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Rotation of a liquid crystal by the Casimir torque
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We present a calculation of the Casimir torque acting on a liquid crystal near a birefringent crystal. In this
system, a liquid crystal bulk is uniformly aligned at one surface and is twisted at the other surface by a birefringent
crystal, e.g., barium titanate. The liquid crystal is separated from the solid crystal by an isotropic, transparent
material such as SiO2. By varying the thickness of the deposited layer, we can observe the effect of retardation on
the torque (which differentiates it from the close-range van der Waals torque). We find that a barium titanate slab
would cause 5CB (4-cyano-4′-pentylbiphenyl) liquid crystal to rotate by 10◦ through its bulk when separated by
35 nm of SiO2. The optical technique for measuring this twist is also outlined.
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I. INTRODUCTION

In 1948, Casimir [1] calculated that quantum fluctuations
of electromagnetic fields cause attraction between two parallel
metal plates at zero temperature. This can be interpreted as a
physical manifestation of the zero-point energy predicted by
quantum field theory [2]. As the plates are brought near each
other, the allowed modes between them are limited. Because
each electromagnetic mode has an energy of �ω/2 at T = 0
K, the total energy of the configuration depends on the plate
separation. This energy landscape results in an attractive force
between the plates.

While Casimir’s description holds for ideal metal plates, a
more general expression was derived by Lifshitz, Dzyaloshin-
skii, and Pitaevskii [3,4]. This formulation is used for com-
parison with experiments and is valid for both real metals and
dielectrics. In this theory, the force between two uncharged
surfaces can be derived according to an analytical formula
(often called the Lifshitz or Casimir-Lifshitz equation) that
relates the zero-point energy to the dielectric functions of the
interacting surfaces and of the medium in which they are
immersed. In 1972, Parsegian and Weiss [5] derived an ex-
pression for the nonretarded (where the speed of light is taken
to be infinite) interaction energy between two dielectrically
anisotropic plates immersed in a third anisotropic material.
Barash [6] analyzed a similar problem including retardation
effects and found an equation for the Helmholtz free energy
per unit area. In the nonretarded limit, the results of Parsegian,
Weiss, and Barash are in agreement.

In the expressions derived by Parsegian, Weiss, and Barash,
the Casimir energy between two parallel, birefringent plates
depends on both their separation and their orientation. Between
two parallel, positive birefringent slabs with in-plane optical
anisotropy, the lowest energy state is when the two optical axes
are aligned. This results in a torque that rotates the plates to
this configuration.

While the Casimir-Lifshitz force is the subject of much
discussion and has been verified in a number of experi-
ments [7–12], there have been no published experimental
attempts to measure the torque between anisotropic materials.
In addition to the early work of Parsegian, Weiss, and Barash,
recent theoretical work has been performed including a

derivation of a more simplified equation of the torque between
two plates in one dimension [13], the torque between two
dielectric slabs with different directions of conductivity [14],
and numerical calculations based on real materials [15,16].

Most discussions of potential Casimir torque measurements
involve either levitating microdisks [15,16] or a torsion pen-
dulum [17]. In the first method, microscale birefringent disks
would be levitated over a birefringent substrate with Casimir-
Lifshitz repulsion or an electrostatic force. The Casimir torque
would then cause the freely rotating disks to rotate so that
their optical axes would align with that of the substrate. In
the proposed torsion pendulum experiment, a macroscopic
birefringent crystal would be attached to a quartz torsion
pendulum and brought near another birefringent crystal. The
Casimir torque would affect the period of natural oscillations
of the torsion pendulum, allowing for its detection.

Here we propose a method that is in analogy to a static
torsion pendulum with a thick liquid crystal layer as the twisted
bulk. As the uniformly aligned liquid crystal is brought near
a birefringent crystal, the Casimir torque aligns the liquid
crystal molecules with the solid crystal’s optic axis, which
in turn causes a twist through the bulk of the liquid crystal. A
similar experiment was proposed by Smith and Ninham [18]
in 1973 but, to our knowledge, was never carried out. Here
we provide a calculation including retardation effects of the
expected results of a similar geometry, as well as detailed
experimental considerations.

