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High-efficiency quantum state transfer and quantum memory using a mechanical oscillator
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We analyze an optomechanical system that can be used to efficiently transfer a quantum state between an
optical cavity and a distant mechanical oscillator coupled to a second optical cavity. We show that for a moderate
mechanical Q factor it is possible to achieve a transfer efficiency of 99.4% by using adjustable cavity damping
rates and destructive interference. We also show that the quantum mechanical oscillator can be used as a
quantum memory device with an efficiency of 96% employing a pulsed optomechanical coupling. Although the
mechanical dissipation slightly decreases the efficiency, its effect can be significantly reduced by designing a

high- Q mechanical oscillator.
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I. INTRODUCTION

Realization of a high fidelity quantum state transfer between
two nodes of a quantum network is a crucial task in quantum
information processing [1,2]. Hybrid quantum systems involv-
ing atoms [3,4], ions [5], superconducting circuits [6—10],
and quantum mechanical oscillators [11-14] are shown to
be useful in realizing a high fidelity transfer. In particular,
hybrid systems consisting of electromagnetic and mechanical
oscillators are promising platforms for transferring a quantum
state from site to site or for a quantum memory. Quantum state
transfer between optical and microwave cavities mediated by
a quantum mechanical oscillator has been proposed [11-14].
Nevertheless, in all of these studies the two electromagnetic
cavities are not physically far apart. Implementation of
quantum state transfer between remote resonators or qubits
using flying qubits in a quantum network is desirable and
opens the possibility for a variety of novel applications such
as entangled-state cryptography [15], teleportation [16], and
purification [17] among others. Besides, as being a bridge
to interface between two electromagnetic cavities, quantum
mechanical oscillators can be used as a quantum memory
device and a frequency transducer [13].

In this work we propose a scheme for the transfer of
a quantum state between an optical cavity and a distant
mechanical oscillator coupled to an optical cavity via radiation
pressure. We refer to this procedure as a “writing” protocol.
The transfer is mediated by a flying qubit and can be realized
with an efficiency arbitrarily close to unity. We also analyze
the reverse process in which a quantum state stored in the
mechanical mode is transferred to the optical mode in a
distant cavity; we refer to this procedure as a ‘“reading”
protocol. Such a high-efficiency state transfer is achieved
by using time-varying cavity damping rates and destructive
interference. Modulation of the cavity damping rate can also
be used to speed up the cooling process while suppressing
the heating noise [18]. Using experimental parameters [19]
and for a moderate mechanical quality factor Q = 6700, a
transfer efficiency as high as 99.4% can be achieved. We
also propose a quantum memory device using the mechanical
oscillator’s degrees of freedom. We show that due to the long
lifetime (in millisecond time scale) of the mechanical mode, it
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is possible to build a quantum memory with a reasonably long
storage time. Rapid retrieval of the stored quantum state can
be realized by designing appropriate optomechanical coupling
pulses. We find that for the moderate mechanical Q factor, a
quantum state can be stored and retrieved with 96% efficiency.
We emphasize that even though we considered quantum state
transfer between two optical cavities, the idea can be extended
to the state transfer between two microwave resonators using
superconducting quantum circuits or other experimental setups
described in Refs. [20-23].

II. MODEL AND TRANSFER PROTOCOLS

We consider an optical cavity spatially separated from a
second optical cavity that is coupled to a mechanical oscillator.
We propose and analyze two state transfer protocols. In the first
protocol (Fig. 1) we consider a quantum state encoded onto the
optical mode of the first cavity and transfer it to the mechanical
mode coupled to the second cavity via radiation pressure.
We refer to this process as a “writing” protocol, because
the quantum state is mapped onto the mechanical degrees
of freedom. In the second protocol (see Fig. 3), a quantum
state stored in the mechanical oscillator that is coupled to the
second cavity mode is transferred to the optical mode in the
first cavity via a flying qubit (propagating photon). We refer
to this process as a “reading” protocol. In both protocols, to
avoid multiple reflections between the two cavities, we use
a Faraday’s isolator so that the reflected field at the second
cavity will be directly sent to a detector.

In order to reduce the dissipation during the photon
propagation in the transmission channel, the two cavities can
be coupled via an optical fiber (for case of optical cavities)
or by a microwave superconducting transmission line (for
microwave cavities). Recently an efficient coupling between
an optical fiber and a cavity has been realized [24,25].

