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Optimal simulation of Deutsch gates and the Fredkin gate
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In this paper, we study the optimal simulation of the three-qubit unitary using two-qubit gates. First, we
completely characterize the two-qubit gate cost of simulating the Deutsch gate (controlled-controlled gate) by
generalizing our result on the two-qubit cost of the Toffoli gate. The function of any Deutsch gate is simply a
three-qubit controlled-unitary gate and can be intuitively explained as follows: The gate outputs the states of the
two control qubits directly, and applies the given one-qubit unitary u on the target qubit only if both the states of
the control qubits are |1〉. Previously, it was only known that five two-qubit gates are sufficient for implementing
such a gate [Sleator and Weinfurter, Phys. Rev. Lett. 74, 4087 (1995)]. We show that if the determinant of u

is 1, four two-qubit gates are optimal. Otherwise, five two-qubit gates are required. For the Fredkin gate (the
controlled-SWAP gate), we prove that five two-qubit gates are necessary and sufficient, which settles the open
problem introduced in Smolin and DiVincenzo [Phys. Rev. A 53, 2855 (1996)].
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I. INTRODUCTION

A fundamental issue of several interacting systems is to
quantify the strength of this interaction, in other words, to
compare interactions of different types of systems or particles
and different physical manifestations of the interaction. In
order to provide an intellectual background of comparing the
interaction strength of different physical systems, a robust
characterization is highly desirable. Quantum information
theory has provided new insights into this question. In
particular, there has been considerable progress in quantifying
the strength of Hamiltonian and unitary interactions [1–9]
for bipartite systems. The starting point was the theory of
entanglement of quantum states which quantifies how much
nonclassical correlation the state embodies. The most intrigu-
ing approach might be to study how much bipartite correlation
is needed to implement a multipartite correlation. In other
words, how many two-qubit unitaries are needed to simulate a
given multiqubit gate? One difficulty that the characterization
of multipartite entanglement is clear. A possible approach is
to consider those symmetric gates.

A great challenge in the contemporary science and engi-
neering is building a full-fledged quantum computer, which is
essentially a large quantum circuit consisting of basic quantum
logical gates. In order to implement a quantum algorithm,
even in a small size, one has to simulate a relatively high
level of control over the multiqubit quantum system. It has
also been experimentally demonstrated that two-qubit gates
can be realized with high fidelity using the current technology,
for example, two-qubit gate with superconducting quibts have
been presented with fidelities higher than 90% [10]. Finding
more efficient ways to implement quantum gates may allow
small-scale quantum computing tasks to be demonstrated on a
shorter time scale.

Due to its significance in quantum computing, lots of
efforts have been devoted to study the two-qubit gate cost

of controlled unitary; see [11–15] as an incomplete list. The
answer to the optimal implementation of the Toffoli gate was
found recently [16]. It would be of interest to understand the
two-qubit gate cost of the Deutsch gate, the generalization
of the Toffoli gate. Another gate that has received particular
attention is the three-qubit conditional SWAP gate—the Fredkin
gate. The Fredkin gate is of interest because it is a universal
gate for classical reversible computation [17], which means
that any logical or arithmetic operation can be constructed
entirely of Fredkin gates. Ekert and Macchiavello [18] use
the quantum version of the Fredkin gate to design quantum
circuits for error-correcting quantum computations with the
symmetric subspace method [19]. The experimental and
theoretical pursuit of efficient implementation of the Fredkin
gate using a sequence of single- and two-qubit gates has a
long history. A simple optical model to realize a reversible,
potentially error-free logic Fredkin gate is proposed in [20].
Chau and Wilczek give a specific six-gate construction of the
Fredkin gate in 1995 [21]. An analytic five-gate construction
is presented and numerical tests suggest that this construction
is minimal [22].

In this paper, the two-qubit gate cost on simulating any
Deutsch gate and Fredkin gate is completely characterized.
More precisely, it is shown that any Deutsch gate (controlled-
controlled u) requires at least four two-qubit gates to simulate.
If the determinant of the unitary u is one, we provide a four-gate
construction. Otherwise, five-gate implementation is optimal.
Later, we present a theoretical proof that five two-qubit
gates are indeed the optimal implementation for the Fredkin
gate.