Instead of using the liquid crystal in the isotropic phase
as a spacer layer (which is experimentally unfeasible), a
thin layer of SiO2 separates the liquid crystal from the solid
crystal. Varying the SiO2 thickness is equivalent to changing
the distance between parallel plates. If both the liquid crystal
and the birefringent crystal have positive uniaxial anisotropy,
then the Casimir torque causes the liquid crystal molecules
to twist towards the extraordinary axis of the solid crystal.
Because the liquid crystal is anchored at the glass interface,
the director (i.e., the locally preferred molecular orientation)
is twisted through the bulk by the Casimir torque at the
boundary at the opposite interface. This geometry is depicted
in Fig. 1. This experimental design is similar to methods for
measuring the azimuthal anchoring energy of liquid crystals
on treated substrates [19]. The mechanism of liquid crystal
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FIG. 1. Proposed experimental setup. The liquid crystal director
is fixed at 45◦ at the top surface, but a Casimir torque at the bottom
surface causes a linear twist throughout the bulk. Incident light
polarized at 45◦ is adiabatically twisted with the liquid crystal director
to a final polarization state, θf , which can be measured optically.
Stronger Casimir torques cause a greater director twist. The inset
shows a flat projection of the x-y plane.

alignment induced by a rubbed polymer layer itself is the
subject of much study but is thought to include physical
grooves, aligned polymer chains, and the van der Waals torque
for surfaces in contact [20–23]. The last of these is equivalent
to the short-ranged Casimir torque of our proposed study,
though distinguishing the van der Waals effect from other
alignment effects is difficult. However, previous experiments
have suggested the anisotropic van der Waals effect as the
mechanism of liquid crystal alignment at a surface. Schadt
and Schmitt [24] used linearly photopolymerized layers to
align liquid crystals with a van der Waals interaction. Lu [25]
also provided evidence that the van der Waals interaction is an
important component of the liquid crystal alignment at treated
polymer layers. However, these experiments do not isolate the
van der Waals torque from other surface effects, because the
liquid crystal is in contact with the substrate. Our proposed
experiment would demonstrate this effect over a distance of
tens of nanometers (and in doing so measure the long-range
retardation effects of the Casimir torque). Finally, we can
relate measured data to Casimir torques calculated from the
dispersive properties of the materials.

Smith and Ninham [18] considered the nonretarded case
of this system and predicted measurable distortions of the
liquid crystal director. Here we carry out the full retarded
calculation of the Casimir torque by considering its effect on a
thin boundary layer. That is, in comparison to the liquid crystal
bulk with thickness t > 50 μm, most of the Casimir torque is
felt by a thin layer of thickness δt < 50 nm. Also, because the
total liquid crystal twist through the bulk is less than 45◦, the
liquid crystal in the region of δt is nearly uniformly aligned.
Therefore, we approximate the Casimir torque on this layer
from the uniaxial crystal to be the same as that experienced

ne

FIG. 2. Representation of the 5CB molecule, which is a nematic
liquid crystal at room temperature. The extraordinary axis is along
the molecular axis. Because 5CB has positive birefringence, ne > no.

by a uniformly aligned and semi-infinite liquid crystal slab.
These approximations are treated with more detail in Sec. V.

II. NEMATIC LIQUID CRYSTALS

Most materials undergo a phase transition from solid
to liquid at a melting point. Liquid crystals exhibit an
intermediate phase in which there is some local ordering
due to the molecular structure. Nematic liquid crystals are
the simplest class. They can be thought of as long molecules
(Fig. 2) that tend to align the long axis with their neighbors. The
local direction of molecular orientation is written as a vector
of unit length called the director n. Because the molecules
have different dispersive properties along the different axes,
one can change the properties of the liquid crystal bulk by
manipulating the director.

We carry out calculations using the physical properties of
4-cyano-4′-pentylbiphenyl (5CB). In bulk, this is a positive
uniaxial material so the dielectric function is higher along the
long molecular axis.

