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To achieve universal quantum computation using continuous variables, one needs to jump out of the set of
Gaussian operations and have a non-Gaussian element, such as the cubic phase gate. However, such a gate
is currently very difficult to implement in practice. Here we introduce an experimentally viable “repeat-until-
success” approach to generating the cubic phase gate, which is achieved using sequential photon subtractions and
Gaussian operations. We find that our scheme offers benefits in terms of the expected time until success, as well
as the fact that we do not require any complex off-line resource state, although we require a primitive quantum
memory.
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I. INTRODUCTION

Modern digital computers operate by manipulating discrete
information, ones and zeros, and are able to perform compli-
cated tasks by first breaking them down into more elementary
operations. The first notions of quantum computation proceed
in a largely analogous manner where the elementary operators
can be classified into two groups [1]: Clifford and non-Clifford
gates acting on discrete states. To achieve universal quantum
computation one needs elements from both of these sets [2].
One can also consider quantum computation over continuous
variables (CVs) [3,4] to obtain the same speedup, in a manner
similar to classical analog computation, and in fact, this
framework may have inherent benefits [5]. However, CV
systems have a set of difficult to implement operations which
are required for universal quantum computation, namely,
non-Gaussian gates. In addition, there exist hybrid approaches
which seek to exploit the advantages of both discrete and CV
systems to offer the best of both worlds [6–8]. These reasons
serve as our motivation for understanding how to implement
non-Gaussian gates in a practical manner.

In addition to the readily available set of Gaussian op-
erations, corresponding to Hamiltonians of first and second
powers of the quadrature operators x̂ and p̂, we only require
access to a Hamiltonian of at least third power in the quadrature
operators to allow us to approximate a Hamiltonian that is
an arbitrary polynomial of the quadrature operators [5]. In
particular, we consider an elementary operation known as the
cubic phase gate, given by U (γ ) = eiγ x̂3

. Presently, one can
directly implement this Hamiltonian only with γ � 1 due to
very low interaction strengths, and the noise one introduces by
doing so makes this unsuitable for quantum computation [9].
Alternative approaches seek to use nonlinearity from photon
subtraction or addition, or non-Gaussian measurements such
as photon counting [10,11].

In this paper, we propose a method capable of approx-
imating the cubic phase gate to arbitrary accuracy while
only requiring sequential photon subtractions and Gaussian
operations. Our method is inherently probabilistic, but can be
operated in a repeat-until-success fashion using technology
that is available today, and we show that the time until

success of our method scales only as slow as 1/p where
p is the probability of a successful photon subtraction.
Furthermore, we require only standard photon detectors which
can distinguish between vacuum and the presence of one
or more photons, such as an avalanche photodiode (APD),
and do not need homodyne detectors or complex off-line
resource states. Previous experiments in the field of continuous
variables have demonstrated the implementation of a variety of
key elements such as entangling gates [12], dynamic squeezing
[13], scalability [14–16], and state preparation [17]; however,
the cubic phase gate remains a key obstacle.

This paper is organized as follows. In Sec. II we motivate
the necessity of the cubic phase gate by discussing its role
in universal quantum computation and we show a method of
approximating the gate with a sequence of nondeterministic
operations. Next, we discuss an ideal and realistic method of
implementing our decomposition in Sec. III. In Sec. III B we
study the effect of detector imperfections as well as choosing
a finite truncation in our approximation and compare these
results to the ideal cubic phase gate. An explicit experimental
implementation including a discussion of the repeat-until-
success nature of the photon subtraction is given in Sec. IV. In
Sec. V we compare our proposal to two other implementations
of the cubic phase gate, and finally we provide concluding
remarks in Sec. VI.

