,γ ). (14)

x

y

z

k
k

q

k⊥
φ

χ

θ

FIG. 2. For plane-wave scattering, the orientation of the final state
depends on the scattering angle θ and the transition energy �E as
shown in Eq. (13). The azimuthal angle φ′ of the outgoing wave with
respect to a fixed set of axes is also shown.

Rotating an angular momentum eigenstate over the angles α,
β, and γ (in the z-y-z convention) turns it into a sum of states
of equal l, but all m:

R̂(α,β,γ )|l,m′〉 =
+l∑

m=−l

D
(l)
m,m′ (α,β,γ )|l,m〉. (15)

For the rotation of an m′ = 0 state oriented along the vector q
as in Fig. 2, the matrix elements take on the form

D
(l)
m,0(φ′,χ,0) = e−imφ′

d
(l)
m,0(χ )

= e−imφ′

√
(l − m)!

(l + m)!
P m

l (cos χ ), (16)

where P m
l are the associated Legendre polynomials.

As an example, consider the 1s → 2p transitions of the
hydrogen atom, which can readily be calculated by filling in
Eq. (11) with Eq. (3). With respect to the beam direction, the
excited 2pz state is tilted by the angle χ as shown in Fig. 2.
Applying Eqs. (15) and (16), for this example, one obtains

|2pz〉χ,φ′ = sin χ√
2

(eiφ′ |2p−〉 − e−iφ′ |2p+〉) + cos χ |2pz〉.

(17a)

Here,

sin χ = q⊥
q

, cos χ = qz

q
. (17b)

This expression gives the projection of the tilted state
|2pz〉χ,φ′ into its untilted components (quantized with respect
to the beam’s z direction).

The explicit form of the projection of the q-oriented 2pz

state onto a beam-axis-oriented 2p state, e.g., 〈2p±|2pz〉χ,φ′ ,
in Eq. (17), allows us to write the scattering amplitude to, e.g.,
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the 2p± states directly using Eq. (12):

f PW
1s→2p± = −2mee

2

�2
〈2p±|e

iq·r

q2
|1s〉

= −2mee
2

�2
〈2p±|2pz〉χ,φ′ χ,φ′ 〈2pz|e

iq·r

q2
|1s〉

=
(

Z

a0

)5

e∓iφ′ −12imee
2q⊥

�2q2
[
q2 + (

3Z
2a0

)2]3 . (18)

This is obtained by inserting a complete l = 1 basis and
remembering that the transition element is only nonzero for
|2pz〉χ,φ′ , as discussed above. Note that the outgoing wave
has acquired the opposite OAM of the excited atomic state,
and thus OAM has been transferred to the bound electron. The
above result is not new, but it usually appears as a cross section.
More specific forms are exploited in, e.g., momentum-resolved
EELS experiments [31,32], where dynamical diffraction also
plays a large role in the final distribution of scattered electrons.
The 2pz excitation, where no OAM is transferred, can be
calculated directly as well:

f PW
1s→2pz

=
(

Z

a0

)5 −12
√

2imee
2qz

�2q2
[
q2 + (

3Z
2a0

)2]3 . (19)

Both Eq. (18) and Eq. (19) are shown in Fig. 1(b). These
scattering amplitudes can be separately observed if one filters
the outgoing wave by its OAM. Techniques to achieve this
exist for electromagnetic waves [33,34], but in electron optics
these are still in development [35,36].

B. The vortex-beam basis state: Bessel beams

The simplest form of vortex beams is provided by the
solution of the Schrödinger equation in cylindrical coordinates:

〈r|k,�〉 = ψk,�(r) = ei�ϕ

√
2π

J�(k⊥r⊥)
eikzz

√
2π

. (20)

This exact solution encompasses the beam features that interest
us: the quantized (projected) OAM �� and the longitudinal and
transverse momenta �kz and �k⊥. One can define the opening
angle as α = tan−1(k⊥/kz), which is the angle the momentum
vector makes with the z axis. The energy of this field-free
state is independent of its OAM: E = �

2(k2
z + k2

⊥)/(2me).
The Bessel beam can be written in terms of its momentum
components, which shows that this state is a ring of tilted
plane waves in momentum space:

ψk,�(r) = (−i)�
∫

dφ

(2π )2
ei�φeik·r . (21)

This representation was used to calculate the elastic Coulomb
scattering amplitude in an earlier work [27], the results of
which are useful here in simplifying some of the equations.