III. CASIMIR INTERACTION BETWEEN
TWO INFINITE SLABS

To derive the interaction between two infinite slabs,
Barash [6] wrote the Helmhotz free energy per unit area
between two birefringent materials at finite temperature as an
infinite sum over Matsubara frequencies ξn = (2πkBT /�)n:

�(d,θ ) = kBT

4π2

∞∑
n=0

′
∫ ∞

0
rdr

∫ 2π

0
dϕ ln Dn(d,θ,r,ϕ), (1)

where d represents the distance between the two slabs and
θ is the angular separation of their extraordinary axes. We
have performed calculations for room temperature based on
experimental considerations; however, the zero-temperature
calculation for the Casimir torque will provide the correct
result to within <10% for the separations presented in this
work (d < 50 nm). The zeros of Dn(ϕ,r) as a function of real
frequency ω indicate allowed surface modes between the two
infinite slabs. It can also be expressed in terms of the reflection
matrices of the two materials, as in Refs. [26,27]. In our regime
of interest, the energy has sin2 θ dependence to an excellent
approximation, as in Fig. 3. The Casimir torque per unit area
is then

M(d,θ ) = −∂�

∂θ
≈ a(d) sin 2θ, (2)

where a(d) is a negative for the materials considered here
(which have positive birefringence). The dielectric functions
of the two materials and of the intervening medium are
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FIG. 3. Calculated torque between BaTiO3 and uniform 5CB bulk
separated by 10 nm of SiO2 as a function of angle θ between the
extraordinary axes of the birefringent materials. The line is a fit to
a sin(2θ ) dependence. The difference between the fit and the full
calculation is at most 2% and is less than 0.1% for θ = π/4.

evaluated at imaginary frequencies in Eq. (1). We use the
Ninham-Parsegian oscillator model to describe the dispersion
of the solid crystals [28]:

ε(iξ ) = 1 +
N∑

j=1

Cj

1 + ξ 2

ω2
j

. (3)

For the 5CB liquid crystal, we use the dispersive properties
at 298.2 K calculated by Kornilovitch [29] using data from
Wu et al. [30]. There, the index of refraction is fit with a
three-oscillator model, so the dielectric function is

ε5CB(iξ ) = 1 + 2
3∑

j=1

Cj

1 + ξ 2

ω2
j

+
⎛
⎝ 3∑

j=1

Cj

1 + ξ 2

ω2
j

⎞
⎠

2

. (4)

For the birefringent materials, there are separate functions
describing the ordinary and extraordinary axes. The model
data used for our calculations are summarized in Table I.

We calculate the Casimir torque between an infinite half-
space of 5CB liquid crystal and an infinite half-space of several
birefringent crystals using Eqs. (1) and (2) and the parameter
data in Table I. The results for θ = 45◦ are shown in Fig. 4.

TABLE I. Model parameters for dielectric functions of relevant
materials. Oscillator data for BaTiO3, CaCO3, TiO2, and SiO2 are
from Ref. [31].

C1 ω1 (eV) C2 ω2 (eV) C3,4 ω3,4 (eV)

5CB ⊥ 0.0374 4.40 0.1075 5.91 0.414 9.19
|| 0.0612 4.40 0.1025 5.91 0.460 9.19

BaTiO3 ⊥ 3595 0.056 4.128 5.54 — —
|| 145.0 0.138 4.064 5.90 — —

CaCO3 ⊥ 1.920 0.138 1.350 13.4 – –
|| 1.960 0.138 1.377 13.3 — —

TiO2 ⊥ 4.81 5.069 — — — —
|| 5.62 4.516 — — — —

SiO2 — 0.829 0.057 0.095 0.099 0.798 0.133
1.098 13.39
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FIG. 4. Casimir torque per unit area between a half-slab of
aligned 5CB and various birefringent crystals, when separated by
a SiO2 layer of thickness d with a relative angle of 45◦ between the
extraordinary axes.

Note that torques per unit area on the order of 10 nN/m are
found for separations of d = 10 nm.