Each three-qubit gate is regarded as a unitary transformation
performed on a tripartite system ABC; all the two-qubit gates
employed to implement the three-qubit gate can be simply
classified into three classes: class KAB , the gates acting on the
subsystem AB; class KBC , the gates on BC; and class KAC ,
the gates on AC.
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Bipartite unitary UAR acting on a qubit system A and a
general system R is said to be a controlled gate with control
on A if it can be decomposed into the form of

UAR = |0A〉〈0A| ⊗ u0 + |1A〉〈1A| ⊗ u1.

A controlled-controlled-u gate—the Deutsch gate, acting
on three qubits, namely A, B, and C. Here A and B are control
qubits, and C is the target qubit with computational basis
{|0〉,|1〉} for each qubit. Upon input |abc〉, the gate will output
the states of A and B directly, and apply u on the system C

only if both the states of A and B are |1〉.
The validity of the following propositions is showed in [16].
Proposition 1. Any two-dimensional 2 ⊗ 2 state subspace

contains some product state.
Proposition 2. If UABUAC is a three-qubit controlled uni-

tary with control on A, where UAB ∈ KAB and UAC ∈ KAC ,
then there exist vB0,vB1 and wC0,wC1 being one-qubit unitaries
on HB and HC such that

UABUAC = |0〉〈0| ⊗ vB0 ⊗ wC0 + |1〉〈1| ⊗ vB1 ⊗ wC1.

II. OPTIMAL SIMULATION OF DEUTSCH GATES

The particular “controlled-controlled” gates—Deutsch
gates—were introduced by Deutsch in [23] where the uni-
versality of such gates was proved for the first time. They are
adequate for constructing networks with any possible quantum
computational property.

It is proved in [14] that any Deutsch gate can be imple-
mented using only five two-qubit gates,

• • •
• •
w w† w

where W is a unitary satisfying w2 = u.
To study the two-qubit gate cost for implementing the

general “controlled-controlled-u” gate, we only need to deal
with the diagonal unitary as follows,

V (θ1,θ2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 eiθ1 0
0 0 0 0 0 0 0 eiθ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

V (θ1,θ2)ABC is regarded as a tripartite unitary with control
on A and B. It can be considered as a controlled unitary with
control on A, B or C,

V (θ1,θ2)ABC = |0〉〈0| ⊗ IBC + |1〉〈1| ⊗ RBC,

where R = |00〉〈00| + |01〉〈01| + eiθ1 |10〉〈10| + eiθ2 |11〉〈11|.
Also, we can verify that V (θ1,θ2)ABC is invariant under the

permutation of A and B, that is,

V (θ1,θ2)ABC = SABV (θ1,θ2)ABCSAB,

with SAB denoting the SWAP gate on A and B.
The following result from [16] is useful for our discussion.

Theorem 1. V (0,θ ) = I − (1 − eiθ )|111〉〈111| requires
five two-qubit gates to simulate, provided that eiθ �= 1.

One can easily verify the following equation:

V (0,θ2 − θ1)ABC = V (θ1,θ2)ABCW (−θ1)AB

= W (−θ1)ABV (θ1,θ2)ABC,

where W (θ ) = |00〉〈00| + |01〉〈01| + |10〉〈10| + eiθ |11〉〈11|.
Therefore, we can conclude the following.

Lemma II.1. Any three-qubit controlled-controlled gate
V (θ1,θ2) with eiθ1 �= eiθ2 requires at least four two-qubit gates
to simulate.

If such V (θ1,θ2) can be implemented by three or less two-
qubit gates, then four two-qubit gates or less can simulate
some V (0,θ ) = I − (1 − eiθ )|111〉〈111| with eiθ �= 1, which
conflicts with Theorem 1.

Interestingly, for V (−θ,θ ), we can find the following
simulation circuit consisting of four two-qubit gates, therefore,
it is optimal for eiθ �= 1.

A • •
B

U †
BC

UBCC w w

where

w =
(

e−iθ/2 0
0 eiθ/2

)
,

and UBC satisfies that

UBC(wC ⊗ IB)U †
BC = diag{eiθ/2,e−iθ/2,e−iθ/2,eiθ/2}.

Such UBC does exist since the eigenvalues of wC ⊗ IB are
{eiθ/2,e−iθ/2,e−iθ/2,eiθ/2}.

In order to study the case eiθ1 �= e−iθ2 , we show the
following.