Bessel beams are basis states, much like plane waves.
It is impossible to create true Bessel beams, even in a
laboratory setting. Only approximations can be realized, which
admittedly show the various properties of real Bessel beams in
a limited way [37]. Nonetheless, they provide a good basis to
calculate scattering amplitudes because they encode features
such as cylindrical symmetry, convergence angle (transverse
momentum), and OAM in a natural way. Note that for a

convergent beam, the wave function of the probe in real space
is nothing more than a coherent superposition of Bessel-beam
basis states, integrated over the aperture radius. For a nonvortex
probe, this reads

�(r) ∝
∫ ∞

0
dk⊥A(k⊥)k⊥J0(k⊥r⊥). (22)

Here, A(k⊥) describes the aperture (for example, as a step
function). This is nothing new and is often called the Hankel
transform. What this means is that the scattering amplitude of
a real convergent beam can be obtained from that of a Bessel
beam by integrating over a k⊥ range given by the aperture
radius. For a vortex probe, one can write

��(r) ∝ ei�ϕ

∫ ∞

0
dk⊥A(k⊥)k⊥J�(k⊥r⊥), (23)

which is nothing more than the �th-order Hankel transform
[38].

III. INELASTIC VORTEX-BEAM SCATTERING

A. General formulation

We consider a perfectly centered vortex, so that the atom
lies exactly on the beam’s OAM axis. Beam displacement can
be taken into account by using the Bessel addition formula [see
Eq. (25)] for the incoming beam in the transverse plane. Any
nonzero displacement of the beam (which is to be expected
in any realistic situation) will thus introduce a progressively
larger number of OAM modes contributing significantly to the
scattering. The extra modes contribute by a factor determined
by the transverse momentum, displacement, and the OAM
of that contribution through J�−μ(k⊥r0⊥), where � is the pure
OAM mode displaced over a distance r0⊥, and μ is the OAM
of a mode introduced by the displacement. For r0⊥ = 0, all
other contributions disappear. These additional OAM modes
will coherently contribute to the final scattering amplitude and,
thus, interfere with calculation of the differential cross section.

Following up on Ref. [27], one can calculate inelastic
scattering amplitudes by replacing |
〉 in Eq. (7) with a
Bessel beam |k,�〉, Eq. (20). Ignoring the (purely elastic)
term (which was calculated in Ref. [27] and repeated in the
Appendix), this leads to

f V
f i = − mee

2

2π�2

∫
d3r ψ∗

f (r)ψi(r)
∫

d3r ′ e−ik′·r ′

× 1

|r − r ′|e
i�ϕ′

J�(k⊥r ′
⊥)eikzz. (24)

The relative atomic coordinate of the atomic electron,
rR = r − r ′, plays a central role in how to solve this problem.
We would like to substitute this in the inner integral so as
not to involve the atomic wave functions already. The relative
distance |r − r ′| is difficult to substitute directly in this
expression, due to the presence of the transverse coordinate.
There are two ways to proceed: use the Bessel addition
theorem to mathematically displace the Bessel beam to this
relative coordinate or introduce the Fourier representation of
the Bessel beam, Eq. (21). Both methods lead to interesting
physical insights, and thus both are treated in detail below.
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ϕ + π

ϕ

FIG. 3. In-plane geometry as used in Eq. (25) for the shift to the
atomic electron’s coordinate.

Note that much like the elastic results presented in a
previous article [27], any of these scattering amplitudes can
be summed or integrated over a certain range of k⊥, kz, and/or
θ to more closely resemble real wave packets. This allows
for modeling of a focused electron probe with a specific
convergence angle (including annular apertures), or a certain
collector angle range for comparison with the experiment.

B. Displaced Bessel-beam representation

The relative coordinate problem described above can be
worked around by applying the Bessel addition theorem, by
which a displaced Bessel beam can be replaced with a series
of weighted centered Bessel functions over all orders. In our
case, the theorem states [39]

eikzz
′

√
2π

J�(k⊥r ′
⊥)

ei�ϕ′

√
2π

= eikzz

+∞∑
μ=−∞

Jμ(k⊥r⊥)eiμϕ eikzz
R

√
2π

J�−μ(k⊥rR
⊥ )

ei(�−μ)ϕR

√
2π

,

(25)

where the relative coordinate is denoted rR = r − r ′. This is
illustrated in Fig. 3.

