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Entanglement on macroscopic scales in a resonant-laser-field-excited atomic ensemble
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We show that two groups of slow two-level atoms in a weak resonant laser field are entangled. The considered
groups can be separated by a macroscopic distance, and be parts of a larger atomic ensemble. In a dilute
regime, for two very distant groups of atoms, in a plane-wave laser beam, we determine the maximum attainable
entanglement negativity, and a laser intensity below which they are certainly entangled. They both decrease with
increasing distance between the two groups, but increase with enlarging groups sizes. As a consequence, for
given laser intensity, far separated groups of atoms are necessarily entangled if they are big enough.
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I. INTRODUCTION

The impact of the environment on quantum entanglement
is manifold. On the one hand, an initial entanglement between
independent systems can be destroyed by their coupling to
their surroundings. This fragility of quantum entanglement
is substantiated by the fact that it can vanish in finite
time, as first shown for two-level atoms in distinct vacuum
cavities [1]. On the other hand, the environment mediates
interactions, Hamiltonian or not, between the considered
systems, and can then induce correlations between them, and
hence potentially entanglement. It has been shown that finite
entanglement can develop between two initially uncorrelated
two-level systems, or qubits, sharing the same surroundings,
but otherwise uncoupled [2–6]. However, in the realistic
case of a finite separation between the two systems, this
effect is only transient if the environment is in thermal
equilibrium [5,6].

This is not the case when the surroundings does not
reduce to a thermal bath. The systems steady state, reached
asymptotically from any initial state, can present finite en-
tanglement, as has been shown for two qubits in diverse
environments, such as the electromagnetic vacuum and a
resonant laser field [7,8], two heat reservoirs at different
temperatures [9], and the electromagnetic field emitted by two
bodies at different temperatures [10,11]. The entanglement
obtained in these works can be essentially traced back to
one of the two familiar features of a pair of infinitely close
qubits, which are the decoupling, from the environment,
of the so-called subradiant state, and the divergent energy
shifts of the single-excitation levels [12–14]. Experimentally,
transient entanglement of two atoms has been generated using
the Rydberg blockade mechanism, which relies on similar
dipole-dipole energy shifts, but of double-excitation levels
[15,16]. Another approach consists of starting with multilevel
atoms coupled to one or several monochromatic fields, and
possibly to static fields or to a common cavity mode, and then
reducing them to two-level systems by adiabatic elimination
of upper levels in an appropriate regime [17–19]. Following
the proposal of Ref. [18], long-lived entanglement of two
atomic ensembles separated by 50 cm has been observed
experimentally [20,21].

In this paper, we are concerned with the entanglement
generated by a resonant laser field in an atomic ensemble.
Entangled steady states of systems of many driven qubits

have been obtained for highly simplified interaction models,
in which each qubit is coupled identically to every other one
[22], or is coupled only to its nearest neighbors in a chain [23].
We consider here two-level atoms evolving under the influence
of a laser field and of the obviously present electromagnetic
vacuum. Lehmberg’s master equation is used to describe the
dynamics of the atoms internal state [5,7,8,14,18,24]. For two
atoms, the resulting steady state is separable or entangled,
depending on the relative strength of the laser amplitude and
vacuum-mediated interaction [7,8,22]. We focus on the regime
of low laser intensities, in which entanglement is long range.
As we will see, the underlying physical origin of the found
entanglement is that, for weak laser fields, the atoms internal
dynamics is dominated by the dipole-dipole interaction, laser
photon absorption, and collective radiative decay, which all
preserve the state purity. As a result, the atoms steady state
is practically pure, and correlated, and hence entangled. As
shown in the following, this remains true for large groups
of atoms, and even if they are surrounded by other identical
atoms, as illustrated in Fig. 1.

