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Quasiclassical quantum defect theory and the spectrum of highly excited rubidium atoms
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We report on a significant discrepancy between recently published, highly accurate variational calculations and
precise measurements of the spectrum of Rydberg states in 87Rb on the energy scale of fine splitting. Introducing
a modified effective single-electron potential, we determine the spectrum of the outermost bound electron from
a standard WKB approach. Overall very good agreement with precise spectroscopic data is obtained.
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I. INTRODUCTION

The spectrum of the outermost bound electron of an alkali
atom such as 87Rb is hydrogenlike but lacks the n2 degeneracy
of the eigenstates labeled by the principal quantum number n

of the pure Coulomb potential [1,2]:

En,l = − 1

(n − δl)2
. (1)

This effect is the well-known quantum defect δl , resulting
from the interaction of the outermost electron with the ionic
core of the atom and the nucleus. In a refined version of
the statistical Thomas-Fermi theory [3], an effective potential
determining the interaction between the outermost electron
and the nucleus can be modeled accurately by a spherically
symmetric potential Veff(r; l) depending on the distance r from
the center and depending on the orbital angular momentum
l ∈ {0,1,2, . . . ,n − 1} [2,4,5]:

Veff(r; l) = −2

[
Zeff(r; l)

r
+ Vpol(r; l)

]
. (2)

Here the function Zeff(r; l) represents a position-dependent
weight function that interpolates the value of the charge
between unity for large r and charge number Z near to the
nucleus for r → 0, and Vpol(r; l) represents a short-range
interaction taking into account the static electric polarizability
of the ionic core [1,6].

Overall good agreement with spectroscopic data of alkali
atoms (but discarding the fine splitting) has been reported in
[5], choosing

Zeff(r; l) = 1 + (Z − 1)e−ra1(l) − re−ra2(l) [a3(l) + ra4(l)]

(3)

and

Vpol(r; l) = αc

2

1 − exp
[ − (

r
rc(l)

)6]
r4

. (4)
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A table of the parameters a1(l), a2(l), a3(l), a4(l), αc, and rc(l)
can be found in [5].

In an attempt to also describe the fine splitting of the
excitation spectrum of the outermost electron of 87Rb, it has
been suggested [4] to superimpose a posteriori a spin-orbit
term

ṼSO(r; j,l) = VSO(r; j,l)

[1 − α2Veff(r; l)]2
(5)

on the potential Veff(r; l), which then influences the spectrum
En,j,l on the scale of fine splitting and the orbitals ψn,j,l(r)
accessible to the outermost electron. Here

VSO (r; j,l) = α2 1

r

∂Veff(r; l)

∂r
g (j,l) , (6)

and α = λC

aB
� 1

137.036 denotes the fine-structure constant, and

g (j,l) =
⎧⎨⎩

0 if l = 0,

j (j+1)−l(l+1)− 3
4

2 if l � 1,

(7)

where j ∈ {l − 1
2 ,l + 1

2 }. To determine those orbitals (with
principal quantum number n = nr + l + 1 and radial quantum
number nr ∈ N0), a normalizable solution to the Schrödinger
eigenvalue problem for the radial wave function Un,j,l(r) =
rRn,j,l (r) and associated eigenvalues En,j,l < 0 is required:[

− d2

dr2
+ l(l + 1)

r2
+ Ṽ (r; j,l) − En,j,l

]
Un,j,l(r) = 0, (8)

where

Ṽ (r; j,l) = Veff(r; l) + ṼSO (r; j,l) (9)

denotes the effective single-electron potential.
A highly accurate variational calculation of the excitation

spectrum of the outermost electron of 87Rb has been carried
out recently [7], in which the authors expand the radial wave
function of the Schrödinger eigenvalue problem (8) in a basis
spanned by 500 Slater-type orbitals (STOs). On the other
hand, modern high-precision spectroscopy of Rydberg levels
of 87Rb has been conducted recently. Millimeter-wave spec-
troscopy employing selective field ionization allows for precise
measurements of the energy differences between Rydberg
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TABLE I. Fine splitting �En,l=1 for P states in megahertz.