Applying this to Eq. (24), one obtains

f V
f i(k

′; k,�) = −mee
2N

2π�2

+∞∑
μ=−∞

〈f |e−ik′ ·rJμ(k⊥r⊥)eiμϕ|i〉

×〈k′| 1

rR
|k,� − μ〉

= −
+∞∑

μ=−∞
f V

el (k′; k,� − μ)

×〈f |e−ik′
⊥·r⊥Jμ(k⊥r⊥)eiμϕeiqzz|i〉

= −
+∞∑

μ=−∞
f V

el (k′; k,� − μ)M̃f i(k′,k,μ). (26)

x

k⊥

−k⊥

rφ
ϕγ

FIG. 4. Geometry for the outgoing plane wave’s Jacobi-Anger
expansion in Eq. (27). Here, γ is the angle between −k⊥ and r⊥.

In the above expressions, f V
el is the Coulomb scattering

amplitude as given in the Appendix. This form resembles the
plane-wave result quite closely: a Coulomb scattering factor
(1/q2 for plane-wave incidence, assuming the form of f V

el here)
multiplied by a matrix element M̃f i over the two bound states
involved. This matrix element will take on a simpler form
below, although the functional form of the “matrix element
operator” is not the same as in the plane-wave case, i.e., it is
not simply eiq·r .

The outgoing plane wave can be written as a series of Bessel
functions using the Jacobi-Anger theorem (see also Fig. 4),

e−ik′
⊥·r⊥ =

+∞∑
λ=−∞

(−i)λJλ(k′
⊥r⊥)eiλ(φ′−ϕ), (27)

which makes the remaining hidden azimuthal angular depen-
dence explicit, exposing the possibility of selection rules on
(projected) OAM quantum numbers. The matrix element then
becomes

M̃f i =
+∞∑

λ=−∞
(−ieiφ′

)λ〈f |Jμ(k⊥r⊥)Jλ(k′
⊥r⊥)eiqzzeiϕ(μ−λ)|i〉.

(28)

Assuming that the initial and final states are eigenstates of
the projected OAM operator Lz [i.e., they have the form of
Eq. (2)], the azimuthal factor can be integrated out:

M̃f i =
+∞∑

λ=−∞
(−ieiφ′

)λ〈β|Jμ(k⊥r⊥)Jλ(k′
⊥r⊥)eiqzz|α〉

×
∫

dϕ
eiϕ(m−m′)

2π
eiϕ(μ−λ)

= (−ieiφ′
)μ+�m〈β|Jμ(k⊥r⊥)Jμ+�m(k′

⊥r⊥)eiqzz|α〉
= (−i)μ+�meiφ′(μ+�m)Mβα(k′,k,μ,�m). (29)

The change in the atomic electron’s (projected) OAM, �m =
m − m′, is the OAM transferred by the scattering electron in

032703-5



RUBEN VAN BOXEM, BART PARTOENS, AND JO VERBEECK PHYSICAL REVIEW A 91, 032703 (2015)

the collision. The reduced matrix element is equal to

Mβα = 〈β|Jμ(k⊥r⊥)Jμ+�m(k′
⊥r⊥)eiqzz|α〉. (30)

This is now the only unknown. Note that due to the form of f V
el

(see the Appendix) and M̃f i (see above), the scattering am-
plitude’s (i.e., the outgoing wave’s) azimuthal dependence is
exactly ei(�+�m)φ′

, which implies the transfer of the scattering
electron’s OAM to the atomic state.

For the hydrogen wave functions (oriented with respect to
the beam axis, and not the θ -dependent momentum transfer q
as in Sec. II A 4), Eq. (30) becomes a triple Bessel integral
which can be formally solved using a collection of tricks. The
result is, unfortunately, unwieldy and gives no further insight
into the physics of the problem.