The rest of the paper is organized as follows. The Hamil-
tonian used to describe laser-excited two-level atoms, and the
approximations leading to Lehmberg’s master equation, are
presented in the next section. In Sec. III, the steady internal
state of slow-moving atoms in a weak resonant laser field, is
determined, and two of its features, which are of particular
importance for entanglement, are discussed. In Sec. IV, the
entanglement of any two subgroups of atoms is studied. It is
shown that there is a laser intensity threshold, which depends
on the considered atoms, below which the two subgroups are
entangled. More quantitative results are derived, in a dilute
regime, for macroscopically distant groups of atoms. Finally,
in the last section, we summarize our results, and mention
some questions raised by our study.

II. MASTER EQUATION FOR LASER-EXCITED
TWO-LEVEL ATOMS

We consider an ensemble of two-level atoms evolving under
the influence of a laser field. Within the dipolar approximation
for the coupling to the electromagnetic field [12], and a
semiclassical approximation for the motion of the atoms [25],
the dynamics of the atoms internal state is governed by the
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FIG. 1. Schematic representation of two subgroups of atoms, A

and B, of characteristic size L, and separated by a distance D, of
a larger atomic ensemble, partially illuminated by a resonant laser
beam. A and B are entangled, for D � 1 m and L � 50 μm; for
example, see Sec. IV C.

Hamiltonian

H = He + ω0

∑
μ

σ †
μσμ −

∑
μ

(σμ + σ †
μ)

×
[

d · E(rμ) + �

2
Re[w(rμ)e−iωt ]

]
, (1)

where ω0 is the atomic resonance frequency, rμ is the classical
position of atom μ, and � is proportional to the laser field
amplitude. Throughout this paper, units are used in which
� = 1. The Hamiltonian He and field E read, respectively,
He = c

∫
d3k|k|(a†

k1ak1 + a
†
k2ak2), and

E(r) =
∫

d3k

( −c|k|
16π3ε0

)1/2 ∑
p=1,2

ekpeik·rakp + H.c., (2)

where c is the speed of light, ε0 is the vacuum dielectric
permittivity, ek1 and ek2 are unit vectors orthogonal to k
and to each other, and the electromagnetic field operators
akp satisfy the bosonic commutation relations [akp,a

†
k′p′] =

δpp′δ(k − k′). The atomic operator σμ is defined by σμ =
|g〉μμ〈e| where |g〉μ and |e〉μ are, respectively, the ground and
excited states of atom μ. The vector d = μ〈e|Dμ|g〉μ where
Dμ is the dipole moment of atom μ, is assumed real and the
same for all the atoms. The spatial function w depends on the
laser beam considered, w(r) = exp(iK · r) for a plane wave of
wave vector K, for example.

For fixed positions rμ, the time scales relevant to the
dynamics of the atoms internal state ρ are ω−1

0 , |rμ − rν |/c,
�−1, and 
−1 where 
 = |d|2ω3

0/3πε0c
3 is the spontaneous

decay rate of an isolated atom [24,26,27]. In the following,
we consider laser intensities such that � � 
. The ratio 
/ω0

is of the order of α3 where α � 7 × 10−3 is the fine-structure
constant [12]. Thus, for distances |rμ − rν | � k−1

0 α−3 where
k0 = ω0/c, the time scale 
−1 and �−1 are very long compared
to the other ones, and it can be shown that the time evolution

of ρ is well described by the master equation

∂tρ = −
L({rμ})ρ − i[Ha + Hl,ρ], (3)

where Ha and Hl are, respectively, the second and last terms
of Hamiltonian (1). The superoperator L is defined by

L
 =
∑
μ,ν

[zμνσ
†
μσν 
 + z∗

μν
σ †
μσν − 2γμνσμ
σ †

ν ], (4)

where 
 is any matrix, γμν = Rezμν , zμμ = 1/2, and, for
μ �= ν,

zμν = 3

4

eir

r3
{[1 − 3(d̂ · r̂)2](i + r) − i[1 − (d̂ · r̂)2]r2}, (5)

with r = k0|rμ − rν |, r̂ = (rμ − rν)/|rμ − rν |, and d̂ = d/|d|
[24,26]. For atoms moving with velocities ∂trμ � c/k0|rν −
rξ |, Eq. (3) remains valid with the time-dependent positions
rμ(t) [27]. Thus, for typical values of ω0 and 
, and velocities
of the order of 10 m s−1, Eq. (3) is relevant for interatomic
distances as large as some decimeters.