State |n,l = 1〉 Expt. [11] Expt. [8] Theory [7] Theory (this work)

8P 565.1(4) × 103 NA 602.04 × 103 567.75 × 103

10P 219.1(4) × 103 NA 231.87 × 103 218.77 × 103

30P NA 4246.30(5) 4500.50 4246.46
35P NA 2566.41(32) 2717.41 2566.28
45P NA 1144.09(13) 1217.24 1143.95
55P NA 605.77(7) 644.81 605.68
60P NA 460.76(5) 480.32 460.68

levels [8]. An independent approach is to perform purely
optical measurements on absolute Rydberg level energies
by observing electromagnetically induced transparency (EIT)
[9,10]. However, there is a systematic discrepancy between
variational calculations and the spectroscopic measurements
of the fine splitting,

�En,l = En,l+ 1
2 ,l − En,l− 1

2 ,l , (10)

as shown in Tables I and II. Given the fact that the error bars
of the independent experiments [8,10] are below 1.1 MHz
down to 20 kHz, and on the other hand considering the
high accuracy of the numerical calculations presented in [7],
such a discrepancy between experiment and theory is indeed
significant.

So, what could be the reason for the reported discrepancies?
First, it should be pointed out that in the variational calculations
[7] a slightly different potential was used, that is,

V (r; j,l) = Veff(r; l) + VSO (r; j,l) . (11)

Certainly, within the first-order perturbation theory there exists
no noticeable discrepancy in the spectrum of the outermost
electron on the fine-splitting scale, when taking into account
the spin-orbit forces with VSO (r; j,l) instead of working with
ṼSO (r; j,l). This is due to the differences being negligible for
r > Zα2. However, since VSO (r; j,l) eventually dominates
even the contribution of the centrifugal barrier term l(l+1)

r2

within the tiny region 0 < r � α2Z, a subtle problem with a
non-normalizable radial wave function Un,j,l(r) emerges when
attempting to solve the Schrödinger eigenvalue problem for
any l > 0 with the potential VSO (r; j,l). Such a problem is
absent when one works with ṼSO (r; j,l) [4].

A variational calculation with the potential (11) employing
N = 500 normalizable STOs as basis functions thus engenders
a systematic (small) error of the matrix elements calculated in
[7] on the fine-splitting scale. When employing substantially
more STOs this error would certainly become larger. With N =

500 STOs the discrepancy of these theoretical results with the
high-precision spectroscopic data, as shown in Tables I and II,
is far too large to be corrected by simply replacing VSO (r; j,l)
with ṼSO (r; j,l). Hence another explanation is required.

II. QUASICLASSICAL APPROACH AND FINE SPLITTING
OF THE HIGHLY EXCITED 87Rb

In 1941 alkali atoms had already been studied in the context
of modern quantum mechanics in the seminal work by Mayer
[3], who emphasized the exceptional role of the l = 1 and
l = 2 orbitals. According to Mayer, the outermost electron of
an alkali atom is governed by an effective r-dependent charge
term

Zeff (r) = 1 + (Z − 1)F (r), (12)

where the function F (r) has been determined by employing
the semiclassical statistical Thomas-Fermi approach to the
many-electron-atom problem, posing the boundary conditions
as limr→0 F (r) = 1 and limr→∞ F (r) = 0. As discussed by
Schwinger [12], this approach ceases to be valid in the inner-
shell region Z−1 < r < Z− 1

3 of the atom. Therefore, taking
into account the fine splitting in the spectrum of the outermost
electron of alkali atoms a posteriori by simply adding the
phenomenological spin-orbit term (5) to (2), resulting in the
effective single-electron potential (9), seems to be questionable
on general grounds in that inner-shell region.

On a more fundamental level, the treatment of relativistic
effects in multi-electron-atom spectra requires an a priori
microscopic description based on the well-known Breit-Pauli
Hamiltonian [13,14]:

H = Hnr + Hrs + Hfs. (13)

Here Hnr is the ordinary nonrelativistic many-electron Hamil-
tonian, while the relativistic corrections are represented by the
perturbation operators Hrs and Hfs. The perturbation term Hrs

TABLE II. Fine splitting �En,l=2 for D states in megahertz.

State |n,l = 2〉 Expt. [11] Expt. [8] Expt. [10] Theory [7] Theory (this work)

8D 30.4(4) × 103 NA NA 113.17 × 103 36.42 × 103

10D 14.9(2) × 103 NA NA 52.05 × 103 16.56 × 103

30D NA 452.42(18) 452.5(11) 1447.53 456.13
35D NA 279.65(10) 280.4(11) 894.84 281.52
45D NA 128.33(4) 127.8(11) 407.64 128.98
55D NA 69.17(2) 69.4(11) 223.71 69.47
57D NA 61.98(2) 62.2(11) 197.39 62.24
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contains all the relativistic perturbations like mass correction,
one- and two-body Darwin terms, and further the spin-spin
contact and orbit-orbit terms, which all commute with the total
angular momentum L and total spin S, thus effectuating only
small shifts of the spectrum of the nonrelativistic Hamiltonian
Hnr. The perturbation operator Hfs, on the other hand, breaks
the rotational symmetry. It consists of the standard nuclear
spin-orbit, the spin-other-orbit, and the spin-spin dipole
interaction terms, which all commute with J = L + S, but not
with L or with S separately, thus inducing the fine splitting of
the nonrelativistic spectrum.

