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Quantum origins of objectivity
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In spite of all of its successes, quantum mechanics leaves us with a central problem: How does nature create
a bridge from fragile quanta to the objective world of everyday experience? Here we find that a basic structure
within quantum mechanics that leads to the perceived objectivity is a so-called spectrum broadcast structure.
We uncover this based on minimal assumptions, without referring to any dynamical details or a concrete model.
More specifically, working formally within the decoherence theory setting with multiple environments (called
quantum Darwinism), we show how a crucial for quantum mechanics notion of nondisturbance due to Bohr
[N. Bohr, Phys. Rev. 48, 696 (1935)] and a natural definition of objectivity lead to a canonical structure of
a quantum system-environment state, reflecting objective information records about the system stored in the
environment.
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I. INTRODUCTION

The emergence of the objective world from quanta has
been a longstanding problem, already present from the very
beginning of quantum mechanics [1–3]. One of the most
promising approaches is the decoherence theory, based on
a system-environment paradigm [4,5]: A quantum system is
considered interacting with its environment. It recovers, under
certain conditions, a classical-like behavior of the system alone
in some preferred frame, singled out by the interaction and
called a pointer basis [6], and explains it through information
leakage from the system into the environment. However,
decoherence theory lacks an explanation for the redundancy
of information in the classical realm [7]: The same record can
exist in a large number of copies and can be independently
accessed by many observers and many times. More basically,
since quanta cannot be cloned [8] and information redundancy
is, from the perspective of the observers’ measurements, at
the heart of objectivity, then what quantum process lies at the
foundation of the objective classical world?

Recently, a crucial step was made in a series of works (see,
e.g., [7,9]) introducing the so-called quantum Darwinism idea.
Its essence is that in more realistic environments, composed
of many independent fractions, decoherence leads to the
appearance of multiple copies of the system’s state in the
environment, accessible to independent observers. Although
presenting a convincing physical picture, there is no general
model-independent justification of such claims apart from
studies under the strict conditions of specific models, e.g.,
spin-1/2 systems [10] or an illuminated sphere [11]. However,
even those studies still do not present totally convincing
arguments within the models themselves, as they are based on
a scalar information-theoretic condition and so-called partial
information plots, which are known to be only a necessary
condition for objectivity but with sufficiency still unknown.

Here we take a more fundamental and rigorous position,
based solely on what for now provides the most basic
description of nature: a quantum state (see also [12]). More pre-
cisely, we derive from first principles a universal objectivity-
carrying structure of quantum states, using a general approach,

independent of any dynamics (much like, e.g., the S-matrix
theory in quantum field theory [13]): Looking at the postin-
teraction system-environment state, we ask what properties
should it have to reflect the objectivity. Surprisingly, the
answer comes with the help of Bohr’s notion of nondisturbance
[14,15], which was originally used to defend the quantum
[14,16], whereas here, ironically, it defines the classical.
It is obtained through what we call a spectrum broadcast
structure, which precisely pinpoints the distributed character
of information and makes it essentially classical. We finally
illustrate our approach using one of the emblematic examples
of decoherence theory: a dielectric sphere illuminated by
photons [11,17,18]. It must be mentioned that in the quantum
Darwinism literature there appeared similar quantum state
structures (so-called branching states). However, they have
been at best tacitly postulated [7,9,19], if at all explicitly
mentioned. Our results allow us to understand the intimate
connection between the perceived objectivity, a specific
structure of quantum states, and information broadcasting.

II. GENERAL THEOREM

A. Basic definitions and the main result

We first define the central concepts of our study and state the
main result. The basis of our work is the following definition
of an objective state [7,20].

Definition 1: Objectivity. A state of the system S exists
objectively if many observers can find out the state of S

independently and without perturbing it.
As it stands, the above definition is rather informal and has

to be made more rigorous. For example, the key concept of
perturbation has to be made precise, which w do in the next
section.

The second key concept of our study is a spectrum broadcast
structure, defined as follows.