Lemma II.2. There exists no UAC,VAC ∈ KAC , UBC,VBC ∈
KBC such that V (θ1,θ2) can be implemented in the following
circuit with ei(θ1+θ2) �= 1 and eiθ1 �= eiθ2 ,

B
VBC UBC

C
VAC UAC

A

Proof. We only need to study the case that all the two-qubit
gates are nonlocal. The circuit is

UACUBCVACVBC = V (θ1,θ2)ABC,

then UACUBCVAC = V (θ1,θ2)ABCV
†
BC is a controlled unitary

with control on A by noticing that V (θ1,θ2)ABC is a controlled
unitary with control on A. Moreover, for any input state
|i〉A|y〉B |z〉C , the A part’s state of the following state is |i〉A,

UACUBCVAC |i〉A|y〉B |z〉C.

Invoking Proposition 1, there is |z0〉C such that VAC |0〉A|z0〉C
is the product; after moving the local unitaries, we assume

VAC |0〉A|0〉C = |0〉A|0〉C.

Thus, the A part’s state of the following state is |0〉A,

UACUBCVAC |0〉A|y〉B |0〉C = UACUBC |0〉A|y〉B |0〉C.

There are three cases about the state UBC |y〉B |0〉C .
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Case 1. There exists some |y0〉B such that UBC |y0〉B |0〉C is
entangled; we can assume there is 0 < λ < 1 such that

UBC |y0〉B |0〉C =
√

λ|α〉B |0〉C + √
1 − λ|α⊥〉B |1〉C.

Define |χ〉ABC = UACUBC |0〉A|0〉B |z0〉C , then χA = |0〉〈0|.
We know that

|χ〉ABC =
√

λ|�〉AC |α〉B + √
1 − λ|�〉AC |α⊥〉B,

⇒ χA = λ�A + (1 − λ)�A ⇒ �A = �A = |0〉〈0|,
where |�〉 = UAC |00〉AC and |�〉 = UAC |01〉AC .

Therefore, UAC is a controlled unitary with control on sys-
tem A, so VAC = U

†
BCU

†
ACV (θ1,θ2)ABCV

†
BC . We can assume

that

UAC = |0〉〈0| ⊗ IC + |1〉〈1| ⊗ wC1 ,

VAC = |0〉〈0| ⊗ IC + |1〉〈1| ⊗ wC2 .

We know that UBCVBC = IBC and

wC1UBCwC2VBC = RBC

⇒ UBCwC2U
†
BC = w

†
C1

RBC = w
†
C1

⊕ w
†
C1

D,

where D = diag{eiθ1 ,eiθ2} and

R = |00〉〈00| + |01〉〈01| + eiθ1 |10〉〈10| + eiθ2 |11〉〈11|.
Notice that {eiϕ1 ,eiϕ2 ,eiϕ1 ,eiϕ2} are the eigenvalues of

UBCwC2U
†
BC , where eiϕ1 ,eiϕ2 are the eigenvalues of wC2 .

It is direct to see that w
†
C1

cannot have two identical

eigenvalues (w†
C1

is not identity), then w
†
C1

and w
†
C1

D enjoy the
same eigenvalues, and then they have the same determinant.

det
(
w

†
C1

) = det
(
w

†
C1

D
) = det

(
w

†
C1

)
det(D)

⇒ det(D) = 1 ⇒ ei(θ1+θ2) = 1.

This is not possible.
Now, we only need to deal with the case that for any |y〉B ,

UBC |y〉B |0〉C is the product. There are two cases.
Case 2. There exist some |β〉B and local unitary wC on

system C such that UBC |y〉B |0〉C = |β〉BwC |y〉C , UAC maps
{|0〉A} ⊗ HC to itself. Therefore, UAC is a controlled unitary
with control on A, so VAC . The rest of the argument is the
same as case 1.

Case 3. There exists some state on system C, wlog, says
|0〉C , and local unitary vB on system B such that

UBC |y〉B |0〉C = vB |y〉B |0〉C.

Therefore, UBC is a controlled unitary with control on C. By
moving this vB to VBC , we make the assumption that

UBC = |0〉〈0| ⊗ IB + |1〉〈1| ⊗ uB.

Note that for any |y〉B , we have

V (θ1,θ2)ABC |0〉A(V †
BC |y〉B |0〉C) = UACUBCVAC |0〉A|y〉B |0〉C,

⇒ |0〉A(V †
BC |y〉B |0〉C) = UAC |0〉A|y〉B |0〉C.