II. BACKGROUND

The cubic phase gate [10] is an essential component in
CV universal quantum computation because it allows us to
approximate arbitrary Hamiltonians [5]. This comes from the
fact that if one is able to implement operators Â and B̂, then
one can approximate the operator i[Â,B̂] using the relation [5]

eiÂt eiB̂t e−iÂt e−iB̂t ≈ e−[Â,B̂]t2 + O(t3). (1)

Specifically this allows us to construct Hamiltonians consisting
of monomials of x̂ of degree higher than 3 as [18]

x̂m = −2

3(m − 1)
[x̂m−1,[x̂3,p̂2]], (2)
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from which we can construct arbitrary polynomials using the
relationship

x̂mp̂n + p̂nx̂m = −4i

(n + 1)(m + 1)
[x̂m+1,p̂n+1]

− 1

n + 1

n−1∑
k=1

[p̂n−k,[x̂m,p̂k]]. (3)

To approximate the cubic phase gate we first consider a
decomposition

UN (γ ) =
(

1 + i
γ

N
x̂3

)N

, (4)

clearly as N becomes large this well approximates the cubic
phase gate to within terms of the order O(1/N ). We further
decompose this operation as

1 + i
γ

N
x̂3 = U0U1U2, (5)

where Ul = 1 + γlx̂ and γl = exp[iπ (4l + 1)/6](γ /N )1/3.
Note that

|U0U1U2|2 = 1 + γ 2

N2
x̂6, (6)

so that for N sufficiently large, compared to values of x

where ψ(x) has non-negligible support, this operation, when
successful, will approximately preserve the norm of our state.
Our goal is to now find a method of implementing Ul , as we
can approximate the cubic phase gate to within error O(1/N )
by N applications of these three operators.

III. IMPLEMENTATION

We would like to implement the cubic phase gate on an
arbitrary state |ψ〉 = ∫

dx ψ(x)|x〉 and to do so we have
noted that it is enough to find a method of implementing
the various Ul operators. To do so we first prepare a coherent
state |α1〉R = D(α1)|0〉R , where D(α1) = exp(αâ

†
R − α∗âR) is

the familiar displacement operator and where the subscript
R denotes a resource mode. We then interact our state of
interest with the coherent state under the two-mode operator
U2(β) = exp[(βâ

†
R − β∗âR)x̂]; this gate is known as the

quantum nondemolition (QND) gate and its implementation
requires two off-line squeezed ancilla states [19]. After this
interaction we arrive at the state

|�〉 =
∫

dx ψ(x)U2(β1)DR(α1)|x〉|0〉R

=
∫

dx ψ(x)|x〉|α1 + β1x〉R

=
∫

dx ψ(x)|x〉|α1(1 + γlx)〉R, (7)

where we have chosen β1 = γlα1 and where α1 ∈ R is an
unspecified and tunable parameter. We proceed by describing
two different methods of obtaining the desired result; one
method is theoretically simple but experimentally challenging,
while the other can feasibly be demonstrated with currently
available technology.

A. Ideal implementation

First we will analyze the ideal implementation to convey
the main concept in our approach. Given the state in Eq. (7)
we apply a nondemolition measurement on the resource mode
and condition on the outcome where we project onto the space
orthogonal to |0〉, i.e., the outcome where P0̄ = 1̂ − |0〉〈0| is
the corresponding projector. After this projection we are left
with the state

P0̄|α1(1 + γlx)〉R =
∞∑

k=1

1√
k!

[α1(1 + γlx)]k |k〉R (8)

≈ α1(1 + γlx)|1〉R, (9)

where α1 ∈ R is some suitably chosen constant given that
the error in this approximation is negligible for small x and
significant for large values of x; in practice we desire some a
priori information about ψ(x). With this transformation, the
final state is of the form

|� ′〉 ∝
∫

dx ψ(x)(1 + γlx̂)|x〉|1〉R

∝
∫

dx ψ(x)Ul|x〉|1〉R, (10)

which is the desired outcome. This approach is probabilistic
in that the nondemolition measurement may fail; however, if
it does fail one can simply discard the mode and attempt the
procedure again.