A high-efficiency quantum state transfer can be realized
by canceling the back-reflection at the second cavity via
destructive interference [7,10]. An almost perfect cancellation
can be achieved by either time varying the damping rate of the
first cavity, second cavity, or both. In the following we discuss
the writing and reading protocols by using time-varying cavity
damping rates.
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A. The writing protocol: Quantum state transfer from an
optical cavity to a mechanical oscillator

Here we consider an initial quantum state encoded on the
optical mode of cavity 1 and transfer it to the mechanical mode
in the second cavity via a flying qubit (see Fig. 1). This can
be interpreted as writing a quantum state onto the mechanical
degrees of freedom, which can later be retrieved using the
opposite procedure—reading (transfer of a quantum state from
mechanical to optical mode).

In the interaction picture and in a displaced frame with
respect to the classical mean value in each cavity, the
Hamiltonian can be written as [26-29]

H = omb'b — Aala) — Ayalay + Glab' +alb), (1)

where wy is the mechanical frequency, b is the annihilation
operator for the mechanical mode, G is the many-photon
optomechanical coupling, A; is the detuning of the optical
drive applied to the jth cavity, and a; is the annihilation
operator for the jth cavity mode. Using this Hamiltonian,
we obtain the quantum Langevin equations for the cavity and
mechanical mode operators

. K .
a; = —7101 +iAra; + /K1Gin 1, (2
;;:_%b_inb—iGaﬁ\/?f, 3)
a = —%az +iAray —iGb + /a2, “4)

where y is the mechanical oscillator damping rate, «; is
the jth cavity damping rate, f is the noise operator for the
mechanical oscillator bath, while ai, j describes the quantum
noise of the vacuum field incident on the jth cavity. Note
that due to the unidirectional coupling the output of cavity
1 is an input to cavity 2 with appropriate time delay, that
iS, dout,1(t — T) = ain2(¢). Thus, using input-output relation
for cavity 1, dou,1(t) = /k1a1(t) — ain,1(¢), the input noise
operator at cavity 2 is given by

ain2(t) = rk1a1(t — T) — ain,1 (t — 7). @)

“writing” protocol

Qout,1 Qin,2

()

Ky K2
in,1 Aout,2
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FIG. 1. (Color online) Schematic of the writing protocol. A
quantum state initially encoded on cavity mode 1 is transferred to the
mechanical mode coupled to cavity 2 via radiation pressure. Nearly
a perfect state transfer can be achieved by using adjustable cavity
damping rates «; and k. The output field a; o, from the first cavity
propagates away and becomes an input to the second cavity. To avoid
multiple refections between the cavities, we use a Faraday’s isolator.
This allows the output a, o, of the second cavity to directly go to the
detector.

PHYSICAL REVIEW A 91, 032309 (2015)

In view of this, the equation for the cavity mode operator a,
becomes

K2

a = — ?a2 —iANya, —iGb + «/Kl/Qa](t -1)
Rt — 7). ©)

It is worth noting that due to unidirectional coupling Eq. (2)
is decoupled from (6). This unidirectional coupling is an
example of the so-called quantum cascade system [30,31].
The time delay T can be eliminated by defining a “time-
delayed” operator for the first cavity and for the mechanical
oscillator, for example, a;(t) = a,(t — 1), b(t) = b(t — 7).
In the following we assume that we have performed these
transformations and for simplicity we drop the tilde, which
amounts to T — 0 in all equations.

Note that, in principle, the detunings A ; can be arbitrarily
chosen provided that the system remains stable. However,
since we are interested in quantum state transfer from one
system to the other (in our case from cavity 1 to the mechanical
oscillator) it is necessary to choose cavity-laser detuning to be
tuned at the mechanical frequency, i.e., A; = wy. Thus, in a
frame rotating with wy; and choosing A ; = ww, Egs. (2), (3),
and (6) reduce to

K1

a, = —5 + JKi1ain 1, (N
b= —%b—iGazjtﬁf, ®)

. K .
a = —32612 —iGb + Jkika1 — /K2ain 1 - )

