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Theoretical characterization of the collective resonance states underlying
the xenon giant dipole resonance
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We present a detailed theoretical characterization of the two fundamental collective resonances underlying the
xenon giant dipole resonance (GDR). This is achieved consistently by two complementary methods implemented
within the framework of the configuration-interaction singles (CIS) theory. The first method accesses the
resonance states by diagonalizing the many-electron Hamiltonian using the smooth exterior complex scaling
technique. The second method involves a different application of the Gabor analysis to wave-packet dynamics.
We identify one resonance at an excitation energy of 74 eV with a lifetime of 27 as and the second at 107 eV
with a lifetime of 11 as. Our work provides a deeper understanding of the nature of the resonances associated
with the GDR: a group of close-lying intrachannel resonances splits into two far-separated resonances through
interchannel couplings involving the 4d electrons. The CIS approach allows a transparent interpretation of the
two resonances as new collective modes. Due to the strong entanglement between the excited electron and the
ionic core, the resonance wave functions are not dominated by any single particle-hole state. This gives rise to
plasma-like collective oscillations of the 4d shell as a whole.
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I. INTRODUCTION

The atomic xenon giant dipole resonance (GDR) has
attracted much research interest since its discovery in 1964
[1,2], for it is one of the most prominent cases in atomic physics
where many-body correlations play a conspicuous role. The
GDR appears in the photoabsorption cross section of xenon
as a pronounced and nearly symmetric hump centered around
100 eV, with a width of about 40 eV. The GDR lies in the
electronic continuum above the 4d ionization threshold.

While the occurrence of the xenon GDR can be qualitatively
explained by the independent-particle model [3], where a
centrifugal barrier suppresses 4d → εf transitions near the
4d threshold, satisfactory agreement with experiments requires
the inclusion of many-body correlations beyond the mean-field
(MF) level [4–8]. Nowadays it is commonly accepted that the
xenon GDR must be described as the result of the collective
excitations of at least all 4d electrons, forming short-lived
plasma-like cooperative oscillations [9,10]. Because the GDR
is a property of inner-shell electrons, it is found in other atoms
close to xenon in the periodic table and survives in molecules
and solids [9,10]. Similar giant resonances also prevail in
nuclei, metallic clusters, fullerences, etc. [9,10].

A considerable number of measurements have been per-
formed for a precise characterization of the xenon pho-
toabsorption spectrum in the XUV with perturbative light
sources [11–14]. However, with the birth of various new
source technologies, the old spectroscopic feature of the xenon
GDR continues to enthrall state-of-the-art experimenters. For
example, high-harmonic generation spectra of xenon driven by
an intense midinfrared laser display a striking enhancement of
the plateau [15], which reflects the partial cross section of the
5p valence shell strongly modified by the GDR [16]. Also,
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the GDR lies at the heart of the behavior of xenon exposed
to free-electron lasers with ultrahigh XUV irradiance [17–19].
Hence, it is important to fully understand the nature of the
xenon GDR.

Following the earliest independent-particle model [3],
various advanced many-body theories have succeeded in
reproducing the experimental cross section associated with the
xenon GDR remarkably well [8,20–23]. Nevertheless, a funda-
mental question frequently overlooked is what exactly are the
basic collective modes that give rise to the spectral properties
of the xenon GDR. A work by Wendin in 1971 [24] (see
Ref. [8] for details) using the random-phase approximation
with exchange (RPAE) identifies two collective resonances
in this energy range. Another calculation, by Lundqvist in
1980 [25], utilizing a hydrodynamic treatment of electron
density oscillations also finds two collective modes, but one
of them sits at an energy incompatible with experimental
observations. In addition to the very limited theoretical
predictions of the resonance positions, neither of these studies
explicitly specifies the resonance widths. Consequently, the
nature of the inherent collective resonances hidden in the
broad spectral blur of the xenon GDR still remains an unsolved
question.

The purpose of this paper is to provide a thorough
characterization of the resonance substructures underlying
the xenon GDR within the framework of the configuration-
interaction singles (CIS) approach [26,27], an ab initio theory
that can capture essential many-body effects in light-matter
interactions [28] including the xenon GDR [29]. We resolve
two collective dipolar resonances residing in the spectral range
of the GDR, with one position differing from that given by
Wendin [8] by 15 eV. Whereas Wendin resorted to an approxi-
mate condition only applicable to weakly damped plasma [30]
to estimate the positions of the collective excitations, this work
provides quantitative results for the resonance positions and
lifetimes. In contrast to the conventional view that many-body
correlations only quantitatively shift and flatten the resonance
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as seen in the photoabsorption spectra [3–7,23], we clearly
demonstrate that many-body correlations qualitatively change
the nature of the xenon GDR: a group of intrachannel
resonances splits into two far-separated resonances as soon
as we switch on interchannel interactions involving the 4d

electrons. Since the resonance lifetimes are very short, the
resonances strongly overlap and appear as one big hump in the
photoabsorption cross section [8]. In contrast to the plasma-
type treatments used in Refs. [8,25], the full many-body wave
functions are directly obtained through our CIS approach. As
the wave functions of the two resonances cannot be expressed
by any single particle-hole state, we concretely show that they
are indeed new collective modes [8–10].