B. Realistic implementation

The nondemolition measurement in the previous section is
experimentally a very challenging task; however, it serves as
a solid motivation towards finding a more practical approach.
In this section we discuss a more feasible approach based on
sequential photon subtraction, namely, we take the state in
Eq. (7) and pass the resource mode through a beam splitter of
high transmittance T mixing it with a vacuum input |0〉b to
obtain

|�〉|0〉b →
∫

dx ψ(x)|x〉|
√

T ζl〉R| − √
1 − T ζl〉b, (11)

where ζl = α1(1 + γlx). We require the ancillary mode to
be weak so that the b mode is well approximated by
| − √

1 − T ζl〉b ≈ |0〉b − √
1 − T ζl|1〉b. Next we send the b

mode to a photodetector which acts, in this two-dimensional
subspace, as the projector |1〉〈1| if it clicks, and otherwise
as |0〉〈0|. If there is no click then we are left with the state∫

dx ψ(x)|x〉|√T ζl〉R|0〉b and the b mode decouples so that
we can reattempt the last step; in this way we are able to
operate in a repeat-until-success fashion without a change in
the state except for an attenuation

√
T ≈ 1. If the probability

of subtracting a single photon is given by p, which will depend
on the parameters and state of interest, then this scheme will
succeed after ∼1/p trials, and thus we can approximate the
cubic phase gate to within terms of order O(1/N) within
a running time that scales as ∼3N/p. Suppose it takes M

attempts to remove one photon from the resource mode so that
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the new state of the system is

|� ′〉 ∝
∫

dx ψ(x)(1 + γlx̂)|x〉|T M/2α1(1 + γlx)〉R|1〉b.
(12)

We can decouple the resource mode by applying another QND
gate U2(−T M/2α1γl) to obtain

|� ′′〉 ∝
∫

dx ψ(x)Ul|x〉|T M/2α1〉R|1〉b, (13)

which is the desired gate after we trace out the last two modes
which are only part of a product state with our mode of interest.

This approach assumes an ideal photon detector that is
capable of only distinguishing between vacuum and the
presence of one or more photons. We can model imperfections
in such a detection scheme by considering the positive operator
valued measure {	̂0,1̂ − 	̂0} where

	̂0 =
∞∑

m=0

e−ν(1 − η)m|m〉〈m|, (14)

and where η is the detection efficiency, while ν is the
rate of dark counts [20]. For our purposes, an imperfect
detection efficiency η < 1 will result in cases where we have
successfully subtracted a photon but we are unaware of this
fact. This means that we will obtain the desired transformation
in Eq. (12); however, since we do not recognize it, we will
proceed in attempting further photon subtractions; this will
effectively increase the power on the factor (1 + γ x̂)k>1 in an
undesired manner. Alternatively, for ν �= 0 there will exist false
positives where we believe we have subtracted a photon when
we have not. In this case, the protocol will proceed where one
of the Ul operators is replaced by the identity operation; the
effect of these errors is plotted in Fig. 1. We can also consider
the effect of the cubic phase gate on the first two moments of
x̂,p̂. We find good agreement for the first moments between the
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FIG. 1. (Color online) Effect of imperfect detectors where the
operator Â = UN (γ ) − eiγ x̂3

is the difference between the approx-
imation and ideal cubic phase operators. The expectation value, both
real (solid) and imaginary (dashed) parts, as well as the standard
deviation (dotted) of this operator, in a position eigenstate |x〉, is
plotted for γ = 0.03 [11,21] and N = 1. We consider a detector
with an efficiency of 90%, a dark count rate of 100 Hz and a timing
resolution of 100 ps; such a detector is within the reach of current
technology [22–24]. We see that for small values of x the effect of
detector imperfections on our approximate cubic phase gate are small
and we still approximate the ideal gate closely.
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FIG. 2. (Color online) Variance σ 2
p plotted for the ideal (solid)

cubic phase gate as well as UN (γ ) for N = 1 (dashed), 3 (dotted), 5
(dash-dot), and 7 (dash-double dot); the strength of the gate is given
by γ = 0.03. The input state is chosen to be a coherent state with
constant imaginary part Im(α) = 0.25 where the real part varies with
the horizontal axis. Additional squeezing, omitted in this plot, can be
utilized to improve the strength or quality of the gate; here we are
interested only in the differences as one varies N and we see that as
N increases we obtain a closer approximation. Deviation from the
ideal curve will result in extra variance in the momentum quadrature,
compared to the ideal curve, after one squeezes the mode.

ideal gate and our approximation. The variance of momentum
is plotted in Fig. 2 to demonstrate that for increasing values
of N one obtains a result closer to the ideal operation. One
can also increase the strength of the approximate cubic phase
gate by squeezing, for example when N = 1 one finds that an
effective strength γeff ∼ 0.1 can be achieved with γ = 0.03
without greatly degrading the quality of the gate [11,21].

