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Majorization approach to entropic uncertainty relations for coarse-grained observables
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We improve the entropic uncertainty relations for position and momentum coarse-grained measurements. We
derive the continuous, coarse-grained counterparts of the discrete uncertainty relations based on the concept of
majorization. The entropic inequalities obtained involve two Rényi entropies of the same order, and thus go
beyond the standard scenario with conjugated parameters. In a special case describing the sum of two Shannon
entropies, the majorization-based bounds significantly outperform the currently known results in the regime of
larger coarse graining, and might thus be useful for entanglement detection in continuous variables.
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I. INTRODUCTION

The optimal entropic uncertainty relation for two conjugate
continuous variables (position and momentum) has been
known for almost 40 years [1]. One decade later, entropic
formulation of the uncertainty principle has as well been
developed in discrete settings [2,3]. Even though the topic of
entropic uncertainty relations (EURs) has a long history (for a
detailed review, see [4,5]), one can observe a recent increase of
interest within the quantum information community, leading
to several improvements [6–17], and even a deep asymptotic
analysis of different bounds [18]. This is quite understand-
able, because the entropic uncertainty relations have various
applications, for example in entanglement detection [19–23],
security of quantum protocols [24,25], quantum memory
[26,27], or as an ingredient of Einstein-Podolsky-Rosen
steering criteria [28,29]. Moreover, the recent discussion [30]
about the original Heisenberg idea of uncertainty led to the
entropic counterparts of the noise-disturbance uncertainty
relation [31,32] (also obtained with quantum memory [33]).

My favorite example of an entropic description of un-
certainty [34–36] is situated between the continuous and
the discrete scenarios. Continuous position and momentum
variables, when studied with the help of coarse-grained
measurements, lead to discrete probability distributions. This
particular formulation of the uncertainty principle was rec-
ognized long ago [37–39] to faithfully capture the spirit of
position-momentum duality. It also carries a deep physical
insight, since the coarse-grained version of the Heisenberg
uncertainty relation is nontrivial for any coarse graining
(given in terms of two widths � and δ in the positions
and momenta, respectively) provided that both widths are
finite [40]. On the practical level, coarse-grained entropic
relations are experimentally useful for entanglement [23,41]
and steering detection [28] in continuous-variable schemes.
The aim of this paper is thus to strengthen the theoretical and
experimental tools based on coarse-grained EURs by taking
advantage of the recent improvements in discrete entropic
inequalities, in particular, the one based on majorization [12].

Let me start with a brief description of the entropic uncer-
tainty landscape, with a special emphasis on the majorization
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approach developed recently. The standard position-
momentum scenario deals with the sum of the continuous
Shannon (or in general Rényi) entropies − ∫

dzρ (z) ln ρ (z)
calculated for both densities ρ (x) = |ψ (x) |2 and ρ̃ (p) =
|ψ̃ (p) |2 describing positions and momenta, respectively. The
position and momentum wave functions are mutually related
by a Fourier transformation. The discrete EURs rely on the
notion of the Rényi entropy of order α,

Hα [P ] = 1

1 − α
ln

∑
i

P α
i , (1)

and the sum inequalities of the general form

Hα[P (A; �)] + Hβ[P (B; �)] � Bαβ (A,B) (2)

valid for any density matrix � and two nondegenerate observ-
ables A and B. If by |ai〉 and |bj 〉 we denote the eigenstates
of the two observables in question, the associated probability
distributions entering (2) are

Pi(A; �) = 〈ai |�|ai〉 and Pj (B; �) = 〈bj |�|bj 〉. (3)

The lower bound Bαβ does not depend on �, but only on the
unitary matrix Uij = 〈ai |bj 〉. For instance, the most widely
recognized result by Maassen and Uffink [3] gives the bound
−2 ln maxi,j |Uij |, valid whenever

1

α
+ 1

β
= 2. (4)

The pair (α,β) constrained as in Eq. (4) is often referred to as
the conjugate parameters.