In this work, the isolation of the resonance substructures
is consistently accomplished by means of two complementary
and general methods implemented using CIS. The first, time-
independent approach provides a comprehensive characteriza-
tion of all the resonance properties by directly diagonalizing
the many-body Hamiltonian using the smooth exterior com-
plex scaling (SES) technique [31–33]. Complex scaling [34]
has been used to solve the electronic resonance problem for
few-electron atoms [35–38] and molecules [39]. However,
it has not yet been used to address collective resonances in
many-electron atoms. The second, time-dependent approach
involves a different application of the time-frequency Gabor
analysis [40,41] to the autocorrelation function of a wave
packet. It is a common routine in molecular dynamics to
look for resonance energies in the Fourier domain [42–44].
Nonetheless, our analysis in the combined time-frequency
domain not only shows improved performance in disentan-
gling strongly overlapping resonances, but also supplies an
appealingly intuitive view on the time evolutions of various
wave-packet components.

The remainder of this article is structured as follows:
Sec. II presents the theoretical tools. Section II A first lays
the foundation of our many-body CIS scheme. Section II B
and Sec. II C explain, respectively, the time-independent SES
and time-dependent Gabor procedures to access multiple
resonances. In Sec. III we apply the methods to the xenon
GDR, with the computational details given in Sec. III A.
The results of the SES and Gabor approaches are discussed
separately in Secs. III B and III C. Restrictions imposed on
the electronic-configuration space in Secs. III B and III C are
justified in Sec. III D. Finally, Sec. IV concludes the study with
a future outlook. Further numerical evidence indicating the
consequence of finding resonance poles with the approximate
condition used by Wendin [8] is provided in the Appendix.

Atomic units (a.u.) are used throughout the paper (|e| =
me = � = 4πε0 = 1) unless otherwise stated.

II. THEORETICAL METHODS

A. CIS theory

In this work, the many-electron Schrödinger equation is
treated within the CIS framework, an ab initio theory that
allows one to encapsulate essential many-body physics beyond
the MF Hartree-Fock (HF) picture [28,45]. Our implemen-
tation of the CIS method has been successfully applied to
a wealth of physical phenomena of many-electron atomic
systems interacting with light fields [28], including pertur-

bative [29,46,47] and nonperturbative [16,48,49] multiphoton
processes with photon energies from the x-ray regime down
to the near-infrared regime. Particularly, the ability of CIS to
reproduce important features of the experimentally observed
xenon GDR is demonstrated in Ref. [29]. In the following, we
outline the formulation of our CIS approach. Further details
can be found in previous publications [26,27,50].

The nonrelativistic Hamiltonian for an N -electron atom in
the absence of external fields can be generally written as

Ĥ =
N∑

n=1

(
p̂2

n

2
− Z

|r̂n| + V̂ MF(r̂n)

)
− EMF

0

+

⎛
⎜⎜⎜⎝

1

2

N∑
n,n′ = 1
n �= n′

1

|r̂n − r̂n′ | −
N∑

n=1

V̂ MF(r̂n)

⎞
⎟⎟⎟⎠

=: Ĥ0 + Ĥ1, (1)

where p̂n and r̂n are the momentum and coordinate operators
for individual electrons, Z is the nuclear charge, and V̂ MF is the
MF potential contributing to the standard Fock operator [45].
The HF ground-state energy EMF

0 is introduced to shift the
entire energy spectrum for cosmetic purposes. The total
Hamiltonian is divided such that Ĥ0 is merely a one-body
operator and that all the residual two-body electron-electron
Coulomb interactions beyond the description of the MF
potential are contained in Ĥ1.

The N -electron Hamiltonian is represented in the N -
electron CIS configuration space:

VCIS =:
{∣∣�MF

0

〉
,
∣∣�a

i

〉}
, (2)

which gives an ansatz for an N -electron wave function:

|�〉 = α0

∣∣�MF
0

〉 + ∑
i,a

αa
i

∣∣�a
i

〉
. (3)

Thus, the Hilbert space is truncated and consists only of the
HF ground state |�MF

0 〉 plus its singly excited configurations
|�a

i 〉 = ĉ
†
aĉi |�MF

0 〉, with ĉi annihilating an electron from an
initially occupied orbital i and ĉ

†
a putting it into an initially

unoccupied orbital a [45]. The range of the index i selects the
active occupied orbitals from which an electron can be excited
or ionized, i.e., the accessible channels [51], thus enabling
one to test the multichannel character of the overall physical
process [16,47,50].

The matrix of the N -electron Hamiltonian is then ei-
ther diagonalized (Sec. II B) or used in the time-dependent
Schrödinger equation (Sec. II C). In CIS, the only matrix
elements that can lead to two-body effects are 〈�a

i | Ĥ1 |�b
j 〉.

Specifically, it is the type of matrix elements with the indices
a �= b and i �= j , called interchannel-coupling terms [51], that
permits the simultaneous change of the state of the excited
electron and that of the ionic core; i.e., interchannel coupling
leads to the formation of a correlated particle-hole pair [46].
Numerically, we can tailor the two-body nature of Ĥ1 and
study its influences by enforcing all interchannel-coupling
matrix elements to be 0 and considering only the matrix
elements 〈�a

i | Ĥ1 |�b
j 〉 with i = j . In this scenario, called the
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intrachannel-coupling model [51], Ĥ1 effectively acts as a
one-body operator: once the electron is excited, it can sense
the potential produced by the parent ion but cannot modify
the ionic state, which is therefore forbidden to partake in
many-body correlations [16,29,46,47].

B. Time-independent approach to resonances: SES method

A conventional procedure to access eigenstates is the
direct diagonalization of a general Hamiltonian. Nevertheless,
being exponentially divergent in the asymptotic region renders
resonance states, also known as Siegert [52] or Gamow [53]
vectors, inadmissible elements of the Hilbert space of a
Hermitian Hamiltonian. Standard techniques such as complex
scaling [34,54,55] and the use of complex absorbing potentials
(CAPs) [56–58] were thus developed to transform the wave
function of a resonance state into a single square-integrable
function. In this paper, we adopt the SES method [31–34], a
variant of the complex scaling technique.