IV. TORQUE BALANCE METHOD FOR MEASURING
LIQUID CRYSTAL ROTATION

The Casimir torque causing a director twist at one boundary
competes with the restoring torque from the twisted liquid
crystal. The latter is modeled using the Frank free energy
density [32]. In our geometry, the director is always aligned
in the x-y plane so its orientation can be written in Cartesian
coordinates as n = {cos θ (z), sin θ (z),0}. There is no bend or
splay of the liquid crystal, so only the twist term contributes
to the distortion energy. The twist contribution is given by

Fd = k22

2
(n · ∇ × n)2, (5)

where k22 = 3.6 pN is the twist elastic constant of the
5CB [33]. Substituting our expression for n, the Frank free
energy density is

Fd = k22

2

(
∂θ

∂z

)2

, (6)

and the Frank free energy per unit area is

Eelastic =
∫ t

0
Fddz = k22

2

∫ t

0

(
∂θ

∂z

)2

dz, (7)

where t is the thickness of the liquid crystal layer. In our
geometry (as in Fig. 1), the extraordinary axis of the solid
crystal is along the x axis, so the top boundary at z = d + t

(where the liquid crystal is in contact with glass) is treated to
induce alignment along θ (t + d) = π/4.

A torque applied at z = d twists the director to θ (d) = θf .
Using calculus of variations, the lowest energy configuration
is given by a linear twist, θ (z) = π

4 + �θ
t

(z − d − t), where
�θ = π/4 − θf . The elastic energy of the bulk per unit area
is then

Eelastic = k22

2

�θ2

t
. (8)
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If the director at z = d is twisted to θf , there is an energy
penalty and associated restoring torque at that boundary. The
restoring torque of the elastic bulk is given by

Melastic = −∂Eelastic

∂�θ
= −k22�θ

t
. (9)

Melastic is the torque that must be applied at the boundary z = d

to twist the director to θ (d) = θf . The torque applied at the
boundary twists the director until the torque balance equation
is satisfied: Melastic + Mexternal = 0. If the Casimir torque is
in the approximate form Melastic ≈ a(d) sin(2θ ), where θ is
the angle between the two extraordinary axes of the birefrin-
gent materials, then the torque is approximately MCasimir =
a(d) sin(2θf ) = a(d) cos(2�θ ) (which has the same form
as the planar Rapini-Papoular approximation [34]), and the
torque balance equation yields

−k22�θ

t
+ a(d) cos (2�θ ) = 0. (10)

To predict the director twist for our proposed experiment, we
calculate a(d) using Eqs. (1) and (2) and then numerically
solve Eq. (10) to find the twist caused by the Casimir torque,
�θ . In the proposed experiment, �θ (or θf ) will be measured
to obtain a(d) via

a(d) = k22

t
�θ sec(2�θ ). (11)

V. THE BOUNDARY LAYER APPROXIMATION

The liquid crystal can be treated as an anisotropic bulk
material for the calculation because the twisting is small
throughout the thickness that experiences the Casimir
interaction. The spacing between the liquid crystal and solid
birefringent crystal is on the order of ∼10 nm, and the liquid
crystal layer is about 100 μm thick. Following Parsegian [35],
the penetration depth of the Casimir interaction for dielectric
materials is to first approximation on the order of the material
separation. So, the most important region of the liquid crystal
is the 10 nm in contact with the SiO2 (or conservatively,
the 100 nm). This 100 nm is the 0.1% of the liquid crystal
nearest the birefringent crystal. Because the liquid crystal
will be twisted a maximum of π/4 rad throughout the bulk,
the liquid crystal director will vary by a maximum of ∼0.05◦
in the relevant region for the Casimir torque, which has no
appreciable effect on the torque’s magnitude.

This approximation can also be justified by considering
the reflection matrix of the liquid crystal stack. The Casimir
energy of the system is a function of the reflection matrices of
the two materials at the Matsubara frequencies. Our method
assumes that, at the Matsubara frequencies, the reflection
matrix of the slowly twisted liquid crystal is nearly the same
as that of an untwisted, bulk liquid crystal with the same
alignment at the boundary. The first Matsubara frequency at
room temperature, ξ1 = 2πkBT /� ≈ 245 THz, corresponds to
a wavelength of λ1 ≈ 1 μm. The higher frequences correspond
to shorter wavelengths, so this first term has the longest
penetration depth. We calculated the reflection matrices at
this frequency between the twisted and untwisted stacks
using the Berreman 4 × 4 matrix method and found them
to be numerically identical to four significant figures [36].