A. Majorization entropic uncertainty relations

In the majorization approach one looks for the probability
vectors Q (A,B) and W (A,B) which majorize the tensor
product [9,10] and the direct sum [12] of the involved
distributions (3):

P (A; �) ⊗ P (B; �) ≺ Q (A,B) , (5)

P (A; �) ⊕ P (B; �) ≺ {1} ⊕ W (A,B) . (6)

The majorization relation x ≺ y between any two
D-dimensional probability vectors implies that for all n � D

we have
∑n

k=1 x
↓
k �

∑n
k=1 y

↓
k , with a necessary equality when
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n = D. In agreement with the usual notation, the symbol ↓
denotes decreasing order, which means that (x↓)k � (x↓)l , for
all k � l. In the case when the vectors compared in (5) and (6)
are of different size, the shorter vector should be completed by
a proper number of coordinates equal to 0. The tensor product
x ⊗ y (also called the Kronecker product) is a D2-dimensional
probability vector with the coefficients equal to

x1y1,x1y2, . . . ,x1yD, . . . ,xDy1,xDy2, . . . ,xDyD, (7)

while the direct sum x ⊕ y is a 2D-dimensional probability
vector given by

x1,x2, . . . ,xD,y1,y2, . . . ,yD. (8)

One of the most important properties of the Rényi entropy
of any order α is its additivity,

Hα [x] + Hα [y] = Hα [x ⊗ y] . (9)

Moreover, in the special case of the Shannon entropies
(H1 [·] ≡ H [·]) one easily finds that

H [x] + H [y] = H [x ⊕ y] . (10)

Since the presumed majorization relations (5) and (6) are
valid for every �, the Schur concavity of the Rényi (Shannon)
entropy together with (9) and (10) immediately leads to the
corresponding bounds Bαα = Hα [Q] [9,10] and B11 = H [W ]
[12]. Due to the subadditivity property of the function ln(1 + z)
the validity of the latter bound can be extended [12] to the range
α � 1 (in that case the function

∑
i z

α
i is also Schur concave),

i.e., Bα�1
αα = Hα [W ]. On the other hand, when α > 1, this

bound can be appropriately modified to the weaker form [12]

Bα>1
αα [W ] = 2

1 − α

[
ln

(
1 +

∑
i

Wi

)
− ln 2

]
. (11)

The complete families of the vectors Q (A,B) and W (A,B)
fulfilling (5) and (6) have been explicitly constructed in [9,10]
and [12], respectively. The aim of the present paper is to obtain
the counterpart of the majorizing vector W (A,B) applicable
to the position-momentum coarse-grained scenario described
in detail in the forthcoming Sec. I B. In Sec. II we derive this
vector using the sole idea of majorization, so that we shall
omit here the detailed prescription established in [12]. We
restrict further discussion to the direct-sum approach, since for
α � 1 (this case covers the sum of two Shannon entropies),
the direct-sum entropic uncertainty relation is always stronger
than the corresponding tensor-product EUR [12].

B. Entropic uncertainty relations for
coarse-grained observables

The last set of ingredients we shall introduce contains the
coarse-grained probabilities together with their EURs. Due
to coarse graining, the continuous densities ρ (x) and ρ̃ (p)
become the discrete probabilities

q�
k =

∫ k+�

k−�

dx ρ (x) , pδ
l =

∫ l+δ

l−δ

dp ρ̃ (p) , (12)

with k± = k ± 1/2, l± = l ± 1/2, and k,l ∈ Z. The sum of
the Rényi entropies Hα[q�] and Hβ[pδ] calculated for the

probabilities (12) is lower bounded by [40]

Bαβ (�,δ) = max [Bα (�δ/�) ;R (�δ/�)] , (13)

where [36]

Bα (γ ) = −1

2

(
ln α

1 − α
+ ln β

1 − β

)
− ln (γ /π ) (14)

and [40]

R (γ ) = −ln (γ /2π ) −2 ln R00 (γ /4,1)� 0. (15)

Once more the above results are valid only for conjugate
parameters (4), so that we label the bound (14) only by the
index α. The function R00 (ξ,η) is the “00” radial prolate
spheroidal wave function of the first kind [42]. When γ 
 1,
the spheroidal term in (15) becomes negligible and we have

R (γ ) ≈ B1 (γ ) + ln 2 − 1, (16)

so that the bound (14) dominates in this regime. In the opposite
case, when γ > eπ ≈ 8.54, the bound (14) is negative, so
starting from some smaller (α-dependent) value of γ the
second bound R(γ ) becomes significant.