Thus, part B’s state of V
†
BC |y〉B |0〉C is |y〉B for all |y〉B ∈ HB ,

which means that there exists some |γ 〉C such that
VBC |y〉B |γ 〉C = |y〉B |0〉C , for all |y〉B .

Therefore, one can find a unitary wC such that

VBC = |0〉〈γ | ⊗ IB + |1〉〈γ ⊥| ⊗ vB.

In order to simplify the structure of the two-qubit gates, we
observe that

V T
BCV T

ACUT
BCUT

AC = V (θ1,θ2)TABC = V (θ1,θ2)ABC,

hence V T
BCV T

ACUT
BCUT

AC also provides an implementation of
V (θ1,θ2)ABC .

Now we consider the state,

V T
BCV T

ACUT
BC |x〉A|0〉B |0〉C = V T

BCV T
AC |x〉A|0〉B |0〉C.

The arguments of cases 1 and 2 exclude the following
possibilities:

(i) V T
AC |x〉A|0〉C is entangled for some |x〉A.

(ii) There exists some |δ〉A and local unitary wC on system
C such that V T

AC |x〉A|0〉C = |δ〉AwC |x〉C for all |x〉A.
The only case left is that there exists some state |φ〉C

on system C, and local unitary wA on system A such that
V T

AC |x〉A|0〉C = wA|x〉A|φ〉C for all |x〉A.
According to VAC |0〉A|0〉C = |0〉A|0〉C , we can choose

|φ〉 = |0〉. Thus VAC is a controlled gate with control system
C, i.e.,

VAC = |0〉〈0| ⊗ wA + |1〉〈1| ⊗ vA.

By studying part B’s state of

UACUBCVACVBC |0〉A|y〉B |0〉C = |0〉A|y〉B |0〉C,

we see that |γ 〉C defined in VBC equals to |0〉B or |1〉B , up
to some global phase. To see this, we assume that |0〉C =
a|γ 〉C + b|γ ⊥〉C for ab �= 0. Then the state of part B becomes
a mixed state for general input |0〉A|y〉B |0〉C since uB is not
the identity up to some global phase and UBC is nonlocal. For
the case |γ 〉C = |0〉C , we know that the four two-qubit gates
are all controlled gate with control on system C, which implies
that

RBC = |00〉〈00| + |01〉〈01| + eiθ1 |10〉〈10| + eiθ2 |11〉〈11|
is a local unitary, then eiθ1 = eiθ2 . It is impossible.

For the case |γ 〉C = |1〉C , let XC be the NOT (flip) gate such
that X|0〉 = |1〉 and X|1〉 = |0〉, then one can verify that

V (θ1,θ2)ABC(UACXC)(XCUBCXC)(XCVACXC)(XCVBC).

Now, we know that UACXC,XCUBCXC,XCVACXC and
XCVBC are all controlled gate with control on system C.
This also leads us to the impossible conclusion that RBC =
|00〉〈00| + |01〉〈01| + eiθ1 |10〉〈10| + eiθ2 |11〉〈11| is local. �

Now we are able to show the following.
Theorem 2. V (θ1,θ2) requires five two-qubit gates to sim-

ulate, provided that ei(θ1+θ2) �= 1 and eiθ1 �= eiθ2 .
Proof. We assume that V (θ1,θ2) can be simulated by four

two-qubit gates where ei(θ1+θ2) �= 1 and eiθ1 �= eiθ2 . If the
four gates belong to two of the classes KAB,KAC,KBC , the
circuits that need to be considered are just UACUBCVACVBC =
V (θ1,θ2)ABC and UABUBCVABVBC = V (θ1,θ2)ABC . The pre-
vious one is shown to be impossible in Lemma 2. The latter
one is impossible by noticing W (−θ1)ABUAB is a two-qubit
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unitary on AB system,

V (0,θ2 − θ1)ABC = W (−θ1)ABV (θ1,θ2)ABC

= (W (−θ1)ABUAB)UBCVABVBC.

Now, we can apply Theorem 1 directly.
Otherwise, the four gates belong to three of the classes

KAB,KAC,KBC ; then there exist two gates belonging to the
same class. Due to the symmetric property of the V (θ1,θ2), we
only need to consider the following two cases.