The Casimir interaction energy is largely unaffected by the
slow twist of the liquid crystal throughout the bulk. Hence,
to several significant figures, the torque experienced by the
liquid crystal layer is felt entirely at the nearest boundary
and is only a function of the director orientation at that
boundary.

VI. PROPOSED EXPERIMENT

Common methods for fabricating single liquid crystal
cells have been previously reported in Refs. [37,38] and can
be used for this experiment. A rubbed alignment layer of
polyvinyl alcohol (PVA) can be used to cause the liquid
crystal molecules to align along the rubbed direction at the
surface. The birefringent crystal with a thin, isotropic SiO2

layer (with thickness d ∼ 20 nm) is sandwiched with the
PVA-treated glass with a spacing of t ≈ 100 μm (this value can
be measured optically). The liquid crystal is then introduced
into the cell via capillary action. The filling process may induce
some alignment along the direction of liquid crystal flow;
however, baking the sample above the LC clearing temperature
(35 ◦C for 5CB) and allowing it to cool slowly will eliminate
this effect. As the liquid crystal cools to room temperature,
the director settles into the lowest energy state described in
Sec. IV. The magnitude of the Casimir torque effect can
then be measured by observing the twist of the liquid crystal
director.

The final director twist θf can be measured optically.
This method is similar to a technique for measuring az-
imuthal surface anchoring strengths of liquid crystals [39,40].
When linearly polarized light is incident on an adiabatically
twisted nematic liquid crystal stack (in which the pitch
of the twist is much larger than the wavelength of light),
the polarization state is rotated to follow the liquid crystal
director. This is known as the adiabatic approximation for
twisted nematics and is the principle behind twisted nematic
liquid crystal displays [36]. In this experiment, white light
polarized at 45◦ shines onto the stack as in Fig. 1. The Jones
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FIG. 5. Caculated twist of a 100-μm layer of 5CB caused by a
Casimir torque induced by various birefringent crystals at distance d

from one end of the liquid crystal stack. The incident light is polarized
at 45◦ to the ordinary axis at the top of the 5CB stack, but the director
is twisted by the Casimir torque, which causes the light polarization
to rotate �θ towards the extraordinary axis at 0◦.
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vector of this light is
√

I/2
(1

1

)
, where I is the intensity.

The light polarization follows the director of the twisted
nematic and is incident on the transparent SiO2 layer with
polarization θf . Its Jones vector is now

√
I
(cos θf

sin θf

)
. In a typical

measurement of an anchoring force, the liquid crystal is
sandwiched between two glass slides that do not interfere
with the polarization state of the light, as in Ref. [19]. Then,
the polarization state θf can be measured with a second
polarizer.

To calculate the expected results from an experiment, we
consider a liquid crystal layer thickness of 100 μm and
calculate the lowest energy state of the system using Eq. (10).
Figure 5 shows the expected results for this case. The liquid
crystal bulk is predicted to twist by over 35◦ when the
stack is separated by 5 nm from BaTiO3, and a twist of
several degrees is expected for separations of d ∼ 50 nm
(well into the Casimir regime.). When near a birefringent

material that has negative birefringence over a large frequency
range (such as lithium niobate), the liquid crystal would twist
towards the ordinary axis instead of the extraordinary axis.
This would provide further confirmation that dispersion effects
are causing the director to twist.

VII. CONCLUSIONS

We have proposed an experiment for measuring a Casimir
torque between a birefringent crystal and a liquid crystal
separated by an isotropic spacer layer. We provide complete
calculations of the expected results for several materials at
a range of separations and include details for a proposed
experiment. This experimental design avoids many of the
difficulties involved with a torsion pendulum or levitating
microdisks. Using oscillator models fitted from experimental
data to describe the dielectric functions, we have predicted a
measurable effect at separations of several tens of nanometers.
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