It has been shown that [6,7,10] a high-efficiency quantum
state transfer between two remote cavities connected by a
transmission line can be realized by canceling the back-
reflection at the receiving cavity. This can be achieved by
designing time-varying cavity 1, cavity 2, or both damping
rates so that the field emitted has an exponentially increas-
ing/decreasing waveform that allows destructive interference
at the receiving cavity. In this paper, following Ref. [7], we
divide the protocol into two parts. In the first part we assume the
first cavity damping rate «; varies in time, while the damping
rate of the second cavity is fixed at its maximum value k7 p.
In order to derive the time profile of the damping rate «i,
we assume a simpler problem: state transfer between two
cavities. Thus the formal solution of Eq. (9), after dropping
the G term and assuming the cavities are coupled to a vacuum
environment, has the form

a(r) = 612(0)6_'(2-""/2 + a1(0)/Kom
t /
X / dt' i1 (t)e ™ 2mt=02g=3 Jy a1
0

If the state is initially encoded onto the mode of the first cavity
a;(0) and the second cavity is initially in vacuum state, the
state transfer efficiency can be defined as [6]

t ’
N m/ At /(@ ye—2mt=)/2=4 [} et
0
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We next search for optimum pulse shapes of the damping rate
k1 that maximizes the efficiency n; for the first part of the pro-
cedure. This can be done using the Euler-Lagrange formalism.
The damping rates satisfy the differential equation [6]

ki (t) — &1(t) + ko mk1 (£) = 0. (12)

Therefore, during the first part of the procedure 0 < ¢ < #y,
the damping rate «(¢) obtained by solving Eq. (12) is given
by

K1,m

Y (13)

ki(t) =
where k| 1, is the maximum value of the first cavity damping
rate.

In the second part of the procedure, the damping rate of the
first cavity remains constant, k| = k|, wWhile the damping
rate of the receiving cavity decreases in time. Using the time-
reversal symmetry, the pulse shape of the damping rate «,
which maximizes the efficiency 7, of the second part of the
procedure t > t;, can be written as

K2,m

Zekl.m(t_tm) — 1. (14)

Kka(t) =
The derivation of the pulse shapes (13) and (14) of the damping
rates assume the state transfer between two cavities. In the
following we use the same pulse shapes to analyze the transfer
of a quantum state between the first cavity to the mechanical
oscillator coupled to the second cavity mode. This is because
the state has to first be transferred before it is mapped to the
mechanical oscillator.

Note that the pulse shapes Egs. (13) and (14) were also
derived invoking the destructive interference condition for
the cancellation of the back-reflected field into the environ-
ment [7,10]. To analyze the quantum state transfer when the
cavities and the mechanical oscillators are coupled to vacuum
(zero temperature environment), it is sufficient to use the
corresponding classical equations for Egs. (7)—(9):

K1 (1)
2

ap = — ay, (15)

B=—§ﬁ—umL (16)

a = —Kzz(t)(xz —iGB + k1Ko ()ay. A7)

These equations will be used to analyze the quantum state
transfer from cavity 1 to the mechanical oscillator.

We numerically solve the above equations, assuming the
initial condition «(0) =1, B(0) =0, and «»(0) =0 and
characterize the performance of the state transfer from the first
cavity mode to the mechanical mode by the energy transfer ef-
ficiency 1y = |B(#)|?/|1(0)]2. Unless mentioned otherwise,
we assume K| m = k2.m = k. In the numerical integration we
assume two identical cavities and use the parameters from a
recent optomechanical experiment [19]: laser frequency w; =
27 x 2.82 x 10'* Hz (A = 1064 nm), cavity frequency w, =
27 x 5.64 x 10" Hz (0, = 2w ), maximum cavity damping
rate k, = 2w x 215 kHz, mechanical damping rate y = 2w X
140 Hz, and mechanical frequency wy = 2 x 947 kHz. In
Fig. 2(a) we show the state transfer efficiency as a function of
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FIG. 2. (Color online) (a) The efficiency 7, of the state transfer
from the first cavity mode to the mechanical mode optomechanically
coupled to the second cavity mode as a function of G/k, for
¥ /km = 6.5 x 107 and for the procedure times #; = 10/, (dashed
curve) and 25/k,, (solid curve). (b) Plot of the occupation number
for the three modes as a function of the scaled time «,¢ for the
optomechanical coupling where the efficiency is maximum G /k,, =
0.12 and for the procedure time #; = 25/k,,. (c) Efficiency versus the
mechanical quality factor Q,, = wm/y for the procedure time and
the optomechanical coupling (#;,G) = (25/Kk1,0.12/k) (blue solid
curve) and (#,G) = (10/ky,,0.265/ky,) (red dashed curve). See the
text for other parameters.