Our use of SES [33,59] relies on an analytic continuation
of the radial part of the electron coordinate into the complex
plane r → ρ(r) following the path of Moiseyev [31] in the
form of Karlsson [32] adapted to the purely radial problem
presented here:

ρ(r) = r + (eiθ − 1)

[
r + λ ln

(
1 + e(r0−r)/λ

1 + er0/λ

)]
. (4)

This path smoothly (depending on the parameter λ) rotates the
electron radial coordinate for r > r0 about an angle θ into the
upper complex plane.

Solving the eigenvalue problem of the complex-scaled
Hamiltonian with the basis set VCIS, the resonance states
can be uniquely identified as the exposed poles situated
above the rotated continua in the complex-valued energy
spectrum [34,54,55]. It is then straightforward to obtain the
complex resonance energy or the Siegert energy [34,52,56]

En = 
n − i�n/2, 
n,�n ∈ R+ (5)

as well as the wave function |�n〉 associated with the nth
resonance state. In Eq. (5), 
n is the resonance position,
and �n gives the inverse lifetime for the quasibound state
to escape to the continuum. The detailed implementation of
SES within CIS using a generalized finite-element discrete
variable representation will be addressed in a forthcoming
publication [59].

The SES method shares with CAPs [56] the merit that it
leaves the interior r < r0 untouched and does not perturb the
HF ground state (if r0 and λ are chosen suitably) [32,34].
At the same time, it eliminates many drawbacks of CAPs:
no optimization with respect to a parameter is required in
order to identify the resonance energies, and the whole
transformation rests on the rigorous mathematical theory of
complex scaling [32–34].

Note that the complex-scaled Hamiltonian is no longer a
Hermitian but a complex symmetric matrix [33]. As a result,
the symmetric inner product (·| , |·) must be used instead of
the Hermitian inner product 〈·| , |·〉 to ensure orthogonality
relations [27,34,56].

C. Time-dependent approach to resonances: Gabor analysis
of autocorrelation functions

Decoding the resonance substructures for a general quan-
tum system can also be done through wave-packet propagation.
The key physical quantity employed throughout our analysis
is the time-dependent autocorrelation function, defined as

C(t) =: (�(0)|�(t)), (6)

where |�(0)) is an initial state and |�(t)) is the freely evolved
wave packet at a later time t . Note that the symmetric inner
product is adopted here. This is because in the time-dependent
case we continue using SES, which effectively functions as
a CAP and absorbs the outgoing flux reaching the end of
the numerical grid [31,32,58]. For an initial state |�(0))
orthogonal to |�MF

0 ), the time evolution of |�(t)) is governed
by the CIS coefficients αa

i (t) [cf. Eq. (3)]. Inserting Eq. (3) into
the time-dependent Schrödinger equation with the complex-
scaled Hamiltonian, one can derive and numerically integrate
the equations of motion for αa

i (t) [27]:

i α̇a
i (t) = (

�a
i

∣∣Ĥ0

∣∣�a
i

)
αa

i (t) +
∑
j,b

(
�a

i

∣∣Ĥ1

∣∣�b
j

)
αb

j (t). (7)

For a quantitative determination of the resonance energies,
we assume that, by proper preparation, the initial state is
essentially composed of the resonance states of interest and
all the contributions from the bound states and the continuum
can be ignored. Expanding |�(0)) in terms of the orthonormal
resonance wave functions |�(0)) = ∑

n an |�n), Eq. (6) then
bears the following structure:

C(t) =
∑

n

a2
ne

−i
nt− �n
2 t . (8)

The validity of Eq. (8) and the resonances that can be extracted
evidently depend on the quality of |�(0)). How we prepare the
wave packet ideal for studying the xenon GDR is discussed in
Sec. III C.

A common strategy to infer Siegert energies from wave-
packet propagation is to conduct a Fourier analysis and study
the autocorrelation function in the frequency domain [42–44].
Performing a one-sided Fourier transformation on Eq. (8)
[assuming C(t) = 0 for t < 0] yields

C(ω) = 1√
2π

∫ +∞

0
dteiωtC(t)

=
∑

n

a2
n√
2π

�n

2 + i(ω − 
n)
�2

n

4 + (ω − 
n)2
, (9)

i.e., a superposition of Lorentzian functions and dispersive
curves parametrized by the Siegert energies [60].

For a single resonance, the spectral distribution of the
autocorrelation function reads

|C(1)(ω)|2 =
∣∣a2

1

∣∣2

2π

1
�2

1
4 + (ω − 
1)2

, (10)

which is a Lorentzian with a peak at 
1 and a width of
�1. If more than one resonance exists, |C(ω)|2 comprises
several Lorentzians and their interferences. Upon empirically
specifying the number of resonance states, it is possible to
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retrieve the Siegert energies by numerically fitting |C(ω)|2
based on Eq. (9).

Next, we extend the standard spectral analysis to a
time-frequency analysis [40,41,61] of the autocorrelation
function and examine its information content in the com-
bined time-frequency domain. Applying a Gabor transforma-
tion [41,62,63] to Eq. (8), we can derive

Ct (ω) = 1

σ
√

2π

∫ +∞

0
dt ′eiωt ′e

− (t ′−t)2

2σ2 C(t ′) (11)

≈
∑

n

a2
ne

σ2�2
n

8 − �n
2 t− σ2

2 (ω−
n)2+iσ 2( t

σ2 − �n
2 )(ω−
n)

. (12)

Equation (11) can be interpreted as gating the time-dependent
signal by a Gaussian window function of width σ centered at
t . Due to the finite size of the window function and the sudden
turn-on of the autocorrelation function at t = 0, the analytical
expression in Eq. (12) works as a reasonable approximation to
Ct (ω) when t � σ .