Although the proposed functional form of the potential (11)
is highly plausible on physical grounds outside the inner-core
region r > Z− 1

3 , prima facie it appears to be inconsistent to
lump the aforementioned relativistic many-body forces, spin-
other-orbit and spin-spin dipole interaction, into an effective
single-electron potential of the functional form (11), so that
it provides an accurate description also for small distances
Z−1 < r < Z− 1

3 .
In the absence of a better microscopic theory for an

effective single-electron potential Veff (r; j,l) describing the
fine splitting of the spectrum of the outermost electron in
the alkali atoms, we introduce a cutoff at a distance rso(l)
with Z−1 < rso(l) < Z− 1

3 so that the effective single-electron
potential is now described by the following modified potential:

Ṽmod (r; j,l) =
⎧⎨⎩Veff(r; l) if 0 � r � rso(l),

Veff(r; l) + VSO (r; j,l) if r > rso(l).

(14)

The choice [2]

rso (l = 1) = 0.029 483 × rc (l = 1) = 0.044 282 5,
(15)

rso (l = 2) = 0.051 262 × rc (l = 2) = 0.249 572 0,

gives a surprisingly accurate description of the fine splitting
in the spectroscopic data for all principal quantum numbers
n (see Fig. 1, Tables I and II). By choosing larger values for
rso(l) than stated in (15), the calculated fine splitting is too
small compared to experiment, and vice versa, by choosing
smaller values for rso(l) we find the calculated fine splitting is
too large compared to experiment.

The calculation of the spectrum of the outermost bound
electron is then reduced to solving the radial Schrödinger
equation (8) with the modified potential Ṽmod (r; j,l). The
resulting spectrum is actually hydrogenlike, that is,

En,j,l = − 1

(n − �j,l)2
, (16)

where �j,l denotes a quantum defect also comprising the
fine splitting. In actual fact the quantum defect describes a
reduction of the number of nodes nr of the radial wave function
for l = 0,1,2 as a result of the short-range interaction of the
outermost electron with the ionic core of the atom. Because
the higher the orbital angular momentum quantum number l,
the lower the probability of the electron being located near
to the center, it is clear that the quantum defect decreases

86

88

90

92

(a)

(n
−

δ 1
)3

×
Δ

E
n

,1

10 20 30 40 50 60

10

20

30

(b)

n

(n
−

δ 2
)3

×
Δ

E
n

,2

FIG. 1. (Color online) Reduced fine splitting in THz (a) for P
states (cf. Table I) and (b) for D states (cf. Table II). The blue line
corresponds to the theory from this work [see Eq. (17)]. The blue
circles show the recent numerically calculated results from [7]. The
red symbols denote experimental data from Refs. [11] (squares), [8]
(crosses), and [10] (circles). The error bars for the experimental data
are given in Tables I and II.

rapidly with increasing orbital angular momentum l. Therefore
�j,l is only notably different from zero for l = 0,1,2.

Writing �j,l = δl + ηj,l with ηj,l � δl , the fine splitting to
leading order in α2 is

�En,l = 2
ηl− 1

2 ,l − ηl+ 1
2 ,l

(n − δl)3 . (17)

The quasiclassical momentum p ≡ √−Q of the bound
electron depending on energy E < 0 with orbital angular
momentum l > 0, total angular momentum j = l ± 1

2 , and
taking into account the Langer shift l(l + 1) → (l + 1

2 )2 in the
centrifugal barrier [15,16] is then given by

Q (r; j,l,E) =
(
l + 1

2

)2

r2
+ Ṽmod (r; j,l) − E. (18)

For l = 0 the centrifugal barrier term and the spin-orbit
potential are absent.