III. INTERNAL STATE OF SLOW ATOMS IN A WEAK
RESONANT LASER FIELD

We consider atoms’ velocities such that

∂trμ � 
k−1
0 . (6)

In terms of the temperature T of the atomic ensemble,
this condition can be rewritten as T/A � 1 K where A

is the mass number of the atoms. Since the characteristic
length scale of both Hl and L, is k−1

0 , the displacements
of the atoms during a time interval of length 
−1, can be
neglected in Eq. (3). Consequently, at each instant t , ρ is
essentially equal to the asymptotic solution of this equation
with atoms’ positions rμ(t) assumed fixed. It is hence of the
form ρ = ∑

p ρp exp(−ipωt). Due to the small value of 
/ω0,
the matrices ρp are practically given by their zeroth-order
expansions in this ratio. Thus, they obey [Ha,ρp] = pω0ρp,
and are determined by

iLρp + pδρp + η[W,ρp+1] + η[W †,ρp−1] = 0, (7)

where δ = (ω − ω0)/
 is a dimensionless laser detuning,
which is assumed to be at most of order unity, η = �/2


and W = ∑
μ σμw(rμ)∗. Note that only the rotating wave part

of Hl , i.e., �W exp(iωt)/2 + H.c., appears in these equations.

A. Low laser intensity perturbative solution

As we are concerned with laser intensities such that � � 
,
we solve Eq. (7) perturbatively in the ratio η. To do so, we
expand the Fourier components ρp as ρp = ρ(0)

p + ηρ(1)
p + · · · ,

where ρ(0)
p = δp0|G〉〈G|, with |G〉 = ⊗μ|g〉μ, is the solution to

Eq. (7) for η = 0. From Eq. (7), the successive ρ(n)
p are related

by

(iL + pδ)ρ(n+1)
p = −[

W,ρ
(n)
p+1

] − [
W †,ρ(n)

p−1

]
. (8)

Note that, strictly speaking, the regime of validity of the
following results is α3 � η � 1, since, in the derivation of
Eq. (7), terms of the order of (
/ω0)2 have been neglected,
whereas terms of the order of �/ω0 have been kept.
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Using the recursive relation (8), we find, up to second order
in η,

ρ = (〈ψ |ψ〉−1|ψ〉〈ψ |)[2], (9)

where the superscript [2] means that only terms up to second
order are kept, and

|ψ〉 = |G〉 + η
∑

μ

uμ|μ〉 + η2
∑
μ<ν

(uμuν + vμν)|μν〉, (10)

with |μ〉 = σ †
μ|G〉 and |μν〉 = σ †

μ|ν〉; see Appendix A. The
components uμ and vμν obey∑

ξ

zμξuξ − iδuμ = iwμ,

(11)∑
ξ

(zμξ ṽξν + zνξ ṽξμ) − 2iδvμν = zμν

(
u2

μ + u2
ν

)
,

where μ < ν, wμ = w(rμ) exp(−iωt), ṽμν equals 0 for μ = ν,
vμν for μ < ν, and vνμ for μ > ν.

The state of atom μ, which reads ρμ = |φ〉μμ〈φ| −
η2|uμ|2|g〉μμ〈g| with |φ〉μ = |g〉μ + ηuμ|e〉μ, is determined
by uμ, and the correlations between atoms μ and ν are
determined by vμν , since ρμν − ρμ ⊗ ρν = η2v∗

μνσμσν + H.c.
where ρμν is the state of the pair of atoms μ and ν. Note that
these correlations vanish if the mutual influence between the
atoms, mediated by the electromagnetic vacuum, is neglected,
since Eqs. (11) give vμν = 0 for zμν = δμν/2. In the absence
of vacuum-mediated interaction, entanglement between atoms
can still be generated using photons, but not with a simple laser
field [28–30].