For a single resonance, the transient spectral distribution
of the autocorrelation function at time t can be simply
approximated by

∣∣C(1)
t (ω)

∣∣2 ≈ ∣∣a2
1

∣∣2
e

σ2�2
1

4 e−�1t e−σ 2(ω−
1)2
, (13)

i.e., a Gaussian with a peak at 
1 and a width determined by
σ . From the decay rate of the amplitude, �1 can be extracted.

The advantage of the Gabor analysis over the Fourier anal-
ysis becomes apparent when multiple resonances come into
play. In this situation, |C(ω)|2 comprises several Gaussians
and their interferences. Consider the example where there
are overlapping broad resonances yet with different lifetimes.
Compared to the static information conveyed by the Fourier
spectrum, it is more likely to detect the resonances through the
time evolution of the Gabor profile, where their competition
causes dynamics in the frequency distribution. Quantification
of the resonance energies can be done by fitting |Ct (ω)|2 with
the help of Eq. (12) at different time steps.

It is worthwhile to note that C(ω) is related to a mea-
surable physical quantity—the photoabsorption cross sec-
tion [29,64]—although we usually consider its modulus
squared to reduce the number of irrelevant fitting parameters
(e.g., the phase of a2

n). Also, a real physical observable—the
dipole moment—can be used in the time-frequency analysis
as well [65]. In this case, its frequency distribution is
associated with the spectrum of electromagnetic radiation
emitted by the system [66]. Finally, it is tempting to point out
the conceptual similarity between the Gabor transformation
and the spectrogram measured in a pump-probe experiment
[67–69], albeit there is no real probe pulse involved in the
current theory.

III. RESULTS AND DISCUSSION

A. Computational details

The theoretical methods described in Sec. II are now applied
to the detailed resonance structure of the xenon GDR that is
probed by linear spectroscopy using linearly polarized XUV
light [1,2,11–14]. The calculations are done using our XCID

package [70]. A single set of numerical parameters is employed

throughout our calculations to compare consistently the results
obtained by the two approaches.

Exploiting symmetries, nl±m is counted as one ionization
channel [26,50]. In the energy range of concern, it is adequate
to assume that electron depopulations only happen from the
4d, 5s, and 5p orbitals [71]. However, for a meaningful
comparison with the work by Wendin [8], the calculations
presented in Secs. III B and III C are performed without
activating the outer 5s and 5p shells. As we see in Sec. III D,
these channels only cause minor quantitative modifications.
The HF orbital energies are slightly adjusted to match the
experimental binding energies. Also, the orbitals with an
energy higher than 15 a.u. are discarded to enhance the stability
of the time propagation.

The numerical box radially extends to a size of 150 a.u.
and is discretized with 1800 nonuniformly distributed grid
points with a mapping parameter of ζ = 1 [27], from which
we construct our finite-element discrete variable representation
basis functions [59]. The SES parameters are chosen as
r0 = 20 a.u., θ = 40◦, and λ = 1 a.u. such that the HF MF
potential remains unscaled and the continuum is rotated
enough to expose the resonances. The maximum orbital
angular momentum is 3. For the time-dependent study, an
initial state is propagated [27] at a time step of 0.05 a.u. for a
duration of 500 a.u. to give a sufficient frequency resolution.
In the Gabor transformation, we use σ = 2 a.u., which we
select based on the spacing of the excitation energies for the
two collective resonances. This choice represents an optimal
trade-off between the spectral and the temporal resolutions.

B. Time-independent approach to Xe GDR: SES method

The diagonalization of the complex-scaled many-body
Hamiltonian is achieved numerically by the iterative Arnoldi
algorithm implemented in the ARPACK library [59,72,73].
An initial random vector is used to launch the iteration.
Since we concentrate on the resonance modes in the linear-
response regime, the eigenstates shown below are required
to have a minimum overlap with the ground state through a
dipole transition: | (�| D̂z|�HF

0 )| > 10−6, where D̂z denotes
the z component of the dipole operator [74] relative to the
polarization direction of the electric field in a measurement.

Figure 1 shows the complex spectra of the energy eigenval-
ues for the case with only intrachannel couplings and the case
with both inter- and intrachannel couplings, i.e., the full-model
calculation within CIS. Ideally, the energy spectra in both cases
should follow the structure predicted by the Balslev-Combes
theorem [34,54,55,75]: the bound states remain on the real
axis, the continuum is rotated clockwise by 2θ with respect to
the 4d ionization threshold at 67.5 eV [76], and the resonances
are isolated above the continuum. However, the use of an
incomplete basis set results in numerical artifacts such as
branching of the continuum away from the threshold [57] and
a rotation angle deviating from 2θ [77].

First, we focus on the result of the intrachannel-coupling
model in Fig. 1. In this case, each eigenstate possesses a unique
hole index i and the contributions from different 4d ionization
channels can be easily set apart. Three resonances are found,
one for each 4d±m channel. They lie fairly close to each other,
forming a group of resonances around an energy with a real part
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FIG. 1. (Color online) Complex energy spectra of the complex-
scaled many-body Hamiltonian for the intrachannel (“intra”) and full
CIS (“inter + intra”) models. Horizontal and vertical axes represent
the real and imaginary parts of the energy eigenvalues, respectively.
Three close-lying resonances are found in the intrachannel calculation
(indicated by open polygons); two far-separated resonances (labeled
R1 and R2) are found in the full CIS calculation (indicated by filled
circles).