Considering high excitation energies E < 0 of the bound
outermost electron, i.e., a principal quantum number n 
 1,
the respective positions of the turning points r (±) are given
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approximately by

r (−) =
(
l + 1

2

)2

1 +
√

1 + (
l + 1

2

)2
E

if l � 3,

(19)

r (+) � 1

−E

[
1 +

√
1 +

(
l + 1

2

)2

E

]
if l � 1,

where 0 < l � 1√−E
. Of course, for l = 0 only a single (large)

turning point r (+) = 2
−E

exists due to the absence of the
centrifugal barrier. However, the lower turning points r (−) are
strongly modified for l = 1,2 compared to the pure Coulomb
potential case, taking into account the core polarization.
For l = 1,2 the relation r (−)(l) � 0.02 × rc(l) holds; that is,
r (−) (l = 1) � 0.034 72 and r (−) (l = 2) � 0.128 27 [2]. While
the analytic formula for the lower turning points r (−)(l) in
(19), being valid for 3 � l � n, depends only weakly on
the principal quantum number n, we find from numerical
calculations with the potential (14) that this also applies
for l = 1,2 and n � 8. Since the cutoff rso(l) in (15) is
substantially above those values of the lower turning points
r (−)(l), a quasiclassical calculation of the fine-split spectrum
of the bound outermost electron is reliable.

For a chosen radial quantum number nr , the associated
eigenvalues E = En,j,l < 0 of the outermost electron moving
in the potential (14) now follow from the WKB patching
condition [17–19]:

ν (j,l,E)
!=

{
nr + 1 if l = 0,

nr + 1
2 if l > 0,

(20)

where ν (j,l,E) denotes the action integral

ν (j,l,E) = 1

π

∫ r (+)

r (−)
dr

√
−Q (r; j,l,E)

= 1

2π

∮
dr p (r; j,l,E) . (21)

Plotting the function ν (j,l,E) versus 1√−E
for l = 0,1,2

clearly reveals a linear dependence of the form ν (j,l,E) =
1√−E

+ c (j,l) (see Fig. 2).
According to [6], for A,B,C,D ∈ R, with A > 0, B > 0,

C > 0, and |D| � C, the following equality holds:

1

2π

∮
dr

√
−A + 2B

r
− C

r2
+ D

r3
= B√

A
−

√
C + BD

2C
√

C
.

(22)

For a pure Coulomb potential A ≡ −E, B ≡ 1, C ≡ (l + 1
2 )2,

and D ≡ α2g(j,l). The corresponding action integral then
reads

ν(C) (j,l,E) =
⎧⎨⎩

1√−E
if l = 0,

1√−E
− (

l + 1
2

) + α2g(j,l)

2(l+ 1
2 )3 if l > 0.

(23)

It is thus found from WKB theory that the quantum defect
associated with the single-electron potential Ṽmod(r; j,l) is

�j,l = lim
E→0−

[ν(j,l,E) − ν(C)(j,l,E)]. (24)
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FIG. 2. (Color online) The action integral ν (j,l,E) associated
with the effective single-electron potential Ṽmod (r; j,l) vs scaled
energy 1√−E

for l = 0 (blue line), l = 1 (red line), l = 2 (green line),

all for j = l + 1
2 . The curves for j = l − 1

2 differ only by a tiny shift
proportional to α2.

Ignoring spin-orbit coupling, i.e., for α = 0, one has �j,l ≡ δl ,
the standard quantum defect. For l = 0 the centrifugal barrier
and the spin-orbit coupling term (6) are zero, so �j,l →
� 1

2 ,0 ≡ δ0.
The dependence of the quasiclassical momentum√−Q (r; j,l,E) on the scaled distance r

rc(l) is shown for l =
0,1,2 in Fig. 3. Clearly, it is the inner-core region r (−)(l) < r <

rc(l) that provides the main contribution to the quantum defect
values. We find, for l = 0,2, that changing the fitting parameter
a3(l) in (3) from its tabulated value in [5] according to
the scaling prescription a3 (l = 0) → 0.814 × a3 (l = 0) and
a3 (l = 2) → 0.914 × a3 (l = 2) leads to a slight downward
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r/rc(l)

√ −
Q

FIG. 3. (Color online) The quasiclassical momentum√−Q (r; j,l,E) vs scaled distance r

rc (l) for l = 0 (dashed
black), l = 1 (green), and l = 2 (red) for E = En,j,l , corresponding
to principal quantum number n = 57 and j = l + 1

2 . The lower
turning points r (−)(l) for the case of a pure Coulomb potential, for
l > 0 all being greater than 0.6 × rc(l), are located well outside the
core region. The main contribution to the quantum defect values in
(24) thus originates from the inner-core region r < rc(l).
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TABLE III. The values of quantum defect �j,l associated with the Rydberg level n = 57 for l = 0,1,2.