Case 1. Two gates belong to KAB , then at least one of them
lies in the front or the end of the circuit. Then we conclude
that this is impossible by applying Theorem 1 and

V (0,θ2 − θ1)ABC = W (−θ1)ABV (θ1,θ2)ABC

= V (θ1,θ2)ABCW (−θ1)AB.

Case 2. Two gates belong to KBC . The four gates are
UAB ∈ KAB , UAC ∈ KAC and UBC,VBC ∈ KBC . According
to symmetric properties of the V (θ1,θ2), the three possible
circuits are as follows.

Subcase 1. UBCUACVBCUAB = V (θ1,θ2)ABC ; this is im-
possible by applying Theorem 1 and noticing

V (0,θ2 − θ1)ABC = V (θ1,θ2)ABCW (−θ1)AB

= UBCUACVBC[UABW (−θ1)AB].

Subcase 2. UBCUABVBCUAC = V (θ1,θ2)ABC . Let SBC be
the SWAP gate defined in subsystems B,C; then we can observe
that this circuit can be reduced to Lemma 2 by noticing
that SBCUBC,SBCVBC ∈ KBC and SBCUACSBC ∈ KAB and
SBCV (θ1,θ2)ABCSBC is the controlled-controlled gate with
control on systems A and C, and

SBCV (θ1,θ2)ABCSBC

= (SBCUBC)UAB(SBCVBC)(SBCUACSBC).

Subcase 3. UBCUABUACVBC = V (θ1,θ2)ABC . Observe that
UABUAC = U

†
BCV (θ1,θ2)ABCV

†
BC is a controlled unitary with

control on A. According to direct calculation, we can conclude
that RBC = |00〉〈00| + |01〉〈01| + eiθ1 |10〉〈10| + eiθ2 |11〉〈11|
shares eigenvalues with a local unitary by employing Proposi-
tion 2. That is impossible.

Therefore, one can conclude that V (θ1,θ2) requires five
two-qubit gates to simulate for ei(θ1+θ2) �= 1 and eiθ1 �= eiθ2 . �

III. OPTIMAL SIMULATION OF FREDKIN GATE

The Fredkin gate is the three-qubit gate that swaps the last
two qubits if the first qubit is |1〉. The matrix form of the
Fredkin gate is given as

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is shown that the Fredkin gate can be simulated by five
two-qubit gates in the following circuit [22], where U 2 = X

with X being the Pauli flip matrix,

• • •
• •

• U U U † •

In this section, we show the following.
Theorem 3. Four two-qubit gates are not sufficient for

implementing FABC .
The proof also heavily depends on the discussion of the

possible circuit structures.
The following symmetric properties of the Fredkin gate

are helpful to decrease the number of cases: The Fredkin
gate is invariant under the permutation of B and C and
it is symmetric, i.e., FABC = FACB and FABC = FT

ABC with
FACB = SBCFABCSBC , where S stands for the SWAP gate.

FABC can be regarded as a tripartite unitary of Hilbert space
HA ⊗ HB ⊗ HC . We can easily verify FABC is a controlled
unitary with control on A by noticing

FABC = |0〉〈0| ⊗ IBC + |1〉〈1| ⊗ SBC.

In order to explain our idea and key technique of showing
four gates are not enough, we first demonstrate that the
Fredkin gate cannot be decomposed into two two-qubit gates
by dividing the problem into two cases. Case 1: The two gates
belong to classes KAB,KBC , then UAB must be a controlled
unitary with control on A, direct calculation leads to the
confliction; Case 2: The two gates belong to two of the
classes KAB,KAC ; we assume the circuit is UABUAC = FABC ,
invoking Proposition 2. We can assert that SBC is a local unitary
by figuring out directly the form of the controlled unitary. That
is impossible. Therefore, we show the following.

Lemma III.1. Two two-qubit gates are not sufficient for
implementing FABC .

In the rest, we show that four nonlocal two-qubit gates
are not sufficient for implementing FABC . We first study two
special circuits.

Lemma III.2. There is no UAB,VAB ∈ KAB , UBC,VBC ∈
KBC such that the Fredkin gate can be implemented in the
following circuit,

A
VAB UAB

B
VBC UBC

C

.
Proof. Assume that the circuit implements the Fredkin gate,

that is,

UABUBCVABVBC = FABC.