Definition 2: Spectrum broadcast structure. A spectrum
broadcast structure is the following form of a joint state of
the central system S and a collection of subenvironments
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E1, . . . ,Ef N (denoted by f E):

�S:f E =
∑

i

pi |i〉S〈i| ⊗ �
E1
i ⊗ · · · ⊗ �

Ef N

i , (1)

where {|i〉} is some basis in the system’s space, pi are
probabilities, and all states �

Ek

i are perfectly distinguishable:

�
Ek

i �
Ek

i ′ = 0 ∀ i �= i ′, k = 1, . . . ,f N. (2)

All the nomenclature will be clarified in the next section. This
is a special form of so-called classical-classical state, which
has been introduced as a counterpart of separable states in
the context of quantification of quantum correlations [21,22].
It originally appeared in the context of quantum channels in
[23].

The main result of this work is the establishment of an
intimate connection between these two concepts. The two
pivotal assumptions we use are a Bohr nondisturbance [14,15]
and a strong independence. The first was formulated in [15]
(see Sec. II B); by a strong independence we mean that the only
correlation between the environments should be the common
information about the system. In other words, conditioned
by the information about the system, there should be no
correlations between the environments. This is in a sense
an idealization, which we use since we are interested in the
information flow only between the system and each of the
environments, but not between the environments themselves.
Under these central assumptions (together with some auxiliary
ones), we prove in Sec. II C the following theorem.

Theorem 1. Assume that a system undergoes a full decoher-
ence. Then the appearance of a spectrum broadcast structure
is a necessary and sufficient condition for objectivity in the
sense of Definition 1:

Objective existence ⇐ Spectrum broadcast structure,(
Objective
existence

)
+

(
Strong

independence

)
⇒

⎛
⎝Spectrum

broadcast
structure

⎞
⎠ .

B. Formalization of Definition 1

Here we put Definition 1 into a physical frame and make it
as precise as possible, which is the hardest work. As the most
suitable, we formally choose decoherence theory with multiple
environments [7]: The quantum system of interest S interacts
with multiple environments E1, . . . ,EN (denoted collectively
as E), also modeled as quantum systems. The environments
(or their collection) are assumed to be macroscopic and
are monitored by independent observers [9]. The motivation
behind such a choice is that in real-life situations there is
always present some interaction with the environment (unless
very special conditions are met) and we, the observers, usually
have access only to a small portion of it, each to a different part.
However, as we will see in what follows, no assumptions on
the dynamics will be needed. In fact, we may forget about the
dynamics altogether and pose a more general question: Which
multipartite system-environment states reflect objectively an
existing state of the system in the sense of Definition 1?

We only assume that the system-environment interaction
is such that it leads to a full decoherence. The standard,
or even paradigmatic, case corresponding to the latter is a

physical situation when there exists a time scale τD , called
the decoherence time, such that asymptotically for interaction
times t 
 τD (i) there emerges in the system’s Hilbert space
a unique, stable in time pointer basis {|i〉} and (ii) the reduced
state of the system �S becomes stable and diagonal in the
pointer basis

�S ≡ TrE�S:E ≈
∑

i

pi |i〉〈i|, (3)

where the pi are probabilities and by ≈ we will always denote
asymptotic equality in the deep decoherence limit t/τD →
∞. However, it should be stressed that while we usually will
mean the latter situation, our derivation of the structure of
objectivity covers also possible situations when the process
happens in finite time. We assume here the above explained
full decoherence, so that the system decoheres in a basis rather
than in higher-dimensional pointer superselection sectors. This
is because we want to consider the full objectivization of a
given quantum degree of freedom rather than a partial one.
Clearly, the environment must be of a large dimension to have
a big informational capacity, needed to carry highly redundant
records about the decohered system S. Moreover, some loss
of information is needed (and of course happens in reality),
as otherwise there will be no decoherence, and we assume
that some of the environments pass unobserved. The observed
environments E1, . . . ,Ef N we denote by f E (depending on
the context).

Next we specify the observers. Apart from the environmen-
tal ones, we also allow for a (possibly hypothetical) direct
observer, who can measure the system S directly. Such an
observer is needed as a reference to verify that the findings of
the environmental observers are the same as if one had a direct
access to the system.