The next section provides an alternative analytical treatment
that can be used to calculate the scattering amplitude for
any specific transition, both numerically and analytically.
This result is still useful though, when analyzing central
scattering, i.e., for θ = 0, Eq. (30) simplifies significantly,
and due to the generality of the obtained expression, an OAM
reciprocity theorem can be deduced. These cases are discussed
in Secs. IV B and IV A.

C. Fourier representation

The Fourier representation of a Bessel beam given by
Eq. (21) provides a solution for the problem of the relative
coordinate described in Sec. III A. Starting from Eq. (7) (with
N = (2π )5/2 as in Ref. [27]) and using Eqs. (1) and (21), one
arrives at the integral in question (�′ is the outgoing beam’s
OAM, obscured by f PW

f i and the integral over the azimuthal
Fourier coordinate),

f V
f i(k

′,�′; k,�) = (−i)�

2π

∫
dφ ei�φf PW

f i (q)

= −mee
2

π�2
(−i)�

∫
dφ

ei�φ

q2
〈f |eiq·r − Z|i〉,

(31)

where the plane-wave scattering amplitude f PW
f i (q) is given

by Eq. (11). This can be analytically calculated using the
contour integration technique first described in Ref. [27].
Several descriptive examples are treated explicitly below.

Equation (31) has a direct physical interpretation, which
is illustrated in Fig. 5. For a certain scattering angle θ (with
respect to the beam’s principal direction) and energy E′ =
�

2k′2/(2me), each component plane wave of the incoming
Bessel beam will coherently interfere and contribute to the
outgoing wave. This makes it impossible to define a single
momentum transfer q and thus also a unique final-state
orientation as discussed in Sec. II A 4. So, in general, a
φ-dependent projection is required if one wants to discriminate
final states defined with respect to the beam’s axis.

To calculate the Bessel-beam scattering amplitude analyt-
ically from Eq. (31), one must first obtain Eq. (11) and then
apply the following substitutions:

q2 = k2
⊥ + k′2

⊥ + q2
z − 2k⊥k′

⊥cos (φ − φ′), (32a)

z = tan

(
φ − φ′

2

)
, (32b)

cos(φ − φ′) = 1 − z2

1 + z2
, (32c)

ei�(φ−φ′) =
(

i − z

i + z

)�

, (32d)

d(φ − φ′) = 2 dz

1 + z2
. (32e)

One can then extend the integration over z (over the real
axis) to an appropriate contour (such as an infinite semicircle
as used for elastic Coulomb scattering [27]) and unleash the
residue theorem. As such, the 1s → 1s (elastic) scattering
amplitude is

f V
1s→1s(k

′,�; k,�) = −2mee
2

�2
(−i)�ei�φ′

(
R2 − R1

R1 + R2

)|�|

×a2
0R

2
1R

2
2+2Z2

(
R2

1 + R2
2 + 4|�|R1R2

)
a4

0R
3
1R

3
2

,

R2
1 =

(
2Z

a0

)2

+ q2
z + (k⊥ − k′

⊥)2,

R2
2 =

(
2Z

a0

)2

+ q2
z + (k⊥ + k′

⊥)2. (33)

Note that the outgoing OAM, �′, is equal to the incoming OAM
because none was transferred to the atomic electron. Inelastic
scattering amplitudes can also be calculated; below is the result
for the 1s → 2s transition:

f V
1s→2s(k

′; k,�)

= −
√

2mee
2

�2

(
Z

a0

)4

(−i)�ei�φ′
(

R1 − R2

R1 + R2

)|�|

×3
(
R4

1+R4
2

)+6|�|R1R2
(
R2

1+R2
2

) + 2(1 + 2�2)R2
1R

2
2

R5
1R

5
2

,

R2
1 =

(
3Z

2a0

)2

+ q2
z + (k⊥ − k′

⊥)2,

R2
2 =

(
3Z

2a0

)2

+ q2
z + (k⊥ + k′

⊥)2. (34)

For nonspherical transitions (i.e., where �m 
= 0), care
must be taken about the final-state orientation as discussed
in Sec. II A 4. Because there is now no unique momentum
transfer q, and there is both incoming and outgoing transverse
momentum, the rotation over φ′ becomes one over φq as
shown in Figs. 5 and 6. As an example, we treat the 1s → 2p

transitions, for which the plane-wave scattering amplitude is
given by Eq. (12). For the rotation over φq , one can employ
the complex representation of vector addition:

q⊥eiφq = k⊥eiφ − k′
⊥eiφ′ = eiφ′

(k⊥ei(φ−φ′) − k′
⊥). (35)