Then, UABUBCVAB is a controlled unitary with control
on A. Moreover, for any input state |0〉A|ψ〉BC , the A

part’s state of UABUBCVAB |0〉A|ψ〉BC is |0〉A. We assume
VAB |0〉A|0〉B = |0〉A|0〉B after moving the local unitaries by
invoking Proposition 1. Thus, the A part’s state of the following
state is |0〉A,

UABUBCVAB |0〉A|0〉B |z〉C = UABUBC |0〉A|0〉B |z〉C.

There are three cases about the states UBC |0〉B |z〉C .
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Case 1. There exists some |z0〉C such that UBC |0〉B |z0〉C is
entangled. There is 0 < λ < 1 such that

UBC |0〉B |z0〉C =
√

λ|0〉B |α〉C + √
1 − λ|1〉B |α⊥〉C.

Define |χ〉ABC = UABUBC |0〉A|0〉B |z0〉C , and we know that

|χ〉ABC =
√

λ|�〉AB |α〉C + √
1 − λ|�〉AB |α⊥〉C,

⇒ χA = λ�A + (1 − λ)�A ⇒ �A = �A = |0〉〈0|,
where |�〉 = UAB |00〉 and |�〉 = UAB |01〉. Therefore, UAB is
a controlled unitary with control on system A, so is VAB . We
can assume that

UAB = |0〉〈0| ⊗ IB + |1〉〈1| ⊗ vB1 ,

VAB = |0〉〈0| ⊗ IB + |1〉〈1| ⊗ vB2 .

We know that UBCVBC = IBC and

vB1UBCvB2VBC = SBC ⇒ UBCvB2U
†
BC = v

†
B1

SBC,

therefore, vB2 ⊗ IC shares eigenvalues with those of
v
†
B1

SBC . By direct calculation, one can obtain that
{eiθ1 ,eiθ2 ,ei(θ1+θ2)/2, − ei(θ1+θ2)/2} are the eigenvalues of
v
†
B1

SBC with eiθ1 ,eiθ2 being the eigenvalues of v
†
B1

. One can
verify that these cannot be the eigenvalues of vB2 ⊗ IC!

Therefore, we only need to deal with the case that
UBC |0〉B |z〉C is the product for any |z〉C .

Case 2. There exists some |γ 〉C and a local unitary wB on
system B such that UBC |0〉B |z〉C = wB |z〉B |γ 〉C , thus, UAB

maps {|0〉A} ⊗ HB to itself. Therefore, UAB is a controlled
unitary with control on A, so is VAB . The rest of the argument
of this case is the same as case 1.

Case 3. There exists some state of system B, wlog,
says |0〉B , and local unitary wC on system C such that
UBC |0〉B |z〉C = |0〉BwC |z〉C . Therefore, UBC is a control
unitary with control on B. By moving this wC to VBC , we can
make the assumption that UBC = |0〉〈0| ⊗ IC + |1〉〈1| ⊗ uC.

Note that for any |z〉C , we have

FABC |0〉A(V †
BC |0〉B |z〉C) = UABUBCVAB |0〉A|0〉B |z〉C

⇒ |0〉A(V †
BC |0〉B |z〉C) = UAB |0〉A|0〉B |z〉C.

Thus part C’s state of V
†
BC |0〉B |z〉C is |z〉C for all |z〉C ∈ HC ,

which means that there is |β〉B such that VBC |β〉B |z〉C =
|0〉B |z〉C. Therefore, one can find a unitary wC such that

VBC = |0〉〈β| ⊗ IC + |1〉〈β⊥| ⊗ wC.

The state of the C part of the following state is always |β〉B ,

UBCVAB |1〉A|0〉B |z〉C = UBCVABVBC |1〉A|β〉B |z〉C
= U

†
ABFABC |1〉A|β〉B |z〉C

= U
†
AB |1〉A|z〉B |β〉C.

On the other hand, assume VAB |1〉A|0〉B = |a〉A|0〉B +
|b〉A|1〉B , and direct calculation shows that

UBCVAB |1〉A|0〉B |z〉C = |a〉A|0〉B |z〉C + |b〉A|1〉BwC |z〉C.

The state of the C part of the above state is the mixture of
|z〉C and wC |z〉C , which is not a constant state, of course
not |β〉B .