By “finding” we mean that the observers are performing von
Neumann (as perfectly repeatable, contrary to the generalized)
measurements on their subsystems. It should be stressed here
that the von Neumann measurement, with its repeatability
property, has been chosen since we identify the spectrum
broadcast structure as the paradigmatic, ideal structure of the
state, responsible for objectivity. Indeed, this is the object to
which any real physical state should be compared if we want
to know whether the objectivity in a more or less approximate
sense (in terms of a state trace distance) takes place. (Note
that it can be compared with the ideal singlet as the target
state of quantum distillation or the ideal channel, in the case
of coding theory, to which the outputs of real protocols or
physical situations are compared.)

By the independence requirement of Definition 1, there can
be no correlations between them. Consequently, the global von
Neumann measurement, resulting from the individual local
observer’s measurements, must be fully product

�
MS

i ⊗ �
M1
j1

⊗ · · · ⊗ �
Mf N

jf N
, (4)

where MS,M1, . . . ,Mf N denote measurements on
S,E1, . . . ,Ef N and all � are mutually orthogonal Hermitian
projectors �

Mk

j �
Mk

j ′ �=j = 0. The observers so determine the
probabilities pi of |i〉 in (3) (they must know the pointer basis
{|i〉}; otherwise they would not know what the information
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they get is all about). As explained before Theorem 1, we will
actually demand more by assuming the strong independence.

The most crucial clarification needed in Definition 1 is to
make precise the word perturbing. We apply here Bohr’s notion
of nondisturbance [14,15], according to which the given local
measurements on the subsytems are nondisturbing if they leave
the whole joint state invariant (after forgetting the results).
This is a realistic mathematical idealization of a repetitive
information extraction, a crucial prerequisite for objectivity.

We recall that Bohr’s nondisturbance was formulated in
order to save the completeness of quantum theory against the
famous Einstein-Podolsky-Rosen (EPR) argument [16]. Bohr
argued [14] that the EPR notion of mechanical nondisturbance
(which amounts to the no-signaling principle [15]) was too
restricted and a broader notion was needed. Hence, accepting
the completeness of quantum theory, as we do for the purpose
of this work, one is forced to accept Bohr’s notion of
nondisturbance.

Finally, the independent measurements will typically reveal
inconsistent information about the system (see, however,
[12]). Indeed, allowing for general correlations may lead to
a disagreement: If one of the observers measures first, the
ones measuring afterward may find outcomes depending on
the result of the first measurement. Thus, we add to Definition
1 an obvious agreement requirement that many observers can
find the same state of S independently.

C. Proof of Theorem 1

We are now ready for a proof of Theorem 1 with the
additional assumption of strong independence, explained in
Sec. II A. We first prove that the spectrum broadcast structure
from Definition 2 is a sufficient condition for an objectively
existing state of the system, in the sense of Definition 1. Indeed,
from (1) projections on |i〉 and on the disjoint supports of �

Ek

i

constitute the nondemolition measurements. Performing them
independently, all the observers will repeatedly detect the same
index i with probabilities {pi}, without Bohr disturbing the
joint S:f E state, thus making the sate |i〉 exist objectively in
the sense of Definition 1 (cf. [24]).

We now prove the reverse. We assume the decoherence has
taken place (cf. [12]). Crucial here is the Bohr nondisturbance
condition from Sec. II B. Together with the product structure
(4), it implies that on each subsystem S,E1, . . . Ef N there
exists a nondemolition von Neumann measurement, leaving
the whole asymptotic state �S:f E(∞) of the system and the
observed environment invariant (the symbol ∞ stands here
either for the t/τD → ∞ asymptote or as mentioned before
for any time scale, maybe finite, after which the objectivity
structure emerges). For S it is defined by the projectors on |i〉.
For the environments we allow for higher-rank projectors �

Mk

j ,
k = 1, . . . ,f N , not necessarily spanning the whole space,
as the environments can have inner degrees of freedom not
correlating to S.