≈ 77 eV and an imaginary part ≈−5.4 eV, which corresponds
to a lifetime of ≈ 60 as. The resonance positions and widths
are detailed in Table I.

In order to elucidate the origin of the small splitting among
the intrachannel resonances, we perform another intrachannel
calculation by approximating Ĥ1 with its monopole term [50].
When so doing, the resonances associated with the 4d0,
4d±1, and 4d±2 channels have exactly the same resonance
energy. Therefore, even without many-body effects, the elec-
tron excited from the different 4d±m orbitals experiences
different potentials owing to the shape of the nonspherical
ionic core. This qualitative effect, although small, clearly
exemplifies the impact of the ionic structure beyond the
description of a simple spherically symmetric potential (e.g.,

the Herman-Skillman [78] or HF [45] potentials) or even
an angular-momentum-dependent pseudopotential [79] widely
used to model multielectron atoms in perturbative [3,80] or
nonperturbative [81–83] light fields.

Activating interchannel coupling, the group of intrachannel
resonances splits into two resonance states distantly located in
the complex energy plane in Fig. 1. We have checked carefully
that their positions do not vary with the scaling parameters,
so they are not numerical artifacts. In comparison with the
intrachannel resonances, resonance R1 in Fig. 1 has almost the
same excitation energy but a larger decay width; resonance R2

is pushed away much farther into the lower half of the complex
energy plane. The splitting of the resonances highlights that
many-body correlations not only are required for a quantitative
agreement between theory and experiment [3–7,23], but in fact
give rise to fundamentally different resonance substructures
underlying the GDR. Since Ref. [8] does not show calculations
without many-body correlations, our study is the first to reveal
the emergence of the collective resonances in the GDR from
the intrachannel resonances.

With the interchannel interactions, each resonance cannot
be attributed to a single ionization pathway. For both R1

and R2, the 4d−1
0 , 4d−1

±1 , and 4d−1
±2 hole populations [27]

have a rough ratio of 1:2:1, which can be explained by
an angular momentum analysis. Because the interchannel
interactions strongly couple the various 4d−1

±m hole states,
it is crucial to consider the orbitals in addition to the one
aligned along the polarization axis (i.e., 4d−1

0 ) for the physical
processes involving the GDR, e.g., the giant enhancement in
the high-harmonic generation spectrum of xenon [16]. We also
compute the angular momentum composition of the excited
electron, which shows a prominent f -wave character for both
resonances. This is true in our intrachannel calculation too.
Indeed, the xenon GDR is dominated by 4d → εf transitions
with roots in the independent-particle picture [3,4].

Our CIS approach gives the total many-body resonance
wave functions, which are not attainable using plasma-type
treatments including RPAE [5,24,25]. We analyze |�1) and
|�2) by decomposing them in terms of the orthonormal

TABLE I. Siegert energies of the resonances in the intrachannel model and the full CIS model. Results are listed for the SES method and
for the Gabor analysis. For comparison, the predictions given by Wendin [8] are included.

SESa Gaborb Wendin [8]


n (eV) �n (eV) 
n (eV) �n (eV) 
n (eV) �n (eV)

Intrachannel
4d0 76.3 8.3 76.5 ± 0.3c 8.2 ± 0.4c – –
4d±1 77.6 13.8 77.9 ± 0.7c 13.5 ± 0.4c – –
4d±2 77.2 10.6 77.4 ± 0.3c 10.6 ± 0.1c – –
Full ClS
R1 74.3 24.6 80.4 ± 0.7,d 73 ± 2e 32 ± 1,d 17.8 ± 0.4e 74.3 –
R2 107.2 59.9 112 ± 1d 47 ± 9d 92.3 –

aAll SES values have an error bar of 0.1 eV. This is calculated by varying over a reasonable range the numerical parameters such as the number
of radial grid points, the maximum radial coordinate, and the SES parameters θ and λ.
bIn each calculation, the Gabor spectra are fitted numerically in a time interval [ti ,tf ] at a time step of 3 as. This gives the fitting parameters

n, �n as a function of time. Error bars are then defined as the standard deviations of 
n, �n over the time sequence.
cUsing Eq. (13) for one resonance in [ti ,tf ] = [145 as, 363 as].
dUsing Eq. (16) for two resonances in [ti ,tf ] = [145 as, 169 as].
eUsing Eq. (13) for one resonance in [ti ,tf ] = [242 as, 363 as].
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TABLE II. Complex weights a2
±m with respect to the intrachannel

resonance states |�4d±m
) for the collective resonances |�1) and |�2)

in SES calculations.

R1 R2

a2
0 0.175 − 0.033i 0.075 + 0.042i

a2
±1 0.345 + 0.009i 0.106 + 0.003i

a2
±2 0.198 − 0.018i 0.081 + 0.028i∑

m a2
m 0.719 − 0.042i 0.262 + 0.073i

intrachannel basis set:

|�n) =
∑

a±m|�4d±m
) + |��n), n = 1,2. (14)

The first term in Eq. (14) contains the projections onto the
intrachannel resonance functions |�4d±m

), and the second
term symbolizes the remaining part with respect to the other
intrachannel states. The complex weights a2

±m defined through
the symmetric inner product are listed in Table II. For both R1

and R2, a2
0 , a2

±1, and a2
±2 have the same order of magnitude.