B. Schrödinger-like equation

The fact that ρ coincides, up to second order, with a pure
state plays an essential role in the following. The origin
of this effective purity can be understood as follows. The
first two terms of the superoperator (4), which describe the
dipole-dipole interaction between the atoms and the decay of
the excited atomic levels due to spontaneous emission, can
be interpreted in terms of an effective complex Hamiltonian.
This is not the case of the last one, which accounts for
the populating, by spontaneous emission, of 〈k|ρ|l〉 where
|k〉 and |l〉 are eigenstates of Ha , from matrix elements
〈k′|ρ|l′〉 such that εk′ > εk where εk = 〈k|Ha|k〉. However, for
small η, and in the long-time regime, this process essentially
does not contribute to ρ, since the order, in η, of 〈k|ρ|l〉
increases with εk . Up to second order, it only results in
a correction to the ground-state population 〈G|ρ|G〉, which
simply ensures the normalization of ρ. Due to the decline
of 〈k|ρ|l〉 with increasing εk , stimulated emission is also
negligible. Consequently, Eq. (7) can be approximated by the
Schrödinger-like equation

∂t |ψ〉 = −
[
iHa + 


∑
μ,ν

zμνσ
†
μσν − i

�

2
e−iωtW †

]
|ψ〉, (12)

where the last term describes laser photon absorption. This
equation is satisfied, up to second order, by a state of the form
(10), provided uμ and vμν fulfill Eqs. (11).

C. State of a subensemble

An important property of the state (9) is that the ensuing
state of any subensemble of atoms is given by an expression of
the same form. Consider the system S consisting of the atoms
μ = 1, . . . ,n, and the complementary system S consisting of
all the other atoms. The pure state (10) can be expanded
on the basis {|G〉S,σ

†
μ|G〉S, . . .} of system S, where |G〉S =

⊗μ>n|g〉μ, as |ψ〉 = |G〉S|ψ〉S + · · · . The state |ψ〉S is given
by expression (10), but with sums running only over the first n

atoms, and |G〉, |μ〉, and |μν〉, replaced by the corresponding
states for system S. The point is that the following terms in
the above expansion of |ψ〉 either do not contribute to the
second-order state ρS of system S, or contribute only to a
correction to the population S〈G|ρS|G〉S, which simply ensures
the normalization of ρS. Consequently, ρS is given by Eq. (9)
with |ψ〉 replaced by |ψ〉S.

IV. ENTANGLEMENT

In this section, we discuss the entanglement of any two
subgroups of atoms, say A and B, such as those schematically
depicted in Fig. 1. A sufficient, but in general not necessary,
condition for A and B to be entangled, is that the partial
transpose ρ


AB of their collective state ρAB has negative
eigenvalues. A resulting measure of the entanglement between
A and B is the negativity N , which is the absolute sum of the
negative eigenvalues of ρ


AB. It vanishes for separable states,
and is equal to 1/2 for two-qubit maximally entangled states
[31]. To study the entanglement of A and B for low laser
intensities, i.e., � � 
, we determine the first terms of the
expansions, in powers of η, of the eigenvalues of ρ


AB.

A. Laser intensity threshold for entanglement

We show here that, as a consequence of the above obtained
results, A and B are entangled for low enough laser intensities.
Using expression (9), the eigenvalues of ρ


AB can be evaluated
up to second order in η. One of them is close to 1, and the others,
denoted λq in the following, are small, since Eq. (9) with
η = 0, gives ρ

(0)
AB = |G〉ABAB〈G|. Writing ρ


AB|ϕq〉 = λq |ϕq〉,
and expanding ρ


AB, |ϕq〉 and λq , in powers of η, with λ(0)
q = 0,

lead to λ(1)
q = 0, and (V + V †)|ϕq〉(0) = λ(2)

q |ϕq〉(0), where the
operator V is given by

V =
∑

μ�nA<ν�nA+nB

vμν |μ〉ABAB〈ν|, (13)

with nA and nB the numbers of atoms, suitably numbered,
of systems A and B, respectively, and |μ〉AB = σ †

μ ⊗ν�nA+nB

|g〉ν . The complete expression of the second-order matrix
(ρ


AB)[2] can be found in Appendix B.
The eigenvalues of the Hermitian operator V + V † are real.