IV. EXPERIMENTAL SETUP

Section III discussed the theoretical implementation of the
cubic phase gate by outlining the full operator for a single
factor inU0U1U2. The full gate can then be realized by applying
the three operators sequentially to the target state, resulting in
an additional power in the phase for each factor. In this section,
we outline experimentally how to achieve a single operator for
a linear phase gate, which can then be applied experimentally
in sequence for a cubic, or higher polynomial, phase gate.

A. Quantum nondemolition measurement

Two distinct nondemolition measurements are applied in
the ideal gate implementation. First, the two-mode unitary
U2(β) = exp[(βâ

†
R − β∗âR)x̂] is implemented via the non-

demolition phase gate [19,26] (see Fig. 3). A subsequent
nondemolition measurement must be performed in order to
project the state onto the subspace complementary to |0〉〈0|
without projecting into a specific number eigenstate. Such a
measurement has been theoretically proposed using the inverse
V-STIRAP scheme for single photon emission [25]. Briefly,
the cavity-QED scheme used in V-STIRAP is inverted: an
atom in a specific ground-state sublevel interacts with a cavity
field containing an unknown number of photons. The atom
and cavity modes are entangled, allowing a measurement of
which ground-state sublevel the atom occupies to determine
the photon field state. One sublevel denotes the vacuum state
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FIG. 3. (Color online) Experimental implementation of a single Ul operation in the cubic phase gate decomposition. Left: after application
of the two-mode unitary a QND measurement is made to project onto the subspace orthogonal to |0〉〈0|. This could consist of an inverse
V-STIRAP scheme via strong atomic coupling to a photonic cavity mode (cavity QED) [25], or via cross-phase modulation. However, in the
case of cross-phase modulation a phase shift can be registered, but not its magnitude, in order to avoid projection onto a specific number
state. Middle: After the QND measurement, the resource state is sent through a weak beam splitter, and an avalanche photodiode registers a
click to signal a photon-subtraction measurement. The QND summing gate is then run in reverse, where the photon detection triggers inverse
operations on the phase modulators and squeezers compared to the original QND summing gate. If the squeezers in the inverse gate are kept
phase locked to the first set in the previous measurement, homodyne detectors are unnecessary here because the APD serves as the conditional
measurement and the squeezing angles are known, allowing for deterministic feed-forward control. Right: the QND summing gate consisting
of feed-forward phase modulation and off-line squeezing resources.

for the cavity field, while the other sublevel denotes the original
cavity field with a single photon subtracted. This scheme
requires our resource state to serve as the cavity mode in a
cavity-QED scheme. This is experimentally challenging but
should be achievable with current technology. Alternatively,
one may perform a variation of cross-phase modulation. A
precise measurement of a phase shift on a reference beam
would in fact project the resource state onto a specific photon
number state, rather than onto the complement of |0〉〈0|.
However, if the presence of a phase shift can be determined,
but not its magnitude, one could approximate the inverse
V-STIRAP measurement. There are technical difficulties in
performing such a measurement in a realistic model, namely,
that undesired phase noise inevitably enters the desired mode
[27]. It may be possible to deamplify this noise using feed-
forward control onto the signal field, similar to Ref. [28], or
alternatively one may use an atom-cavity system to mediate
this interaction [29].