For R1, the intrachannel resonances account for a weight of∑
m a2

m ≈ 0.7 out of a total norm of 1; for R2, they contribute
a weight ≈0.3. This means that the interchannel interactions
not only mix all the intrachannel resonance states, but also mix
in continuum states to form new resonances. At this stage, we
clearly see in our configuration-interaction language why we
can refer to R1 and R2 as new collective dipolar modes: they
are entangled particle-hole states involving the various 4d−1

±m

hole states and do not resemble any single intrachannel
resonance wave function. In RPAE, collective excitations
are not directly defined by the many-body wave functions
themselves, but by a coherent sum over different particle-hole
states in evaluating the dipole [9] or dielectric function [8,30]
matrix elements. Note that both collective states have a
significant overlap with the HF ground state via a dipole
transition, with (�1| D̂z|�HF

0 ) ≈ 1.1 and (�2| D̂z|�HF
0 ) ≈ 1.9

for R1 and R2, respectively.
The positions and widths of the resonances in the full model

are listed in Table I. The resonance positions calculated by
Wendin [8] are also listed for comparison. The resonance
position of R1 agrees perfectly with that given by Wendin.
The position for R2 differs from his number by 15 eV, but
both positions are compatible with the spectral blur observed
in the experimental cross section.

The most likely reason for the discrepancy of 
2 predicted
by Wendin and our result is the approximate condition Wendin
used to find collective excitations from his effective dielectric
function. In principle, a collective resonance corresponds to a
complex frequency where both the real and the imaginary parts
of the many-body dielectric function simultaneously become
0 [30,84]. An estimated resonance position can be found by
determining along the real energy axis a root for the real part
of the dielectric function, provided that the damping of the
true resonance is sufficiently small [30]. As one is dealing
with two rather broad resonances in the case of the xenon
GDR (particularly for R2), this approximate condition, which
is adopted by Wendin [8], is not strictly applicable. In the
Appendix, we demonstrate how this simplified condition of
finding the zeros of the dielectric function can result in Siegert

energies that deviate substantially from the true resonance
poles. Based on this argument, the Siegert energies provided
by the present study are most likely to be more reliable.

C. Time-dependent approach to Xe GDR: Gabor analysis
of autocorrelation functions

To probe the resonances associated with one-photon
absorption, the initial wave packet can be conveniently
set as

|�(0)) = D̂z

∣∣�HF
0

)
. (15)

This is equivalent to creating a wave packet via a δ-kick pulse
polarized along the z axis. Since it is well known that the xenon
GDR exhausts all the oscillator strength in the XUV [9,10],
the wave packet prepared in this way is largely composed of
the relevant resonances, and its autocorrelation function C(t)
is expected to take the form assumed in Eq. (8).

The wave packet subsequently undergoes field-free relax-
ation. Figure 2 plots the time evolution of the complex-valued
autocorrelation function for both the intrachannel and the full
CIS models. The raw data in both cases look like a simple
damped oscillator without much structure apart from some
spikes in the beginning. This suggests that there are some
dynamics that rapidly disappear. Including the interchannel
interactions causes the autocorrelation function to attenuate
more rapidly and to ring at a higher frequency.

The above features are more pronounced if we look at
the autocorrelation functions in the frequency domain as
illustrated in Fig. 3 [85]. The Fourier transform |C(ω)|2 in
each calculation shows one smooth peak, accompanied by
Rydberg series preceding the 4d ionization energy [29]. The
linewidth of the Rydberg states is narrow, since a 4d−1

±m hole
decays on the femtosecond time scale [86]. Although the SES
method yields three intrachannel resonances, they cannot be
distinguished and really act as a group here. Switching on the
interchannel couplings broadens and weakens the peak as well
as displacing it to a higher frequency, similar to what is seen
in the photoabsorption spectra [29]. In the full model, the two
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FIG. 2. (Color online) Autocorrelation functions C(t) as a func-
tion of time for (a) the intrachannel model (“intra”) and (b) the full
CIS model (“inter + intra”). Solid curves represent the real part, and
dashed curves the imaginary part, of C(t).
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FIG. 3. (Color online) Autocorrelation functions |C(ω)|2 in the
frequency domain for (a) the intrachannel model (“intra”) and
(b) the full CIS model (“inter + intra”). Solid curves represent the
data; dashed curves, the fit with Eq. (10).

resonances given by the SES analysis also cannot be resolved
in the Fourier domain.

We can extract the effective Siegert energy for the single
peak in Figs. 3(a) and 3(b). The data are fitted numerically
with Eq. (10) utilizing the nonlinear least-squares Marquardt-
Levenberg algorithm. This yields (
,�) = (79.0 eV,12.9 eV)
for the intrachannel model and (96.3 eV,38.9 eV) for the full
CIS model. Note that |C(ω)|2 in the full CIS model is relatively
poorly described by its Lorentzian fit and is more asymmetric,
a hint to the multiple resonances behind the huge spectral hump
of the xenon GDR.

Now we are in a position to go beyond the standard spectral
method and to investigate the xenon GDR in the combined
time-frequency domain. Figure 4 depicts the Gabor transform
|Ct (ω)|2 for both the intrachannel and the full CIS models
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FIG. 4. (Color online) Autocorrelation functions |Ct (ω)|2 in the
combined time-frequency domain for (a) the intrachannel model
(“intra”) and (b) the full CIS model (“inter + intra”).
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FIG. 5. (Color online) Decay dynamics of the Gabor spectra
|Ct (ω)|2 at consecutive time intervals. (a)–(c) Intrachannel model
(“intra”); (d)–(f) full CIS model (“inter + intra”). In each panel, the
time step between two neighboring lines is about 3 as.