Quantum defect �j,l Expt. [8] Expt. [10] Theory [7] Theory (this work)

� 1
2 ,0 3.1312419(10) 3.13125(2) 3.12791 3.13095

� 1
2 ,1 2.6549831(10) NA 2.65795 2.65197

� 3
2 ,1 2.6417735(10) NA 2.64399 2.63876

� 1
2 ,1 − � 3

2 ,1 0.0132096(14) NA 0.01396 0.01321
� 3

2 ,2 1.3478971(4) 1.34789(2) 1.35145 1.34851
� 5

2 ,2 1.3462733(3) 1.34626(2) 1.34628 1.34688

� 3
2 ,2 − � 5

2 ,2 0.0016238(5) 0.00163(3) 0.00517 0.00163

constant shift of the WKB-quantum defect. As a result of
this change, the calculated WKB-quantum defect �l± 1

2 ,l then
agrees well with the spectroscopic data (see Table III). Such a
change of a3(l) does not affect the fine-splitting values �En,l

though. We also find that the dependence of the fine splitting
�En,l on the principal quantum number n is well described by
(17) for all n � 8 (see Tables I and II).

In actual fact, for r (+) 
 r (−), which is a criterion that
is always met for high excitation energies

√−E � 0 of the
outermost electron, the uniform Langer-WKB wave function
U

(WKB)
n,j,l (r) [19,20], with r (+) considered as the only turning

point, describes the numerical solution Un,j,l (r) to the radial
differential equation (8) under the influence of the effective
modified single-electron potential (14) rather accurately [21].
Only very near to the second turning point r (−), at a distance
smaller than rso(l), does the Langer-WKB wave function
U

(WKB)
n,j,l (r) cease to be a good approximation to the numerical

solution Un,j,l (r) of the radial Schrödinger equation (8) [21].

III. CONCLUSIONS

In this work we reported a significant discrepancy between
experiment [8,10] and highly accurate variational calculations

[7] of the spectrum of Rydberg states of 87Rb on the energy
scale of the fine splitting. We discussed that the usual a
posteriori adding of the relativistic spin-orbit potential to
the effective single-electron potential governing the outermost
electron of alkali atoms is indeed inconsistent inside the inner
atomic core region. In the absence of a full microscopic
theory that lumps all many-body interactions together with
the relativistic corrections into an effective single-electron
potential in a consistent manner, we suggested a modified
effective single-electron potential, cf. (14), that enables a
correct description of the spectrum of Rydberg states on the
fine-splitting scale in terms of a simple WKB-action integral
for all principal quantum numbers n � 8. Modern precision
spectroscopy of highly excited Rydberg states thus enables the
probing of the multielectron correlation problem of the ionic
core of alkali atoms. This is certainly a fascinating perspective
for further experiments and theoretical studies.

ACKNOWLEDGMENTS

This work was financially supported by the EU FET-Open
Xtrack Project HAIRS and the Carl Zeiss Stiftung Foundation.

[1] T. F. Gallagher, Rydberg Atoms, 1st ed. (Cambridge University
Press, Cambridge, UK, 1994).

[2] We use scaled variables so that length is measured in units of
the Bohr radius aB = �

2

me

4πε0
|e|2 � 5.2918 × 10−11 m and energy

is measured in units of Rydberg, Ry = me |e|4
8ε2

0h2 � 13.605 eV.

[3] M. Goeppert Mayer, Phys. Rev. 60, 184 (1941).
[4] C. H. Greene and M. Aymar, Phys. Rev. A 44, 1773 (1991).
[5] M. Marinescu, H. R. Sadeghpour, and A. Dalgarno, Phys. Rev.

A 49, 982 (1994).
[6] M. Born, Vorlesungen über Atommechanik (Springer, Berlin,

1925), §27, §28, and II. Anhang.
[7] M. Pawlak, N. Moiseyev, and H. R. Sadeghpour, Phys. Rev. A

89, 042506 (2014).
[8] W. Li, I. Mourachko, M. W. Noel, and T. F. Gallagher, Phys.

Rev. A 67, 052502 (2003).
[9] A. K. Mohapatra, T. R. Jackson, and C. S. Adams, Phys. Rev.

Lett. 98, 113003 (2007).
[10] M. Mack, F. Karlewski, H. Hattermann, S. Höckh, F. Jessen,
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