B. Photon subtraction measurement

Alternatively, one may approximate the QND projection
via single-photon subtraction and post-selection (see Fig. 3).
One may try the photon subtraction as many times as necessary,
such that the success probability of the gate is directly related to
the beam splitter transmission and avalanche diode efficiency.
However, the nonunitary gate enacted by photon subtraction
requires only a single photon be removed, resulting in a
tradeoff between wait time and fidelity. We note that the time
dependence has been removed in all the operators presented
in the manuscript thus far. We are therefore describing the
steady-state super-operator, corresponding to working in an
interaction picture where we have removed the free evolution
H0 = �ωâ†â, and therefore the steady-state form of |�〉 in
Eq. (12). Upon a successful photon subtraction, the super-
operator jumps to an operator that contains the nonunitary
gate. The photon subtraction signal serves as the feed-forward
mechanism for the next stage of the gate.

With the initial QND summing gate running in steady state,
the resource state is deterministically generated before the
subtraction operation. Therefore, one waits until a photon has
been subtracted and a new steady state is achieved before
feed-forward operations in the inverse QND gate. This scheme
is remarkably simple for CW beams: one has the same resource
state at all points in space-time of the experimental setup,
and the state only changes when the APD registers a click
and the subsequent feed-forward operations are performed.
For a pulsed light source, the repeat-until-success scheme
would consist of coupling into a circulator where the APD
is located, followed by a feed-forward signal to couple out of
the circulator (see Fig. 4). The circulator can be implemented
in optical fiber or in a polarization sensitive ring cavity. A
liquid-crystal wave retarder serves as a switch to release
the resource state once a successful photon subtraction is
registered.

The final step is to invert the QND summing gate. By
phase-locking all of the off-line squeezed light resources in the
experiment, the second homodyne detection can be eliminated,
since the first homodyne detection will also feed-forward
onto the squeezing angle of the inverse gate’s single-mode
squeezers. The single-photon subtraction gate serves as a
switch to perform inverse phase modulation and inverse
squeezing operations from the previous QND gate.

FIG. 4. (Color online) Repeat-until-success scheme in which a
pulsed resource state remains in a cavity until a photon detection is
registered.
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After this final step, the resource state is left in a phase-
dependent state with a single power in phase. The experimental
setup outlined above can be performed three times in sequence
in order to realize a cubic phase gate. Finally, the task remains
to utilize this gate during a universal quantum computation
in order to achieve the required non-Gaussian operation. It
is sufficient to teleport the gate onto one of the modes in
the resource cluster state in a one-way CV QC scheme, for
example [30].

V. COMPARISON TO OTHER SCHEMES

In this section we explore the relationship between our
proposal and alternative realizations of the cubic phase gate.
Direct implementation of the cubic phase gate would require
the use of third-order or higher optical nonlinearities. However,
these higher order nonlinearities are so weak that in practice
it is difficult to use them to implement quantum gates due to
the comparatively large amount of noise and loss. Fortunately,
it was shown by Gottesman, Kitaev, and Preskill (GKP) that
one can take advantage of the effective nonlinearity present in
a photon counting measurement [10]. In the GKP scheme, one
implements the cubic phase gate by first constructing the ideal
and not normalizable cubic phase state [10] |ξ 〉 = ∫

dx eiξx |x〉.
Given this resource state, one is able to implement the cubic
phase gate using only additional Gaussian operations and
homodyne measurement; the main difficulty lies in the creation
of the resource state.

To create a cubic phase state we first prepare an imperfect
EPR pair which we take to be Gaussian

|ψσx,σp
〉 =

(
σp

πσx

)− 1
2
∫

dx1dx2 exp

[
−1

2
σ 2

p

(
x1 + x2

2

)2
]

× exp

[
−1

2
(x1 − x2)2 /σ 2

x

]
|x1,x2〉, (15)

with σp,σx � 1. We then mix the second oscillator with a
coherent beam of light to obtain a large shift in momentum
|ψ〉 → eiαq̂ |ψ〉, α � σ−1

p ,σ−1
x , before we make a measure-

ment of the number of photons. After detecting n photons
and making some simplifying approximations, namely, using
the WKB approximation for the eigenstates of the number
operator, we find that the state of the first mode is given by