One can conclude that UABUBCVABVBC can never be the
Fredkin gate. �

Another case we need to deal with is the following.
Lemma III.3. There is no UAB,VAB ∈ KAB , UAC,VAC ∈

KAC such that UACUABVACVAB = FABC . In other words, the
Fredkin gate can never be implemented in the following circuit,

C
VAC UAC

A
VAB UAB

B

.
Proof. Assume that UACUABVACVAB = FABC .
Wolg, we suppose that VAB |0〉A|β〉B = |0〉A|0〉B by invok-

ing Proposition 1. Then we have the following equation:

|0〉A|β〉B |z〉C = FABC |0〉A|β〉B |z〉C
= UACUABVACVAB |0〉A|β〉B |z〉C
= UACUABVAC |0〉A|0〉B |z〉C.

Considering the state VAC |0〉A|z〉C , we show the following.
Case 1. There is some |z0〉C such that VAC |0〉A|z0〉C

becomes entangled. Define |χ〉ABC as follows,

|χ〉ABC := UACUABVAC |0〉A|0〉B |z0〉C.

By moving local unitaries, we can assume there is 0 < λ < 1
such that

VAC |0〉A|z0〉C =
√

λ|0〉A|0〉C + √
1 − λ|1〉A|1〉C.

According to the fact that χB = βB , we know that

UAB = IA ⊗ |β〉〈0| + uA ⊗ |β⊥〉〈1|.
One can verify that ωB = β⊥ by noticing that
UAC |ω〉ABC = FABC |0〉A|β⊥〉B |z〉C = |0〉A|β⊥〉B |z〉C , where
|ω〉ABC = UABVACVAB |0〉A|β⊥〉B |z〉C .

By employing the form of UAB and ωB = β⊥, we know
that VAB |0〉A|β⊥〉B = |φ〉A|1〉B for some |φ〉A ∈ HA.

Notice that |1〉A|0〉B is orthogonal to VAB |0〉A|β⊥〉B =
|φ〉A|1〉B and VAB |0〉A|β〉B = |0〉A|0〉B , then there is a |ξ 〉B ∈
HB such that VAB |1〉A|ξ 〉B = |1〉A|0〉B since VAB is a unitary.

Now we consider the state,

|ψ〉ABC = UABVAC |1〉A|0〉B |z〉C.

Then we know that ψB = |z〉〈z| by noticing that

|ψ〉ABC = U
†
ACFABC |1〉A|ξ 〉B |z〉C = U

†
AC |1〉A|z〉B |ξ 〉C.

We can observe that ψB = |β〉〈β| by employing the form of
UAB = IA ⊗ |β〉〈0| + uA ⊗ |β⊥〉〈1|. Conflict!

Therefore, we only need to deal with the case that for any
|z〉C , VAC |0〉A|z〉C is product.

Case 2. There exist some |γ 〉C and local unitary uA on
system A such that VAC |0〉A|z〉C = uA|z〉A|γ 〉C , thus, UAB

maps HA ⊗ {|0〉B} to HA ⊗ {|β〉B}. We can also obtain the
form of UAB as case 1. Repeating the argument of case 1, we
are able to show the impossibility of this case.

Case 3. There exists some state |α〉A on system A such
that VAC maps {|0〉A ⊗ HC} to {|α〉A ⊗ HC}. By moving the
local unitary, we can make |α〉A = |0〉A; that means VAC

is a controlled unitary with control on A. We can assume
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that VAC = |0〉〈0| ⊗ IC + |1〉〈1| ⊗ wC by moving the local
unitary, then

|0〉A|β〉B |z〉C = FABC |0〉A|β〉B |z〉C
= UACUABVACVAB |0〉A|β〉B |z〉C
= UACUAB |0〉A|0〉B |z〉C.

Notice that the B part’s state of UAB |0〉A|0〉B is |β〉. Then,
by moving the local unitary to the left of UAC , we can make
the assumption that UAB |0〉A|0〉B = |0〉A|β〉B , and the above
equation becomes

|0〉A|z〉C = UAC |0〉A|z〉C,

therefore, UAC is a controlled unitary with control on A.
Since FABC is symmetric, we observe that

V T
ABV T

ACUT
ABUT

AC = FT
ABC = FABC.

If there is some |y〉B such that UT
AB |0〉A|y〉B is entangled or

some |ϕ〉C and some local unitary uA1 on system A such that
UT

AB |0〉A|y〉B = uA1|y〉A|ϕ〉C is valid for any |y〉B , we can
conclude that it is impossible by repeating the argument above.