the scaled many-photon optomechanical coupling G/ky, for
different values of procedure time #;. For the above parameters
and for a procedure time of # = 25/, the transfer efficiency
can be as high as 99.4% at G = 0.12«,,. We see that the
obtained efficiency exhibits damped oscillations, decreasing
with increasing the many-photon optomechanical coupling,
which is somewhat counterintuitive. Moreover, the transfer
efficiency increases with increasing procedure time. This is
because the inefficiency of the procedure depends not only on
the initial loss during the buildup time of the field in the second
cavity, but also on the untransmitted field that remains in first
cavity when the protocol is abruptly stopped at #. Thus the
longer the procedure time, the less the amount of energy left
in first cavity and better the efficiency. It was shown that the
inefficiency of the transfer protocol is related to the procedure
time by 1 — 1y &~ exp(—kmts/2) [10].
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The evolution of the occupation number for each mode is
shown in Fig. 2(b) for procedure time # = 25/, and choosing
the optomechanical coupling that gives the maximum transfer,
G/km = 0.12. As can be seen the initial state in cavity 1 is first
transferred mostly to the second cavity mode and then slowly
mapped to the mechanical mode with an efficiency 99.4%. The
transfer efficiency strongly depends on the mechanical quality
factor Q,, = wm/y; see Fig. 2(c). The efficiency increases
with the mechanical quality factor and saturates at 99.4% for
Q. =7 x 10°. The transfer efficiency is higher for longer
procedure times and for large values of the mechanical Q
factor.

So far we assumed that the transmission channel between
the two cavities is lossless and ignored the intrinsic dissipa-
tions of the cavities 1/71 cay1 and 1/7) cav2. In general, the
transmission channel suffers from different losses such as
cavity-fiber coupling loss and intrinsic fiber optical loss. To
estimate these losses we introduce the energy efficiency of
the transmission channel 7. As a result, Eqs. (15) and (17)
now read o) = —[k1(t) + 1/ T ca1lor/2, d2 = —[x2(t) +
1/ T cav2]az/2 —iGB + /k1(D)k2(2) /N1 We analyze the
contribution of each loss separately. The transmission chan-
nel loss yields a contribution to the transfer efficiency as
Nw = Nwhie- For 1/ cavi, 1/ T cav2 <K km, the contribution
of the dissipations decrease the transfer efficiency exponen-
tially, Nw = Nw eXp(_[f/ZTl,cavl) exp(_tf/le,cav2)~ These es-
timates apply to the reading and the quantum memory
protocols discussed below.

B. The reading protocol: Quantum state transfer from a
mechanical oscillator to an optical cavity

In the previous section we discussed how to transfer a
quantum state from an optical cavity to a mechanical oscillator
coupled to a distant cavity. Here we discuss the opposite
process in which a quantum state encoded on the mechanical
mode is transferred to the mode of the second cavity and then
to that of the first cavity via a flying qubit. The schematic of
this procedure is shown in Fig. 3. Notice that the output of
the second cavity is now an input to the first cavity and the
coupling is unidirectional. The final quantum state in the first
cavity is inferred by measuring the output filed a; oy via the
method of homodyne. Following the same line of reasoning
as in the writing protocol, the equations for the classical field

“reading” protocol
Qout,2

(o) = ()

C)

a .
out,1 am'z

Cavity 1 Cavity 2

FIG. 3. (Color online) Schematic of the reading protocol. A
quantum state initially stored in the mechanical oscillator is trans-
ferred to cavity 1 via flying qubit. Nearly perfect state transfer can
be achieved by using adjustable cavity damping rates «; and «,. The
time profiles of the damping rates are now interchanged compared to
the writing protocol (see the text).
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FIG. 4. (Color online) (a) The efficiency 5, of the quantum state
transfer from the mechanical mode to the first cavity mode as a
function of the scaled optomechanical coupling G /., and for the pro-
cedure times t; = 25/kp, (solid curve) and 15/k;, (dashed curve). (b)
Plot of the occupation number for the three modes as a function of the
scaled time «p, ¢ for the optomechanical coupling where the efficiency
is maximum G/ky, = 0.12 and for the procedure time # = 25/ky,.
(c) Efficiency versus the mechanical quality factor Q. = wm/y
for the procedure time and the optomechanical coupling (#;,G) =
(25/km,0.12/kp) (blue solid curve) and (#;,G) = (15/k,,0.1835 /k)
(red dashed curve).