Since it is traceless, some of them are negative as soon as
V �= 0. More precisely, the nonzero eigenvalues of V + V † are
±�

1/2
q where �q are the nonzero eigenvalues of both positive

operators V V † and V †V . Consequently, A and B are either
uncorrelated or entangled. This is similar to the pure state case,
and results from the fact that, up to second order, ρAB coincides
with a pure state, as discussed above. In other words, any two
subgroups of atoms are generically entangled for small enough

032312-3



S. CAMALET PHYSICAL REVIEW A 91, 032312 (2015)

η. The opposite limit, � 
 
, corresponds to the saturation
regime, where ρAB is proportional to the identity matrix, and
hence A and B are uncorrelated. Thus, there is a laser intensity
threshold, that depends on A and B, where ρAB goes from
entangled to separable.

B. Dilute regime

In the general case, determining the value of η above
which ρAB becomes separable, requires solving Eq. (7) for
finite η, which is not straightforward, even for only two
atoms [8]. Moreover, for more than two atoms, there is no
simple necessary and sufficient condition for entanglement
[31]. However, for atoms separated by distances much larger
than k−1

0 , which is of the order of 0.1 μm for ω0 of some eV, a
laser intensity below which A and B are certainly entangled,
can be evaluated. In this dilute regime, Eqs. (11) can be solved
perturbatively in the coefficients zμν ∼ k−1

0 |rμ − rν |−1 with
μ �= ν. This leads to the dominant contribution

vμν = −4zμν(1 − 2iδ)−3
(
w2

μ + w2
ν

)
, (14)

to the matrix elements of operator (13). Note that the
correlations between atoms μ and ν are then the same in the
presence and absence of the other atoms. We also remark that
atoms not illuminated by the laser beam are also entangled
for sufficiently low laser intensities. For such atoms, in the
dilute regime, vμν ∝ ∑

ξ zμξ zνξw
2
ξ , where the sum runs over

the atoms in the laser field.
The eigenvalue λq expands, in powers of η, as λq =

η2λ(2)
q + η4λ(4)

q + · · · , where λ(2)
q is an eigenvalue of V + V †.

Since λq is positive for large η, it changes sign for a certain
value �q of �, for negative λ(2)

q . As the matrix elements of
V are given by Eq. (14), λ(2)

q is small in the dilute regime
considered here. On the contrary, λ(4)

q attains a finite value in
the limit of vanishing zμν . We find the positive asymptotic
value

λ(4)
q = (1/4 + δ2)−2

∑
μ�nAB

|wμ|4|AB〈μ|ϕq〉(0)|2, (15)

where nAB = nA + nB, and |ϕq〉(0) is the eigenstate of V + V †

corresponding to λ(2)
q ; see Appendix C. This leads, for negative

λ(2)
q , to �q � 
[|λ(2)

q |/λ(4)
q ]1/2. As long as � < maxq�q , at

least one eigenvalue λq is negative, and hence A and B are
necessarily entangled.

C. Long-range entanglement

To study more quantitatively long-range entanglement, we
consider two regions of characteristic size L, separated by
a large distance D 
 k0L

2, and assume that, in these areas,
the laser beam is essentially a plane wave of wave vector K.
Systems A and B consist of the atoms lying in these regions;
see Fig. 1. In this case, Eqs. (5), (13), and (14) give