ψ
(n)
1 (x1) ∝ exp

[
i

x3
1

6
√

2E
− i(

√
2E − α)x1 + O

(x1

α

)]
,

where E = n + 1/2 and we are most likely to get a result
in the range n + 1/2 ∼ 1/2(α ± σ−1

x )2 + 1/2σ−2
p . This is a

good approximation to the cubic phase state provided that α

is large enough since we can eliminate the linear term with a
Gaussian operation. Although the coefficient γ ′ of the cubic
phase state in the above approximation is of the order n−1/2

we wish to be able to implement U (γ ) where the coefficient is
of the order unity. To do so GKP showed that it is enough to
be able to squeeze the phase state with a squeezing parameter
r = γ /γ ′. The fact that the ideal cubic phase state is not a
physical state, and one can only make approximations of it,
has been analyzed where it has been shown that one requires
squeezing beyond what is experimentally possible with current
technology, although this limitation might be overcome by

using other methods of generating finite superpositions of Fock
states [31].

Another alternative to counting photons, a non-Gaussian
measurement, is to appeal to experimentally feasible non-
Gaussian operations such as photon subtraction or addition.
This is the approach taken by Marek, Filip, and Furusawa
[11], who employ the principles of GKP’s approach where
one indeed overcomes the squeezing limitation by instead
using a resource state that is finite in the number basis. This
approach proceeds by creating a squeezed state S(r)|0〉R =
(πr)−1/4

∫
dx exp(−x2/2r)|x〉 where the state approaches the

ideal form as r → ∞. The cubic phase gate U (γ ) ≈ 1 +
iγ x̂3 − γ 3x̂6/2 can be approximated by its Taylor expansion,
and we note that the lowest order expansion which allows
the commutation tricks in Sec. II requires us to keep terms
up to x̂6; this would require six photon subtractions. In the
Marek et al.proposal, the authors look specifically at the lowest
order approximation O3 = 1 + iγ x̂3 where one then applies
the operator 1 + iγ x̂3

R to the resource state to obtain(
1 + iγ x̂3

R

)
S(r)|0〉R

= S(r)

[
|0〉R + γ ′ 3

2
√

2
|1〉R + γ ′

√
3

2
|3〉R

]
, (16)

where γ ′ = γ r−3/2. This state can be generated by the proper
sequence of three photon subtractions and displacements.
Given that we have this resource state at our disposal we apply
the QND gate U ′

2 = eip̂x̂R to obtain the state

|�〉 =
∫

dxdxR ψ(x)e− (x+xR )2

2r [1 + iγ (x + xR)3]|x〉|x〉R.

(17)

If we perform a homodyne measurement of x̂R and obtain the
outcome q the state of the first mode will collapse to

ψ ′(x) = e− (x+q)2

2r [1 + iγ (x + q)3]ψ(x), (18)

and as r → ∞ the exponential term will vanish leaving us with
only the cubic term. If q = 0 this is the desired outcome and
we are finished; however if this is not the case, we can perform
the feed-forward unitary UFF = exp[−iγ q3 − 3iγ (x̂ + q)x̂q]
to arrive at the state ψ ′(x) = [1 + iγ x3 + O(1)]ψ(x); this
approximation is only valid for sufficiently small x,q. This
approach can be generalized to work with higher order
approximations On of the cubic phase gate that simply
implement more terms in the Taylor expansion.

Our approach is similar to the Marek et al.approach
where one further decomposes the (1 + γ x̂3) operation into a
sequence of three nondeterministic operations; for the N = 1
case both approaches result in the same approximation UN (γ ).
This idea is noted by the authors in Ref. [11], where they
point out that they are unable to make use of this trick since
they require deterministic feed-forward in their approach. It
is also possible to conditionally generate arbitrary nonlinear
potentials using single-photon resource states in a similar
manner [32]. However, our protocol requires only a photon
detector which can distinguish between vacuum and one or
more photons, and one can operate in a repeat-until-success
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TABLE I. Comparison of three cubic phase gate implementations. Note that the Marek et al. approach is deterministic if one can store
the required resource state in memory until it is needed, we include the running time of preparing such a resource state in this table as a fair
comparison where p is the probability of a successful photon subtraction given some input state.