amplitudes become

oy = —K'(t)ou + VK1 (DKo (t)ea, (18)

2
; 14 .
B=-3p—iCm, 19)

oy — iGB. (20

Note that in the reading protocol the time profiles of x| and «»
are interchanged: | is maximum for ¢ < t,, and decreases with
time while «; slowly increases with time and reaches it maxi-
mum value at t = #,,,. To characterize the quantum state trans-
fer, we numerically solve Egs. (18)—(20) and calculate the en-
ergy transfer efficiency n, = |a;(#)|?/|8(0)|?. In the numerical
simulation we use the initial condition ¢;(0) = O and 8(0) = 1.

Figure 4(a) shows the state transfer efficiency from the
mechanical oscillator to the first cavity for the procedure
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times ty = 15/kp, and 25/ky,. Similar to the writing protocol,
the efficiency exhibits damped oscillations with a period of
oscillation proportional to the scaled procedure time pf;.
The efficiency increases with increasing procedure time. For
the experimental parameter mentioned earlier, the maximum
efficiency for procedure time t; = 25/kp, is 99.4% at G [k =
0.12. The plot of the occupation number for G /ky, = 0.12 is
shown in Fig. 4(b). We see that the energy is first transferred
from the mechanical oscillator to the second cavity mode.
Then, the field propagates away to the first cavity, where the
quantum state is retrieved with an efficiency of 99.4%. Similar
to the writing protocol, the efficiency strongly relies on the
mechanical quality factor [see Fig. 4(c)].

III. QUANTUM MECHANICAL OSCILLATOR AS A
QUANTUM MEMORY DEVICE

One of the potential applications of a mechanical oscillator
is a quantum memory. Here we consider a process in which
a quantum state encoded onto an optical mode in the first
cavity is transferred and stored in the mechanical oscillator
that is coupled to the second cavity. This procedure has three
steps: during the first step, the quantum state is transferred
to the second cavity mode via a flying qubit. This process,
as discussed in the previous section, can be realized with
high efficiency by using tunable cavity damping rates and
destructive interference. In the second step, the quantum state,
which is now encoded onto the optical mode of the second
cavity, will be transferred to the mechanical mode using a
pulsed coupling between the optical and the mechanical modes
G(z). It is possible to make this process fast using a short
coupling pulse. The quantum state which is now stored in the
mechanical degrees of freedom has storage time determined
by the mechanical dissipation time, which is typically few
tens of milliseconds. In the final step, the quantum state is
transferred back to the optical mode of the second cavity using
the pulsed coupling. Note that there is no leakage of photons
from the second cavity until this stage of the procedure due
to the perfect cancellation of the transmitted field into the
environment by the destructive interference. Thus, to retrieve
the quantum state, one has to release and measure the field in
the second cavity via homodyne detection.

The process of the quantum memory can still be described
by Egs. (15)—(17) with a pulsed optomechanical coupling of
the form

G(1) = Go[e (71727 4 o=y /2], 1)

where G is the maximum optomechanical coupling. o is the
width of the Gaussian pulses, and #; are the time at which the
optomechanical coupling is maximum and the quantum state
transfer from one mode to the other occurs. The first Gaussian
pulse allows the transfer of the quantum state from the optical
mode of the second cavity to the mechanical mode, while the
second pulse allows the transfer of the quantum state back
to the optical mode in the second cavity after a storage time
fstorage = 12 — 1. The pulse sequence is shown in Fig. 5(a).
We numerically simulated the quantum memory using the
pulsed optomechanical coupling (21) and the time-varying
damping rates (13) and (14). We see from Fig. 5(b) that the
quantum state initially encoded onto the mode of cavity 1 is
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FIG. 5. (Color online) (a) The time profiles of the first «; (red
solid curve), the second «, (blue dashed curve) cavity damping rates
normalized by the maximum value of the damping rate «,, and the
pulse sequence for the optomechanical coupling G(¢) (black dotted
curve) as a function of normalized time «,,¢. (b) Occupation number
for the three modes. The quantum sate is encoded on the optical mode
in the first cavity (red sold curve) which is transferred via a flying
qubit to the second cavity (blue dashed curve). The quantum state is
then transferred to the mechanical mode (black dotted curve) using
the first Gaussian pulse centered at t; = 21, with o = V3 /K. After
a storage time fyorage = f2 — 11,12 = S5ty the second Gaussian allows
us to transfer the quantum state back to the optical mode of the second
cavity. Here we use Go/kn = 0.32, t; = 100/ky,, and 1, = /8.