V = 3i sin2 θeik0D

k0D(1 − 2iδ)3

∑
μ�nA<ν�nAB

|μ̃〉〈ν̃|(w2
μ + w2

ν

)
, (16)

where wμ = exp(iK · rμ − iωt), θ is the angle between d and
the approximate line joining A and B, and |μ̃〉 = exp(−ik0e ·
rμ)|μ〉AB with e the unit vector pointing from A to B. Noting

that this operator can be written in terms of four kets, one finds
two negative eigenvalues λ(2)

q . For randomly distributed atoms
and large enough numbers nA and nB, these two negative λ(2)

q

are practically equal; see Appendix D. Since |wμ| = 1 for all
the atoms of A and B, the sum in expression (15) reduces to
1. Finally, using the evaluation of �q discussed at the end of
the previous paragraph, one finds that A and B are necessarily
entangled for

� <

√
3

2

(1 + 4δ2)1/4

(
D0

D

)1/2

, (17)

where D0 = k−1
0 (nAnB)1/2 sin2 θ . The negativity N vanishes

for � equal to the right side of this inequality, and also as η

goes to zero. In the dilute regime considered here, it reaches a
maximum for � equal to the right side of Eq. (17) divided by√

2, which is

Nmax = 9

32
(1 + 4δ2)−1

(
D0

D

)2

= 32(1 + 4δ2)−2η4
max, (18)

where ηmax is the value of the ratio η = �/2
 at the maximum.
The attainable values of negativity are thus essentially limited
by the validity of the low-laser-intensity perturbative approach
we use.

As the distance between systems A and B increases, the
interval of laser amplitudes that lead to nonzero negativ-
ity shrinks, and the maximum negativity Nmax diminishes.
However, since D appears in Eqs. (17) and (18), divided by
D0, the unfavorable impact of increasing the distance can
be counterbalanced by enlarging the numbers nA and nB.
An interesting consequence is that, all the other parameters,
including D and the laser amplitude �, being fixed, big enough
groups of atoms are necessarily entangled. Let us examine this
point more carefully. Assuming that the atoms are uniformly
distributed, and that A and B are cubes of edge length L,
nA/B = (L/d)3 where d is the mean interparticle distance, and
Eq. (17) can be rewritten as

L > d(1 + 4δ2)−1/6(k0D)1/3(2�/
√

3
 sin θ )2/3. (19)

For L satisfying this inequality, A and B are certainly
entangled, whereas the negativity vanishes for smaller groups
of atoms. Note that the above results have been obtained under
the condition D 
 k0L

2, which can be fulfilled together with
Eq. (19) only if D is large enough. With k−1

0 � 0.1 μm, d �
1 μm, D � 1 μm (1 cm), θ � π/2, δ � 0, and �/
 � 0.1,
Eq. (19) gives a lower bound of about 50 μm (10 μm). The
corresponding number nA/B of atoms is of the order of 105

(103). We finally discuss the influence of the laser detuning.
As δ is increased, the bound given by Eq. (17) grows, and that
given by Eq. (19) decreases. However, our resonant approach,
based on Eq. (7), is valid only for not too large δ. Moreover,
the reachable values of negativity vanish with increasing δ; see
Eq. (18).

V. CONCLUSION

In summary, we have shown that two groups of two-level
atoms, A and B, can be entangled by a weak resonant laser
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field, even if the distance between them is macroscopic, and
even in the presence of surrounding identical atoms. In a dilute
regime, for far separated A and B in a plane-wave laser beam,
we have determined a value of the laser amplitude below
which A and B are certainly entangled, and the maximum
negativity that can be reached by varying the laser amplitude.
They both diminish with increasing distance between A and B.
But these tendencies can be counterbalanced by enlarging the
sizes of A and B. Consequently, for given laser intensity and
distance between the two groups of atoms, they are necessarily
entangled if their size exceeds a certain value.