II. DIRECT-SUM MAJORIZATION FOR
COARSE-GRAINED OBSERVABLES

After the short but comprehensive introduction, we are in
position to formulate the main result of this paper. Assume
that a sum of any M position probabilities q� and any N

momentum probabilities pδ is bounded by 1 + GMN (γ ), that
is (γ = �δ/�),

q�
k1

+ · · · + q�
kM

+ pδ
l1

+ · · · + pδ
lN

� 1 + GMN (γ ) , (17)

for some indices k1 �= k2 �= · · · �= kM and l1 �= l2 �= · · · �= lN .
We implicitly assume here that GMN (γ ) does not depend on
the specific choice of the probabilities in the sum (it bounds
any choice), and that GMN (γ ) � 1 since the left-hand side of
(17) cannot exceed 2. Denote further

FJ (γ ) = max
0�M�J

GM,J−M (γ ) . (18)

Assume now that FJ (γ ), J = 1,2, . . . ,∞ is an increasing
sequence

FJ+1 (γ ) � FJ (γ ) . (19)

If that happens, the construction of the vector W (γ ) applicable
to the direct-sum majorization relation, i.e., such that q� ⊕
pδ ≺ {1} ⊕ W (γ ), can be patterned after [12]:

Wi (γ ) = Fi+1 (γ ) − Fi (γ ) , (20)

for i = 1,2, . . . ,∞. Due to (19) the coefficients Wi (γ ) are
all non-negative, so that they form a probability vector. Note
that F1 (γ ) ≡ 0, since one picks up only a single probability
(M = 1, N = 0 or M = 0, N = 1), and that F∞ (γ ) ≡ 1,
because whenever the quantum state is localized (in position or
momentum) in a single bin, the left-hand side of (17) is equal
to 2. This is in accordance with an expectation that W (γ ) is
the probability vector.

One can check by a direct inspection that

1 +
J−1∑
i=1

W
↓
i (γ ) � 1 +

J−1∑
i=1

Wi(γ ) = 1 + FJ (γ ), (21)
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which together with (17) and (18) is the essence of majoriza-
tion. As in the case of discrete majorization [9,12], there
is a whole family (labeled by n = 2, . . . ,∞) of majorizing
vectors W (n) (γ ) given by the prescription W

(n)
i ≡ Wi for

i < n, W (n)
n = 1 − Fn, and W

(n)
i ≡ 0 when i > n. In that

notation, the basic vector (20) is equivalent to W (∞) (γ ), and
the following majorization chain does hold:

W (2) � W (3) � · · · � W (n) � W (n+1) � · · · � W (∞) ≡ W.

(22)

The remaining task is to find the candidates for the
coefficients FJ (γ ). To this end we shall define two sets:

X (�) =
M⋃

a=1

[k−
a �,k+

a �], Y (δ) =
N⋃

b=1

[l−b �,l+b �],

(23)

which are simply the unions of intervals associated with the
probabilities present in (17). The measures of these sets are
equal to M� and Nδ, respectively. Equation (17) rewritten in
terms of the above sets simplifies to the form∫

X(�)
dx ρ (x) +

∫
Y (δ)

dp ρ̃ (p) � 1 + GMN (γ ) . (24)