transferred to the mode of cavity 2 with 99.4% efficiency.
Then, the quantum state is transferred to the mechanical
oscillator by applying the first pulse of the coupling G(¢)
[see Fig. 5(a)]. The efficiency of this transfer is close to
unity and decreases with increasing the storage time due
to very small mechanical decoherence, y/km = 6.5 X 1074
(Q = wm/y =~ 6700). For Gy = 0.32«y, the efficiency of the
quantum memory after a storage time tyorage = 3tm = 5t;/8 =
5 x 100/8km = 62.5/ky, (46 us for the experimental damping
rate kp /2w = 215 kHz) is 96%. To retrieve the quantum state
from the mechanical oscillator, we apply the second pulse of
the coupling. During this last procedure the quantum state is
transferred to the mode of cavity 2, which will be released
and measured via homodyne detection. The efficiency of
quantum memory for a procedure time # = 100/ky, is 96%.
This efficiency exponentially decreases with increasing the
procedure time as ~ exp(—yt); for example, a 50% increase
in the procedure time leads to an efficiency of 94%. Thus
the effect of the mechanical decoherence is not that signif-
icant for reasonably long storage time. This efficiency can
substantially be improved by designing a high-Q mechanical
oscillator. For microwave resonators with a high- O mechanical
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oscillator, @ = 360 000 and dissipation rates y,, /27w = 30 Hz
and «, /2w = 170 kHz [32], the quantum memory efficiency
improves to 99% for a procedure time #; = 100/«,,.

Even though we used classical field equations to analyze the
state transfer, it is sufficient to characterize the quantum case.
For example, if the initial state is a superposition of Fock state
(a qubit) | )in = oq|0) + B411) and the system is coupled to
vacuum environment, the quantum process fidelity is related to
the efficiency by F) = (1 +n + 2,/n cos ©)? /4, where ¢ is the
phase acquired by a photon carrying state and can be corrected
experimentally [10]. It is then easy to see that the quantum state
transfer can be characterized by a single parameter 7. For this
simple case, the probability amplitudes of the wave function
satisfy the same equations as the normalized classical field
equations. Arbitrary quantum state transfer (more than single
excitation subspace) can be described by using the language of
quantum theory of the beam splitter [ 10]. However, for thermal
environment the classical equations are not sufficient to ana-
lyze the quantum state transfer. To properly study the effect of
environmental thermal phonons, one needs to apply the master
equation of the system, including dissipations. It was shown
that although the thermal phonons affect the overall fidelity of
the state transfer, the effect of thermal phonon numbers can be
compensated by improving the mechanical Q factor [13].

IV. CONCLUSION

We analyzed the transfer of a quantum state between
an optical cavity and a mechanical oscillator coupled to a
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distant cavity via a transmission channel and vice versa. By
employing time-varying cavity damping rates, it possible to
achieve a state transfer between the two remote systems with
efficiency very close to unity. We also proposed a quantum
memory device using the mechanical oscillator. We showed
that using experimental parameters and a moderate mechanical
Q factor, the efficiency of the quantum memory can reach
above 96% with a storage time fgorage = 62.5/Kkm, With ky
being the maximum damping rates of the cavities. Although the
mechanical decoherence slightly decreases the efficiency of
the quantum memory, its effect can be suppressed by designing
a high-Q mechanical oscillator. Given the advancement of
the superconducting technology and the realization of high-Q
mechanical oscillators [14,32], the proposed system can be re-
alized using superconducting microwave resonators connected
by a transmission line.
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