In this work, we assumed that the motion of the atoms is
slow enough that its impact on the dynamics of their internal
state can be disregarded, which, depending on the atomic
mass, can be valid for temperatures of the order of 10 K.
A natural extension of our study would be to examine how
the found laser-induced entanglement depends on the atoms’
velocities for higher temperatures, and whether it disappears
at some temperature. The quantitative results presented for
very distant groups of atoms have been derived in the dilute
regime. It would be of interest to determine how general they
are, especially the positive impact of enlarging the number of
considered atoms. We finally remark that, though we focus
on atoms in this paper, the studied entanglement mechanism
may be relevant to other physical realizations of qubits, such
as nuclear spins, coupled to a common environment, and to
oscillating fields.

APPENDIX A: PERTURBATIVE SOLUTION OF EQ. (7)

With ρ(0)
p = δp0|G〉〈G|, the recursive relation (8) gives

ρ(1)
p = δp1

∑
μ

ũμ|μ〉〈G| + δp −1

∑
μ

ũ∗
μ|G〉〈μ|, (A1)

where the components ũμ obey Eq. (11) with t = 0. In
deriving this result, we used the fact that the matrix elements
|〈μν|ρ±1|ξ 〉| < (〈μν|ρ0|μν〉〈ξ |ρ0|ξ 〉)1/2 are at least of second
order. They are actually of third order.

Using again Eq. (8), we find

ρ(2)
p = δp0

(
−

∑
μ

|uμ|2|G〉〈G| +
∑
μ,ν

ũμũ∗
ν |μ〉〈ν|

)

+δp2

∑
μ<ν

sμν |μν〉〈G| + δp −2

∑
μ<ν

s∗
μν |G〉〈μν|, (A2)

where the components sμν obey
∑

ξ (zμξ s̃ξν + zνξ s̃ξμ) −
2iδsμν = iũμwν + iũνwμ with s̃μν equal to 0 for μ = ν,
sμν for μ < ν, and sνμ for μ > ν. With the help of the
first equality of Eqs. (11), it can be shown that vμν =
(sμν − ũμũν) exp(−2iωt) satisfies the second equality of
Eqs. (11). Finally, the atoms state ρ = ∑

p ρp exp(−ipωt),
can be written, up to second order, under the form (9).

APPENDIX B: EXPRESSION OF (ρ�
AB)[2]

The Fourier components of the second-order state ρ
[2]
AB

of two atomic subensembles A and B are readily obtained
from Eqs. (A1) and (A2) by performing a partial trace. They
are given by Eqs. (A1) and (A2) with sums running only

over the atoms μ � nAB = nA + nB. Consequently, the only
nonvanishing matrix elements of its partial transpose are

〈G|(ρ

AB

)[2]|G〉 = 1 − η2
∑

μ�nAB

|uμ|2, (B1)

〈G|(ρ

AB

)[2]|μ〉 = ηu∗
μ for μ � nA

= ηuμ for nA < μ, (B2)

〈μ|(ρ

AB

)[2]|ν〉 = η2uμu∗
ν for μ,ν � nA

= η2u∗
μuν for nA < μ,ν

= η2(uμuν + vμν) for μ � nA < ν

= η2(u∗
μu∗

ν + v∗
νμ) for ν � nA < μ, (B3)

〈G|(ρ

AB

)[2]|μν〉 = η2(u∗
μu∗

ν + v∗
μν) for μ < ν � nA

= η2(uμuν + vμν) for nA < μ < ν

= η2u∗
μuν for μ � nA < ν, (B4)

〈μ|(ρ

AB)[2]|G〉 = 〈G|(ρ


AB)[2]|μ〉∗, and 〈μν|(ρ

AB)[2]|G〉 =

〈G|(ρ

AB)[2]|μν〉∗, where |G〉, |μ〉, and |μν〉 must be

understood here as |G〉 = ⊗ξ�nAB |g〉ξ , |μ〉 = σ †
μ|G〉, and

|μν〉 = σ †
μσ †

ν |G〉, with μ < ν � nAB.