Following Lenard [37], we shall further introduce two projec-
tors Q̂ and P̂ , such that for any function f (x), the function
(Q̂f )(x) has its support equal to X(�) and the Fourier
transform of the function (P̂f ) (x) is supported in Y (δ). If both
X (�) and Y (δ) are intervals, then according to Theorem 4
from [39] [this theorem in fact formalizes the content of
Eq. (17) from [38]] the formal candidate for GMN (γ ) is
the square root of the largest eigenvalue λ0 of the compact,
positive operator Q̂P̂Q̂. Due to Proposition 11 (including the
discussion around it) from [37], the above statement remains
valid for any sets X (�) and Y (δ). As concluded by Lenard,
this is a generalization of the seminal results by Landau and
Pollak [43], who for the first time quantified uncertainty using
spheroidal functions. It happens [44], however, that λ0 has the
largest value exactly in the interval case, so that it can always
be upper bounded by the eigenvalue found by Landau and
Pollak:

λ0 � ξ

2π�
[R00 (ξ/4�,1)]2 , (25)

with ξ being the product of the measures of the two sets in
question, that is, ξ = (M�)(Nδ). Since the right-hand side
of (25) is an increasing function of ξ , we can easily find the
maximum in (18). The maximal value of MN with fixed M +
N is given by possibly equal contributions of both numbers.
Since M and N are integers we finally get

FJ (γ ) =
√

γ �J/2� �J/2�
2π

R00

(
γ �J/2� �J/2�

4
,1

)
, (26)

where �·� and �·� denote the integer-valued ceiling and floor
functions, respectively.1 If J is odd then �J/2� �J/2� =

1These functions may be defined as follows: �z� =
min (i ∈ Z : z � i) and �z� = max (j ∈ Z : z � j ).

(J 2 − 1)/4, and �J/2� �J/2� = J 2/4 in the simpler case when
J is an even number. Note that the functions (26) form an
increasing sequence as desired.

The final result of the above considerations is thus the
family of majorization entropic uncertainty relations (n =
2, . . . ,∞):

Hα[q�] + Hα[pδ] � R(n)
α (�δ/�) ≡ Hα[W (n) (�δ/�)],

(27)

valid for α � 1. As mentioned in Sec. I A the case of the
Shannon entropy directly follows from (10), while the range
α < 1 is obtained due to the subadditivity of ln(1 + z). In
the case α > 1 we need to replace the majorization bound
according to (11), and obtain R(n)

α (γ ) ≡ Bα>1
αα [W (n) (γ )].

III. DISCUSSION

A comparison of the previous bounds (14) and (15) with
the majorization results is presented in Fig. 1, for the case of
the Shannon entropy (α = 1 = β). I depicted the first three
majorization-based bounds (black, solid lines) since they are
sufficient to capture the whole content of our uncertainty
relations. First of all, only the bound for n = 2 is slightly
weaker than the remaining majorization bounds in the regime
of larger γ , while there is no difference between n = 3, n = 4,
and other (not presented) values of n. For γ → ∞, all the
black curves exhibit the same behavior, so that one can take
advantage of the asymptotic expansion [45]

γ

2π
[R00 (γ /4,1)]2 ∼ 1 − 2

√
πγ e−γ /2, (28)

in order to show that

R(n)
1 (γ ) ∼

√
π

2
γ 3/2e−γ /2 (29)

FIG. 1. (Color online) As a comparison, I plot the previously
known lower bounds B1 (red dashed line) and R (green dash-dotted
line), together with our majorization bounds (black solid lines),
labeled by n = 2,3,4. By H� and Hδ I denote H1[q�] and H1[pδ],
respectively. From the value �δ/� ≈ 4.8231 at which the black
line (n = 4) intersects the red dashed line, our bounds improve the
previously known results.
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for all n = 2, . . . ,∞. The same expansion studied for the
previous bound (15) leads to

R (γ ) ∼ 2
√

πγ e−γ /2. (30)

The asymptotic value of (29) is larger than (30) by a divergent
factor γ /4. Since the bound (15) for the sum of two Shannon
entropies is always weaker than the pair B1 (γ ) and R(3)

1 (γ ),
it is in this case sufficient to use only these two bounds.
Obviously, the bound R (γ ) remains useful (as being always
non-negative) for the conjugated parameters (α,β) with α �= β,
when the majorization bounds do not apply. Let me recall
that in the limiting case α = 1/2, β = ∞, the bound R (γ ) is
optimal and can be saturated for any value of γ .