This, together with Eq. (17b), makes it clear that the integrand
in Eq. (31) is dependent only on φ − φ′ and q [which itself is
only a function of that same variable; see Eq. (32a)]. For the
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k

q

k

k

z

α

θ

FIG. 5. (Color online) For cylindrical waves, and, by extension,
vortex waves, there is no single momentum transfer. Instead, the
various plane-wave components of the cylindrical wave contribute
to the final outgoing wave-vector component. This is made explicit
by the integral over the various momentum component vectors in
Eq. (31). A Bessel beam of � = 1 is shown, and the relative phase of
the various contributions is shown by the color of the arrows.

1s → 2p± transition, this gives

f V
1s→2p± = −6imee

2(−1)�

π�2

(
Z

a0

)5

ei(�∓1)φ′

×
∫

d(φ − φ′) ei�(φ−φ′) k⊥e∓i(φ−φ′) − k′
⊥

q2
[
q2 + (

3Z
2a0

)2]3 . (36)

Note that the outgoing wave has lost or gained OAM: the beam
electron transfers OAM to the atomic state. The remaining 2pz

y

x

k⊥
φ

q⊥

φq

k⊥

φ

FIG. 6. (Color online) Top-down view of Fig. 5, showing the
transverse-plane scattering kinematics for an � = 1 Bessel beam.

state has the following scattering amplitude:

f V
1s→2pz

= −6i
√

2mee
2(−1)�

π�2

(
Z

a0

)5

qze
i�φ′

×
∫

d(φ − φ′) ei�(φ−φ′) 1

q2
[
q2 + (

3Z
2a0

)2]3 . (37)

The analytical expressions for these scattering amplitudes can
be explicitly written down but are too complex to present here
and do not provide much physical insight.

As an alternative to analytical calculation, Eq. (31) can be
calculated numerically as a function of the scattering angle by
using Eqs. (8) and (17b) and the substitutions

q2
⊥ = k2

⊥ + k′2 sin2 θ − 2k⊥k′ sin θ cos (φ − φ′), (38a)

q2
z = (kz − k′ cos θ )2 (38b)

and integrating over d(φ − φ′) numerically. The functions in
question are, all in all, well behaved and standard numerical
integration methods should have no issues with them. The
option of simple numerical integration is very useful if one
wants to explore a different basis set of state wave functions,
as long as they can be quantized in OAM as in Eq. (2), and
their scattering amplitude can be written as a function of φ − φ′
explicitly.

Figures 8, 9, and 10 show the scattering amplitudes for
several characteristic transitions and different input beams.
In the limit � = 0, k⊥ = 0, which is represented by the long-
dashed (red) line in each of the plots, the results in Fig. 1(b)
are recovered. The cross sections are discussed in more detail
in Sec. IV C.

IV. DISCUSSION

A. OAM reciprocity

In the cylindrical scattering amplitude, Eq. (26), one can
consider two specific cases: incoming and outgoing nonvortex
states (Fig. 7). For a fixed transition with a certain �m,
an incoming plane wave (so with � = 0, k⊥ = 0) will result
in a scattered vortex wave with �′ = �m. Additionally, the

summation in Eq. (26) can be performed using Jμ(k⊥r⊥)
k⊥→0−−−→

δμ,0. Using the explicit form of f V
el (see the Appendix), one

obtains the relatively simple expression

f PW
f i (k′,�′; kzez) = −2me

�2
(−i)�me−iφ′�m Ze2

k2
⊥ + q2

z

×〈β|J�m(k′
⊥r⊥)eiqzz|α〉. (39)

Doing the same, but taking the outgoing wave to be a plane
wave (�′ = 0, k′

⊥ = 0), one obtains a very similar expression:

f V
f i(θ = 0; k,�) = −2me

�2

Ze2

k2
⊥ + q2

z

δ�,�m

×〈β|J�m(k⊥r⊥)eiqzz|α〉. (40)

What these two equations say is quite simple: an incident
plane wave can gain or lose OAM by exciting a transition and
will then be scattered to a certain angle, θ = tan−1(k′

⊥/k′
z).