The rest of the case is that UT
AB |0〉A|y〉B = |ϕ〉AuC1|y〉C ; we

can reach the conclusion that V T
AB and UT

AB are both controlled
unitary with control on A, so are VAB and UAB , and we can
assert that SBC is a local unitary by figuring directly out the
form of controlled unitary. That is again impossible by direct
calculation.

Therefore, UACUABVACVAB = FABC can never be satis-
fied. �

Now we are ready to show the following.
Theorem 4. Four nonlocal two-qubit gates are not sufficient

for implementing a Fredkin gate.
Proof. If the four gates belong to two of the classes

KAB,KAC,KBC , the circuits that need to be considered are
just UABUBCVABVBC = FABC or UABUACVABVAC = FABC ,
which have just been studied in Lemmas 4 and 5.

Otherwise, the four gates belong to three classes
KAB,KAC,KBC , then there exist two gates belonging to the
same class. Due to the symmetric property of the Fredkin
gate, we need to consider the following two cases.

Case 1. Two gates belong to KAB . The four gates are
UAB,VAB ∈ KAB , UAC ∈ KAC and UBC ∈ KBC . According to
symmetric properties of the Fredkin gate, the three possible
circuits are as follows.

Subcase 1. UABUBCVABUAC = FABC . This circuit can be
reduced to Lemma 4 by noticing that

(SABUAB)UBC(VABSAB)(SABUACSAB) = FBAC,

SABUAB,VABSAB ∈ KAB and SABUACSAB ∈ KBC , where
FBAC = SABFABCSAB is the Fredkin gate with control on B.

Subcase 2. UABUACVABUBC = FABC . This circuit can be
reduced to Lemma 5 by noticing that

(SABUAB)UAC(VABSAB)(SABUBCSAB) = FBAC,

and SABUBCSAB ∈ KAC .
Subcase 3. UABUBCUACVAB = FABC . This circuit can be

reduced to subcase 1 by noticing that

UAB(UBCSBC)(SBCUACSBC)(SBCVABSBC) = FABCSBC.

SBCUACSBC ∈ KAB and SBCVABSBC ∈ KAC . Observe that
XAFABCSBCXA = FABC where XA denotes the Pauli flip
unitary on system HA. This reduction is done.

Case 2. Two gates belong to KBC . The four gates are
UAB ∈ KAB , UAC ∈ KAC and UBC,VBC ∈ KBC . According to
symmetric properties of the Fredkin gate, the three possible
circuits are as follows.

Subcase 1. UBCUACVBCUAB = FABC . This circuit can be
reduced to Lemma 4 by noticing that

(SBCUBC)UAC(VBCSBC)(SBCUABSBC) = FABC.

Subcase 2. UBCUABVBCUAC = FABC . This circuit can be
reduced to Lemma 4 by noticing that

(SBCUBC)UAB(SBCVBC)(SBCUACSBC) = FABC.

Subcase 3. UBCUABUACVBC = FABC . Observe that
UABUAC is a controlled unitary with control on A; we can
conclude that SBC share eigenvalues with a local unitary by
invoking Proposition 2. That is impossible.

This completes the proof of this theorem. �
Together with the previous known result, we can conclude

that five two-qubit gates are optimal to implement a Fredkin
gate.

By observing that the set of circuits consisting of four
(or less) two-qubit gates forms a closed set, compact set indeed,
a direct corollary of Theorem 4.2 is the following.

Corollary 1. There is ε > 0 such that for any UABC which
could be implemented by four two-qubit gates, the distance
between UABC and FABC is greater than ε. In other words,
the Fredkin gate cannot be well approximated by any circuit
consisting of four two-qubit gates.

A similar statement can be made for Deutsch gates.

IV. CONCLUSION

In this paper, we study the problem of implementing
Deutsch gates and the Fredkin gate using two-qubit unitaries.
We first showed that any Deutsch gate requires at least four
two-qubit gates to implement, and if the determinant is one
then it can be simulated using four two-qubit gates; otherwise,
five is optimal. We can construct a circuit consisting of
four two-qubit gates which simulates the set of the universal
Deutsch gate with the unit determinant.

Secondly, we proved that five two-qubit gates is optimal
for constructing a three-qubit Fredkin gate. We hope this work
will be helpful to study the problem of optimal simulation of
the multiqubit gate using two-qubit gates.
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