[87]. In addition to the information that is already revealed
by C(t) and |C(ω)|2, one salient new feature emerges: the
spectral distribution in the intrachannel case dies out almost
symmetrically over time, whereas the spectral distribution in
the full CIS model decays asymmetrically, with the maximum
shifting to a lower energy. In the vicinity of 150 as, one can
clearly recognize two frequency components in Fig. 4(b) and
can deduce that the higher-energy one has a shorter lifetime.

Figure 5 presents snapshots of the frequency distributions
|Ct (ω)|2 in Fig. 4 at consecutive time steps, where the
characteristics we allude to can be even better visualized. In
the intrachannel model, Figs. 5(a)–5(c) exhibit one single,
decaying peak around 80 eV, which arises from the group of
three intrachannel resonances in the SES calculation. Upon
closer examination, we find that the peak position gradually
moves to a slightly lower frequency. This is in accordance
with the SES study reporting that the lowest-lying intrachannal
resonance has the smallest decay width (see Table I).

In the full CIS model, the time evolution of the transient
spectral distribution is fundamentally different. In Fig. 5(d), the
initial spectrum displays a broad and nearly symmetric peak
located around 90 eV. However, the spectrum soon becomes
highly asymmetric, with the maximum shifting to a lower
energy, and decays more rapidly than the intrachannel case.
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The successive dynamics in Fig. 5(e) vividly illustrate how the
substructures in the GDR develop: two peaks can be identified,
and the higher-lying one fades away much more quickly. This
is followed by Fig. 5(f), where the higher-lying mode has
completely vanished and only the lower-lying one remains,
with a position similar to that of the intrachannel resonance.
Just based on simple observations, the Gabor analysis intu-
itively illuminates how the interchannel interactions result in
the damping and fragmentation of the resonances, as well as a
rough idea of the resonance positions and widths. Benefiting
from the fact that different spectral components have different
lifetimes, the Gabor analysis successfully disentangles the two
fundamental collective modes that cannot be separated by the
Fourier analysis.

Next, the Siegert energies are quantitatively determined
following the logic presented in Sec. II C. Based on the a
priori input from the SES study, we perform the analysis in
the intrachannel case for each 4d±m ionization channel. One
peak in the Gabor profiles at subsequent time steps is then fitted
numerically with Eq. (13). The outcomes are listed in Table I
and are in excellent agreement with the SES results within the
error bars. Particularly, the Gabor analysis captures the minute
splitting trend of the resonance energies, i.e., 
4d±1 > 
4d±2 >


4d0 and �4d±1 > �4d±2 > �4d0 .
For the full CIS model, the fitting process is dissected into

two stages. In the first stage, roughly corresponding to the
time interval shown in Fig. 5(e), two resonances are singled
out. Resorting to Eq. (12) with n = 2, the Gabor spectrum has
the approximate analytical expression

∣∣C(2)
t (ω)

∣∣2 ≈ f1,t (ω) + f2,t (ω)

+ 2[f1,t (ω)f2,t (ω)]
1
2 f1−2,t (ω), (16)

where

fn,t (ω) := ∣∣a2
n

∣∣2
e

σ2�2
n

4 e−�nt e−σ 2(ω−
n)2
, n = 1,2;

f1−2,t (ω) := cos

[
σ 2(�2 − �1)ω

2
+ (�2 − �1)t

− σ 2(�2
2 − �1
1)

2
+ (φ2 − φ1)

]
. (17)

In Eq. (16), the first two terms are the individual contributions
from R1 and R2, and the third one is their interference. In
Eq. (17), φn denotes the phase of a2

n. The data are fitted with the
above formulas, and the Siegert energies are listed in Table I.
The error bars here are bigger than those in the intrachannel
case, and the extracted Siegert energies deviate from the SES
ones, especially for the decay width of the faster-decaying
R2. This is possibly due to the increasing difficulties in the
nonlinear fitting procedure (particularly from the interference
term). Also, in order to arrive at the analytical expression for
|Ct (ω)|2, Eq. (8) assumes that all the contributions to C(t) from
the bound states and the continuum can be neglected, which
does not work as well if the resonances decay relatively rapidly.

In the second stage, which nearly coincides with the time
interval shown in Fig. 5(f), only one resonance is seen. Using
Eq. (13), we produce another Siegert energy for R1 in Table I.
It does not fully agree with that retrieved at the former stage,

especially in terms of the resonance width. The two-resonance
model used at the first stage is only applicable in a short period
of time, where the resonance parameters certainly cannot
fluctuate too much. Hence, this discrepancy reflects further
numerical instability in the fitting parameters that cannot be
entirely represented by the previously calculated uncertainties.
The Siegert energy acquired at this second stage seems closer
to the SES one. Nevertheless, as the Gabor spectrum in this
time interval has a fairly weak amplitude, the contribution
from the Rydberg series (after the filtering) inevitably kicks
in, which lowers the effective energy position and width for R1.

The most appealing feature of the Gabor analysis is that
it provides an intuitive dynamical view on the competition
between various spectral components, which may be con-
nected to what is measured in a pump-probe experiment
[67–69]. However, it is apparent that the Gabor method cannot
quantify Siegert energies as accurately as the SES approach.
Considering the deviations from the SES results, the energy
uncertainties, and the discrepancy between the resonance
energies for R1 extracted at two stages, the Gabor analysis
gives an overall energy resolution of ≈10 eV.