However, a vortex wave with transverse k⊥ will have the exact
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k
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k

k

k

θ

Aperture

Sample

Detector/Selector

FIG. 7. (Color online) Representation of the symmetry exposed
in Sec. IV A between incoming and outgoing vortex waves in the
case of incoming and outgoing plane waves, respectively. A specific
transition has the same scattering amplitude at the scattering angle θ

corresponding to the inverted geometry as shown here.

same probability of exciting that transition when scattering to
θ = 0. Note also that only when an incoming vortex beam’s
OAM matches the transition’s �m can it be scattered to θ = 0
(see Sec. IV B). This can be seen as a form of reciprocity
[40–42], but in this case for inelastic scattering including
OAM.

B. Central scattering amplitudes

Instead of considering the full θ -dependent scattering
amplitude, one can also consider only the θ = 0 case, for
which the analytical expressions are much more tractable than
for the complete calculation. Equation (40) can be calculated
directly using known integrals [43] of a set of Bessel K and J

functions. Alternatively, the analytical method from Sec. III C
can be used to the same effect.

For 1s → 1s, this gives

f V
1s→1s(θ = 0; k,�)

= 2a0e
2meδ�,0

4Z2

a2
0

+ k2
⊥ + q2

z

⎛⎝1 +
(

2Z
a0

)2(
2Z
a0

)2 + k2
⊥ + q2

z

⎞⎠ . (41)

Note the extra term, which comes from the first term in Eq. (7).
If one compares this with the plane-wave result in Ref. [44],
one immediately sees the symmetry of this expression if one
replaces k⊥ with k′

⊥ and realizes q2 = k′2
⊥ + q2

z in this situation.
This result can also be obtained by setting k′

⊥ = 0 in Eq. (33).
For the 1s → 2s transition, the following result is obtained:

f V
1s→2s(θ = 0; k,�) = 8

√
2mee

2

�2

(
Z

a0

)4
δ�,0[

k2
⊥ + q2

z + (
3Z
2a0

)2] .

(42)

The Kronecker δ ensures that the outgoing wave does not gain
or lose OAM with respect to the incoming one, as only the
� = 0 mode can be nonzero at θ = 0.

By considering only central scattering, one can selectively
measure a specific transition by preselecting a proper incoming
vortex state. This can be shown by considering an incoming
� = ±1 vortex beam and 1s → 2p± atomic transitions. The
relevant central scattering amplitude is given by

f V
1s→2p± (θ = 0; k,�)

= −12imee
2

�2

δ�,±1

k2
⊥ + q2

z

(
Z

a0

)5
k⊥[

k2
⊥ + q2

z + (
3Z
2a0

)2]3 . (43)

For comparison, the central scattering amplitude for the 1s →
2pz transition is

f V
1s→2pz

(θ = 0; k,�)

= 12i
√

2mee
2

�2

δ�,0

k2
⊥ + q2

z

(
Z

a0

)5
qz[

k2
⊥ + q2

z + (
3Z
2a0

)2]3 .

(44)

Note that the roles of k⊥ and qz are reversed with respect to
Eq. (43) (typical behavior for these p-character final states) and
that the central pz scattering cross section is twice as large for
the same parameters. Take special note of the strict selection
rule for θ = 0 expressed by the Kronecker δ’s, showing that
the on-axis intensity for these transitions will be nonzero only
for the right incoming beam. Due to the summation in the full
expression, Eq. (26), a mixture of outgoing vortex waves will
generally be emitted from each scattering event regardless of
its �m. The rate at which these various components contribute
is determined by the weighting expressed by that equation,
which is not trivial.

Finally, it is important to note that the three 2p states
considered here are degenerate unless a magnetic field is
applied, which adds a Zeeman energy, splitting the nonzero
OAM levels with the magnetic field. Larger fields will
also induce spin-orbit coupling in an atomic system, further
complicating the wave functions and interactions involved
[45,46].

C. Hydrogen scattering amplitudes

Several properties of the scattering amplitudes presented in
Sec. III C, Eqs. (33)–(37), are immediately apparent by looking
only at the equations themselves:

(i) Higher energy levels (i.e., larger n’s) introduce higher
order � dependence.