While by increasing the number n we do not change the
tail of the bound, we still substantially improve the area of
small γ . Taking the limit γ → 0, one can recognize that the
optimal majorization bound R(∞)

1 (γ ) behaves as − 1
2 ln γ , so

it is still far below the bound B1 (γ ). To show that property
one needs to associate i

√
γ in (20) with a continuous variable

z, so that

Wi (γ ) → √
γ

d

dz

[
z

2
√

2π
R00(z2/16,1)

]
, (31)

and use the definition of the Riemann integral. This kind of
behavior is somewhat typical in the majorization approach
to entropic uncertainty relations. In the discrete case, the
tensor-product EUR (weaker than the direct-sum EUR used
in this paper) can outperform the Maassen-Uffink result in
more than 98% of cases [9], even for a small dimension of
the Hilbert space equal to 5. But the Maassen-Uffink lower
bound [3] always dominates when Uij is sufficiently close to
the Fourier matrix, so that both eigenbases of the observables
A and B become mutually unbiased. The continuous limit
γ → 0 is of exactly the same sort, since the resulting
continuous densities originate from the wave functions in
position and momentum spaces, which are related by the
Fourier transformation. Note that the behavior in the limit
γ → 0 thus does not permit us to derive counterparts of the
continuous EURs [1,36,46], valid for β = α.

IV. CONCLUSIONS

We have presented in Eq. (27) a direct-sum majorization en-
tropic bound for coarse-grained observables in the case β = α.
In the Shannon case, the bound (13) holds as well and the com-
parison of all bounds is depicted in Fig. 1. The current bounds
(black, solid lines) significantly improve the previously known
results in the regime of γ � 4.8231 (this threshold value is
an intersection point between the red dashed line and the

black line labeled by n = 4). This regime of relevance (γ �
4.8231) is of practical importance. In [23], entanglement of a
two-mode Gaussian state was experimentally confirmed with
the coarse-graining widths � = 17�1 and δ = 15δ1, where
�1 = 0.0250 mm and δ1/� = 1.546 mm−1. To construct the
entanglement criteria, one needs to put γ = �δ/2� inside the
underlying uncertainty relation (the factor of 1/2 comes from
different normalizations of the global quadratures), so that the
above numbers reduce to the value γ = 4.9279. Even though
we observe a tiny overlap between the regime in which our
EUR outperforms the previous results and the parameters from
[23], for slightly larger coarse graining, say γ = 7, the value of
the bound increases by 60% because R(3)

1 (7) /B1 (7) = 1.609.
This suggests, however, that with the current bound at hand,
one could improve the performance of the entanglement
criteria and possibly detect entanglement beyond the cases
reported in [23]. The better detection ability might become
important when dealing with multipartite entanglement [47],
since due to the increasing number of degrees of freedom,
the coarse-grained measurements might appear to be the one
feasible experimental method [48].

In the discrete scenario with almost mutually unbiased
bases the Maassen-Uffink bound always outperforms the
majorization approach. However it can still be improved with
the help of the monotonicity property of the relative entropy
[11], or by combining the former approach with majorization
techniques [12]. In the continuous case this type of analysis is
far more difficult, since we actually do not have at our disposal
a unitary matrix U such that ak = ∑

l Uklbl and ak,bl are the
probability amplitudes reproducing (12),

q�
k = |ak|2, pδ

l = |bl|2. (32)

From the beginning we deal with the per se probabilities q�
k

and pδ
l . This fundamental difference can be overcome if one

introduces an additional degree of freedom [40,49,50] corre-
sponding to the orthonormal bases on the intervals [k−

a �,k+
a �]

and [l−b �,l+b �]. Even though this approach produces the valid
unitary matrix U , the remaining optimization required by [11]
becomes a challenging task.
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