GKP Marek et al. Ours

Resource Two-mode squeezed vacuum Single-mode squeezed vacuum Coherent state
Detectors Photon number resolving Homodyne+photon detector Photon detector
Deterministic Yes, with off-line resource Yes, with off-line resource Repeat-until-success (state not

destroyed)
Running time N/A ∼1/p3 ∼1/p

Major obstacle High squeezing Simultaneous photon subtraction/ Decoherence and extra noise while
resource state engineering running the subtraction loop

fashion. An overview of the requirements and a comparison of
the various schemes is presented in Table I.

VI. CONCLUSION

By decomposing the cubic phase gate into a product of
nondeterministic operations, each of which only involve a
single photon subtraction, we have constructed a protocol
which can approximate the ideal gate using only sequential
photon subtractions. This gate is of vital importance to the field
of continuous-variable quantum computing because it enables
universal quantum computation when added to the toolbox of
the experimentally more simple Gaussian operations. We have
shown that when a photon subtraction is unsuccessful it does
not irreversibly destroy the state, and in fact one can continue to
attempt this step until it succeeds. Due to the sequential nature
of the photon subtractions, the overall runtime of the protocol
scales only as slowly as ∼1/p where p is the probability of
subtracting a photon.

The quality of the proposed gate has been discussed in the
presence of realistic detector imperfections which may lead to
errors in the implementation of the variousUl operations where
we have shown that one still obtains a reliable approximation.
Furthermore, we have shown how the approximate cubic phase
gate UN (γ ) compares to the ideal one when considering how
the first two moments of x̂,p̂ transform for a set of coherent
states and for various values of N . We provide an explicit

experimental implementation of all components necessary in
our protocol and discuss how the probabilistic nature of a
photon subtraction comes into play.

Finally, we compare our implementation of the cubic phase
gate to alternative schemes and highlight the similarities
as well as the differences in the required resources and
nature of the various protocols. Our protocol offers an
experimentally viable method of implementing the cubic phase
gate using only a photon detector and gates standard to the
alternatives considered in this paper. Furthermore, we require
only sequential photon subtractions as the non-Gaussian
element of our protocol. An open possibility is using this
approach to directly implement Hamiltonians of higher power
in x̂,p̂ by modifying the decomposition of (1 + γ x̂k) into a
product of k operations. The largest obstacle in the proposed
implementation is likely the requirement that one must protect
the state from decoherence and extra noise while attempting
to subtract a photon, though advances in quantum memory
continue to provide promising results.
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[25] D. K. L. Oi, V. Potoček, and J. Jeffers, Phys. Rev. Lett. 110,
210504 (2013).

[26] R. Filip, P. Marek, and U. L. Andersen, Phys. Rev. A 71, 042308
(2005).

[27] J. H. Shapiro and M. Razavi, New J. Phys. 9, 16 (2007).
[28] H. F. Hofmann, T. Kobayashi, and A. Furusawa, eprint

arXiv:quant-ph/0103106.
[29] C. Chudzicki, I. L. Chuang, and J. H. Shapiro, Phys. Rev. A 87,

042325 (2013).
[30] M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and P. van

Loock, Phys. Rev. A 79, 062318 (2009).
[31] S. Ghose and B. C. Sanders, J. Mod. Opt. 54, 855 (2007).
[32] K. Park, P. Marek, and R. Filip, Phys. Rev. A 90, 013804 (2014).