(ii) Transitions between spherically symmetric states (for
which the scattering amplitude is independent of φ) depend
only on the magnitude of �, and not on its sign. This is expected,
as everything involved is symmetric with respect to rotations
around the z axis. Nonsymmetrical transitions depend strongly
on the value of �.

(iii) The scattering electron wave transfers OAM to the
atomic state, and this transfer is reflected in the outgoing
wave.
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FIG. 8. (Color online) 1s → 1s (elastic) hydrogen differential
scattering cross sections for electron Bessel beams of different OAM
and transverse momentum, denoted by the Bessel beam opening angle
α (in mrad). Similar features as for the screened Coulomb scattering
amplitude are present [27].

(iv) Taking the plane-wave limit (� = 0, k⊥ → 0), one
recovers the usual plane-wave scattering amplitudes (see e.g.
Ref. [44] and Fig. 1 b).

The results in Sec. III C are also shown in Figs. 8–10 (in
a.u.). The analytical results in Eqs. (33), (34), (36), and (37) and
the numerically integrated scattering amplitudes using Eq. (38)
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FIG. 9. (Color online) Scattering cross sections for excitation of
the 2pz final state. Note that the peaked maximum is smooth when
viewed on the much smaller θ scale of, e.g., Fig. 1(b). The small
maximum in the region where θ < α, although real, is relatively
insignificant compared to the cross section’s maximum value.

were confirmed to be equal. These results and their physical
implications are now discussed. Remember that the differential
cross section is the probability of an electron being detected at
a certain scattering angle, which is the primary interpretation
that is given here. Note that the figures show only a line profile;
the scattering amplitudes shown here are all cylindrically
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FIG. 10. (Color online) Scattering cross sections for OAM transfer events to the 2p± states are shown for a positive incoming beam OAM,
�. Negative � results are omitted because they are identical to these with 2p+ and 2p− swapped due to the symmetry between the two situations.
The legend is identical to the one in Fig. 8.

symmetrical (up to a possible vortex phase factor), resulting
in the scattered electrons forming doughnut-shaped intensity
profiles.

The elastic differential scattering cross section, shown in
Fig. 8, is very similar to that of the screened Coulomb
potential previously treated [27]. For a nonvortex beam,

� = 0, higher transverse momentum shifts this peak off-center,
although even for an incoming hollow beam (with no low-
k⊥ components, generated by, e.g., an annular aperture), a
significant amount of intensity is still scattered on-axis. This
can be deduced from the additive contributions of various
transverse momentum components to the scattering amplitude
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(shown in the topmost plot in Fig. 8), which additively result
in a nonzero on-axis differential scattering cross section. For
beams containing a phase vortex, i.e., � 
= 0, there is no on-axis
intensity and the angle at which the cross section peaks shifts
outwards with increasing incoming transverse momentum.
This feature could be exploited as a sensitive detector for non-
OAM-preserving transitions in future experiments. Another
spherically symmetric transition is 1s → 2s. Its inelastic
differential scattering cross section [given explicitly by Eq.
(34)] has the same shape and behavior as the 1s → 1s cross
section and, therefore, is not explicitly shown.

The differential cross sections for ground-state excitations
to various 2p substates (quantized along the beam direction)
are shown in Figs. 9 and 10. The 2pz cross section shows a
narrow peak that moves away from the beam axis, giving way
for a 0 that appears at the threshold transverse momentum
defined by the condition qz = 0 [which is a prefactor in
Eq. (37)] and is located at

θ0 = cos−1

(
k

k′ cos α

)
< α. (45)