D. Influence of 5s and 5 p orbitals

In Secs. III B and III C, the active ionization channels lie in
the 4d shell; the outer 5s and 5p shells are frozen. This is an
assumption made in Ref. [8] as well.

Our SES calculations show that including the 5s and 5p±m

channels leads to no qualitative but only minor quantitative
modifications to the previous discussion. Hence, the xenon
GDR mainly stems from the many-body correlations involving
the ten 4d electrons [9], and the 5s and 5p electrons are
only small admixtures. The Siegert energies for the three
intrachannel resonances remain the same as in Table I. In the
full CIS model with active 4d, 5s, and 5p shells, the Siegert
energies are slightly revised, to (
1,�1) = (73.4 eV,24.7 eV)
and (
2,�2) = (111.8 eV,58.2 eV). Note that the higher-lying
R2 is more sensitive to the effects of the outer shells.

IV. CONCLUSION

In this paper, we disentangle two fundamental collective
dipolar resonances that cannot be resolved in the photoabsorp-
tion cross sections associated with the xenon GDR. In exten-
sion of Wendin’s pioneering work [24], we achieve a complete
theoretical characterization of the resonance substructures by
two complementary methods within the framework of the CIS
theory. It is very likely that the Siegert energies obtained in the
current study are more accurate than those given by Wendin, as
our methodology for finding the resonance poles is not limited
to weakly damped oscillations. The time-independent SES
approach demonstrated here is the first example of treating
collective resonances in multielectron atoms with the complex
scaling technique. The time-dependent Gabor analysis extends
the standard Fourier analysis to the combined time-frequency
domain, such that strongly overlapping resonances living on
different time scales can be more easily separated.

Our work provides a deeper insight into the nature of the
GDR: the group of three close-lying intrachannel resonances
splits into two far-separated resonances upon the inclusion of
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interchannel couplings primarily involving the 4d electrons.
The two resonances are new collective modes in the sense that
they must be written as a superposition of various particle-hole
wave functions. When the excited electron is still near the ion,
a strongly entangled particle-hole pair is formed. This leads to
the strong mixing of the various 4d−1

±m ionic states, the entire
4d shell thus exhibiting collective plasma-like oscillations as
a whole.

We specify the Siegert energies for the two collective
resonances. However, the exact values need further theoretical
refinement. The CIS theory only contains one-particle–one-
hole configurations (in addition to the HF ground state). Hence,
real and virtual double excitations [8,9,51] are among the
physical processes outside the scope of the current study.
Nonetheless, since TDCIS (in the velocity gauge) produces
a peak position in good agreement with the experimental pho-
toabsorption cross section [29], we expect that the inclusion of
double excitations would not affect the resonance parameters
substantially.

Finally, we note that a recent experiment at the free-
electron laser FLASH, using an XUV nonlinear spectroscopy
technique, has provided the first direct evidence of the two
collective dipolar resonance states associated with the xenon
GDR [90]. Thus, it may be expected that experiments of
this type will provide an opportunity to test the predictions
presented in this paper.
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APPENDIX: CONSEQUENCE OF USING THE
APPROXIMATE CONDITION TO FIND ZEROS OF

DIELECTRIC FUNCTIONS

As briefly explained at the end of Sec. III B, the approximate
condition invoked by Wendin [8] to find zeros of the many-
body dielectric function can result in Siegert energies that
substantially deviate from the true resonance poles. In this
section, we provide numerical evidence in support of the above
statement.

A collective resonance obtained from diagonalizing the
complex-scaled many-body Hamiltonian corresponds to an
energy En = 
n − i�n/2 in the complex energy plane where
both the real and the imaginary parts of the many-body
dielectric function ε(E) simultaneously vanish [30,84]. In the
limit of �n → 0, this exact condition is reduced to finding
the roots of the real part of ε(
) along the real energy axis

, � = 0 [30].
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FIG. 6. (Color online) Real part of the many-body dielectric
function Re(ε) along the real energy axis 
. Solid curve, Wendin’s
data [8]; dashed curve, fit with Eq. (A1). The two resonance positions
determined in the spirit of Wendin’s work are labeled 
′
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′
2.

For a dielectric function with two poles in the energy range
of interest, it must follow the simple analytical structure [84],

ε(E) = 1

1 − (
a1

E−E1
+ b2

E−E2

) , (A1)

where a1 and a2 are two complex numbers.
To extract Wendin’s dielectric function for the xenon GDR,

we fit the real part of his data with Re(ε(
)) in Eq. (A1).
The an are treated as fitting parameters, and the En as known
constants with the values given by the SES method in Table I
(as mentioned in Sec. III B, we believe that our Siegert
energies are closer to the true ones). The real part of the
reconstructed dielectric function (with a1 = −10.0 − 19.7i

and a2 = −1.6 + 6.4i) is shown in Fig. 6 and nicely describes
Wendin’s result.

The real part of ε(
) we retrieve passes through the
real energy axis at 
′

1 = 74.5 eV and 
′
2 = 91.0 eV, which

do not coincide with the excitation energies of the true
collective poles, 
1 = 74.3 eV and 
2 = 107.2 eV. This
strongly indicates that the approximate condition of finding
the roots of Re(ε(
)) as Wendin did does not suffice to provide
accurate predictions for the short-lived collective resonances.
In particular, the estimated 
2 for the shorter-lived R2 amounts
to an error of 16.2 eV. In our opinion, the most consequential
approximation Wendin made lies not in the way he constructed
the dielectric function, but in the way he searched for the
collective poles, which is suitable only for weakly damped
oscillations [30].
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