032321-7

http://dx.doi.org/10.1103/PhysRevLett.107.030505
http://dx.doi.org/10.1103/PhysRevLett.107.030505
http://dx.doi.org/10.1103/PhysRevLett.107.030505
http://dx.doi.org/10.1103/PhysRevLett.107.030505
http://dx.doi.org/10.1103/PhysRevLett.112.120505
http://dx.doi.org/10.1103/PhysRevLett.112.120505
http://dx.doi.org/10.1103/PhysRevLett.112.120505
http://dx.doi.org/10.1103/PhysRevLett.112.120505
http://dx.doi.org/10.1103/PhysRevA.87.043803
http://dx.doi.org/10.1103/PhysRevA.87.043803
http://dx.doi.org/10.1103/PhysRevA.87.043803
http://dx.doi.org/10.1103/PhysRevA.87.043803
http://dx.doi.org/10.1103/PhysRevLett.107.170501
http://dx.doi.org/10.1103/PhysRevLett.107.170501
http://dx.doi.org/10.1103/PhysRevLett.107.170501
http://dx.doi.org/10.1103/PhysRevLett.107.170501
http://dx.doi.org/10.1103/PhysRevLett.101.250501
http://dx.doi.org/10.1103/PhysRevLett.101.250501
http://dx.doi.org/10.1103/PhysRevLett.101.250501
http://dx.doi.org/10.1103/PhysRevLett.101.250501
http://dx.doi.org/10.1016/S0030-4018(98)00511-2
http://dx.doi.org/10.1016/S0030-4018(98)00511-2
http://dx.doi.org/10.1016/S0030-4018(98)00511-2
http://dx.doi.org/10.1016/S0030-4018(98)00511-2
http://dx.doi.org/10.1103/PhysRevA.88.053816
http://dx.doi.org/10.1103/PhysRevA.88.053816
http://dx.doi.org/10.1103/PhysRevA.88.053816
http://dx.doi.org/10.1103/PhysRevA.88.053816
http://dx.doi.org/10.1038/nphoton.2013.13
http://dx.doi.org/10.1038/nphoton.2013.13
http://dx.doi.org/10.1038/nphoton.2013.13
http://dx.doi.org/10.1038/nphoton.2013.13
http://dx.doi.org/10.1364/OE.21.001440
http://dx.doi.org/10.1364/OE.21.001440
http://dx.doi.org/10.1364/OE.21.001440
http://dx.doi.org/10.1364/OE.21.001440
http://dx.doi.org/10.1364/OE.21.010208
http://dx.doi.org/10.1364/OE.21.010208
http://dx.doi.org/10.1364/OE.21.010208
http://dx.doi.org/10.1364/OE.21.010208
http://dx.doi.org/10.1103/PhysRevLett.110.210504
http://dx.doi.org/10.1103/PhysRevLett.110.210504
http://dx.doi.org/10.1103/PhysRevLett.110.210504
http://dx.doi.org/10.1103/PhysRevLett.110.210504
http://dx.doi.org/10.1103/PhysRevA.71.042308
http://dx.doi.org/10.1103/PhysRevA.71.042308
http://dx.doi.org/10.1103/PhysRevA.71.042308
http://dx.doi.org/10.1103/PhysRevA.71.042308
http://dx.doi.org/10.1088/1367-2630/9/1/016
http://dx.doi.org/10.1088/1367-2630/9/1/016
http://dx.doi.org/10.1088/1367-2630/9/1/016
http://dx.doi.org/10.1088/1367-2630/9/1/016
http://arxiv.org/abs/arXiv:quant-ph/0103106
http://dx.doi.org/10.1103/PhysRevA.87.042325
http://dx.doi.org/10.1103/PhysRevA.87.042325
http://dx.doi.org/10.1103/PhysRevA.87.042325
http://dx.doi.org/10.1103/PhysRevA.87.042325
http://dx.doi.org/10.1103/PhysRevA.79.062318
http://dx.doi.org/10.1103/PhysRevA.79.062318
http://dx.doi.org/10.1103/PhysRevA.79.062318
http://dx.doi.org/10.1103/PhysRevA.79.062318
http://dx.doi.org/10.1080/09500340601101575
http://dx.doi.org/10.1080/09500340601101575
http://dx.doi.org/10.1080/09500340601101575
http://dx.doi.org/10.1080/09500340601101575
http://dx.doi.org/10.1103/PhysRevA.90.013804
http://dx.doi.org/10.1103/PhysRevA.90.013804
http://dx.doi.org/10.1103/PhysRevA.90.013804
http://dx.doi.org/10.1103/PhysRevA.90.013804