When an incoming vortex beam transfers OAM to an atomic
electron, the associated differential scattering amplitude re-
flects this, as shown in Fig. 10. In general, the lower the
outgoing OAM is in magnitude |�′|, the higher the scattering
cross section is for low angles. Another general feature of
these results is that transitions in which OAM is given to the
atomic electron, |�′| < |�|, have a relatively larger differential
cross section for scattering angles θ < α. Note that not all
OAM needs to be transferred for this to be visible, and these
differences are orders of magnitude larger for higher outgoing
OAM. Transitions where OAM is taken from the atomic
electron, |�′| > |�|, have larger differential cross sections for
larger angles, θ > α. This can be clearly seen by comparing the
plots in the left and right columns in Fig. 10 (the top row only
shows the latter case, |�′| > |�|). Perhaps the most evident form
of this is that an � = 1 beam exciting a 1s → 2p+ transition
will scatter most electrons on the beam axis and even to
θ = 0. This is possible because for this specific transition, the
outgoing beam has lost its OAM and does not suffer from the
phase singularity previously forcing its amplitude to 0 there.
The same happens for an � = −1 beam exciting a 1s → 2p−
transition, as the scattering amplitudes are identical. For higher
order incoming beams, this change is less dramatic, as the
outgoing vortex phase still forces the central scattering to 0.
Although it is not displayed clearly on the scale used in these
figures, the plane-wave differential cross section [long-dashed
(red) curve] has the same shape as in Fig. 1(b), and its central
0 gets pushed outwards for higher transverse momentum. The
sharp dip at around α = θ is exactly the 0 of f PW

1s→2p± in
Fig. 1(b) at θ = 0, but shifted outwards due to the nonzero
incoming transverse momentum. It coincides with the peak
for the 2pz differential cross section at the same scattering
angle. These shifts of intensity can be understood intuitively
by considering the transverse profiles of a vortex beam, where
a higher OAM is generally paired with a larger spatial extent
of the wave function. Finally, the large angle scattering in both
situations also shows a quantitative offset which could also be
used to differentiate the events.

V. CONCLUSIONS

We have extended inelastic quantum scattering theory to
nontrivial incoming electron waves, including orbital angular
and transverse momentum. A quick review of the textbook
theory illuminated some often forgotten, but important facts
about the final state and momentum transfer. Two methods
were then applied to obtain the vortex scattering amplitudes
of inelastic transitions for a hydrogen-like system. Special
attention was given to the atomic state’s OAM and the
consequences of it being changed by a scattering electron.

The first method involves the Bessel addition theorem,
which leads to unwieldy analytical expressions for all scatter-
ing amplitudes. Nonetheless, these calculations led to simple
selection rules when OAM transfer was involved and allowed
us to estimate the regime of scattering angles for which they
are valid. Additionally, a form of OAM reciprocity was shown
to exist, tied to the OAM transfer and the central scattering
amplitude.

The second approach, using the Fourier representation of
the Bessel beam, resulted in a purely analytical method to
obtain hydrogen scattering amplitudes, along with a less cum-
bersome numerical solution using an intermediate result. The
scattering amplitudes are influenced strongly in the presence of
OAM transfer, even outside of the ideal selection rule validity
regime (θ = 0). Combined with energy filtering, the predicted
asymmetry could provide a means to better separate scattering
contributions for various final states with distinct OAM,
leading to an improved measurement of the final-state density.
This, in turn, would provide atomic-resolution magnetic
information. Specific �m transitions can be filtered from
the total scattered intensity using any combination of pre- or
postselection of OAM of the scattering electron and incoming
and outgoing transverse momentum (i.e., by limiting collection
and convergence angles). The selection on transverse momen-
tum is routinely done by choosing detector geometry, selected
area apertures, and objective apertures. Postselection on OAM
has yet to be practically implemented efficiently in electron
microscopes. Once this is in place, though, the use of OAM
selectors will significantly improve the selectivity to certain
transitions, as a large amount of background signal caused by
electrons with the “wrong” OAM will be eradicated.
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APPENDIX: ELASTIC VORTEX COULOMB
SCATTERING AMPLITUDE

In the cylindrical expansion of the inelastic scattering
amplitudes, the elastic scattering amplitude appears. This
was calculated in Ref. [27], and the result is repeated
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here:

f V
el (k′; k,�) = −2meV0

�2

i�ei�φ′

r1r2

(
r1 − r2

r1 + r2

)|�|
, r2

1 = q2
z + μ2 + (k⊥ − k′

⊥)2, r2
2 = q2

z + μ2 + (k⊥ + k′
⊥)2.

Here, V0 is either Ze2 or e2, depending on the context, and the treatment in this paper deals with unscreened Coulomb
potentials only, so μ = 0 everywhere.
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