APPENDIX C: EVALUATION OF λ(4)
q IN THE DILUTE

REGIME

Writing ρ

AB|ϕq〉 = λq |ϕq〉, and expanding ρ


AB, |ϕq〉, and
λq , in powers of η, with λ(0)

q = 0, give λ(1)
q = λ(3)

q = 0, (V +
V †)|ϕq〉(0) = λ(2)

q |ϕq〉(0), where the operator V is given by
Eq. (13), and, after a lengthy but straightforward derivation,

λ(4)
q = λ(2)

q

∑
μ<ν

∣∣τμν
q

∣∣2 − ∣∣τG
q

∣∣2

(
λ(2)

q +
∑

μ

|uμ|2
)

+〈φq |
(
ρ


AB

)(4)|φq〉 + 2Re
[
τG
q 〈φq |

(
ρ


AB

)(3)|G〉], (C1)

where |φq〉 = |ϕq〉(0), τ k
q = 〈k|ϕq〉(1), and the sums run only

over the atoms μ � nAB. In this appendix, as in the previ-
ous one, |G〉, |μ〉, and |μν〉 must be understood as |G〉 =
⊗ξ�nAB |g〉ξ , |μ〉 = σ †

μ|G〉, and |μν〉 = σ †
μσ †

ν |G〉, with μ < ν �
nAB. The only component of |ϕq〉(1) required for our purpose
is τG

q = −∑
μ ûμ〈μ|φq〉, where ûμ = u∗

μ for μ � nA, and uμ

for μ > nA.
We are concerned with the value of λ(4)

q in the limit
of infinitely distant atoms, in which ρAB converges to the
uncorrelated state ρ

(dl)
AB = ⊗μ�nABρ

(dl)
μ where

ρ(dl)
μ = (1 − pμ)σμσ †

μ + pμσ †
μσμ + cμσ †

μ + c∗
μσμ, (C2)

with pμ = η2|wμ|2/(1/4 + δ2 + 2η2|wμ|2), and cμ = (i/2 −
δ)pμ/ηw∗

μ. Expanding this density matrix in η gives (ρ

AB)(3)

and (ρ

AB)(4) in the infinitely dilute regime. Using the resulting

expressions, the vanishing of λ(2)
q in this asymptotic regime,

and equality (C1), leads to Eq. (15).

032312-5



S. CAMALET PHYSICAL REVIEW A 91, 032312 (2015)

APPENDIX D: DIAGONALIZATION OF THE OPERATOR
V + V † FOR V GIVEN BY EQ. (16)

The operator (16) can be written in the form

V = |φ+〉〈φ′
−| + |φ′

+〉〈φ−|. (D1)

The components of the above kets are 〈μ̃|φ±〉 = (1 ± ζμ)/2,
and 〈μ̃|φ′

±〉 = x±
μ (1 ± ζμ)/2, where ζμ = 1 for μ � nA, and

−1 for μ > nA, x+
μ = x exp(ik0D + 2iK · rμ − 2iωt) with

x = 3i sin2 θ/k0D(1 − 2iδ)3, and x−
μ = (x+

μ )∗. To find the
nonzero λ obeying the eigenvalue equation (V + V †)|ϕ〉 =
λ|ϕ〉, we expand |ϕ〉 on the basis {|φ+〉,|φ′

+〉,|φ−〉,|φ′
−〉}. This

leads to the characteristic equation

λ4 − 2y[1 + Re(sAs∗
B)]λ2 + y2[1 − |sA|2][1 − |sB|2] = 0,

(D2)

where y = nAnB|x|2, sA = n−1
A

∑
μ�nA

exp(2iK · rμ), and

sB = n−1
B

∑
μ>nA

exp(2iK · rμ).
For randomly distributed atoms and large enough numbers

nA and nB, sA and sB are negligible, and the above equation
simplifies to (λ2 − y)2 = 0. This last result can be derived
more directly as follows. The relations sA,sB � 1 can be
rewritten as 〈φ±|φ′

±〉 � 0. When these products vanish, it is
immediate to see that the nonzero eigenvalues of both V V †

and V †V , which are the squares of the nonzero eigenvalues of
V + V †, are 〈φ±|φ±〉〈φ′

∓|φ′
∓〉 = y.
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