Consequently, the total joint probability of the results of the
Bohr nondisturbing measurements is given by

pij1...jf N
≡ Tr

[|i〉〈i| ⊗ �
M1
j1

⊗ · · · ⊗ �
Mf N

jf N
�S:f E(∞)

]
. (5)

Now the agreement requirement from Sec. II B leads to a
natural conclusion

pij1...jf N
�= 0 if and only if i = j1 = · · · = jf N . (6)

Let us more formally show it, considering for simplicity
only two observers. If one of them measures first and gets
a result i, then the joint conditional state becomes �|i =
(1/pi)(�i ⊗ 1)�(�i ⊗ 1), pi ≡ Tr(�i ⊗ 1�) and the subse-
quent measurement by the second observer will yield results
j with conditional probabilities pj |i = (1/pi)Tr(�i ⊗ �j�).
If for some i, pj |ipj ′|i �= 0 for j �= j ′, then comparing their
results after a series of measurements at some later moment,
the observers will be confused as to what exactly the state
the system S was: With the probability pj |ipj ′|i the second
observer will obtain different states j �= j ′, while the first
observer measured the same state i. The observers’ findings
are not objective unless for every i there exists only one j (i)
such that pj (i)|i �= 0 (actually pj (i)|i = 1, which follows from
the normalization

∑
i pi|j = 1, so that the distributions p·|i

are all deterministic). Reversing the measurement order and
applying the same reasoning, we obtain that for every j there
can exist only one i(j ) such that p̃i(j )|j �= 0, where by the
Bayes theorem p̃i|j = pj |ipi/p̃j , p̃j ≡ Tr(1 ⊗ �j�). These
two conditions imply that the joint probability pij = piδij

(after an eventual renumbering). Applying the above argument
to all pairs of indices, one obtains (6). This means that
the environmental Bohr-nondisturbing measurements must
be perfectly correlated with the pointer basis. Hence, after
forgetting the results, the asymptotic postmeasurement state
�M

S:f E(∞) reads

�M
S:f E(∞) ≡

∑
i,j1,...,jf N

pij1...jf N
�

S:f E

ij1...jf N
(∞)

=
∑

i

|i〉〈i| ⊗ �i�S:f E(∞)|i〉〈i| ⊗ �i , (7)

where �i ≡ �
M1
i ⊗ · · · ⊗ �

Mf N

i .
Now we are ready for the key step: We impose the relevant

form of the Bohr-nondisturbance condition∑
i

|i〉〈i| ⊗ �i�S:f E(∞)|i〉〈i| ⊗ �i = �S:f E(∞), (8)

whose only solution [15] are classical-quantum (CQ) states
[25]

�S:f E(∞) =
∑

i

pi |i〉〈i| ⊗ Rf E

i , (9)

where pi are identified with the probabilities from Eq. (3)
and Rf E

i are some residual states in the space of the observed
environments with mutually orthogonal supports Rf E

i Rf E

i ′ �=i =
0. Hence, Rf E

i are perfectly distinguishable through the
assumed nondisturbing measurements �i , projecting on their
supports.

Finally, let us look at the residual states Rf E

i in (9). The
demand of the independent ability to determine the state of S,
already used in (4), completed with the strong independence
condition (cf. Sec. II) leads to the following: Once one of the
observers finds a particular result i, the resulting conditional
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state should be fully product. Since the direct observer is
already uncorrelated by (9), this implies that

Rf E

i = �
E1
i ⊗ · · · ⊗ �

Ef N

i (10)

and �
Ek

i must be perfectly distinguishable for each Ek [cf. (2)]
since by (8) for any k it holds that �

Mk

i �
Ek

i �
Mk

i = �
Ek

i and
�

Mk

i �
Mk

i ′ �=i = 0. This finishes the proof.
Some remarks are in order. First, in the course of the

proof we have formulated a broader class of independent
environments, in a way paradigmatic in quantum information
theory [26]: The environments are independent if and only
if the environmental observers may produce the states (10)
and (2), exploiting only local operations (equivalent to local
trace-preserving maps), i.e., independent environments are
those that simulate a strong independence from the perspective
of a specific resource (the class of local operations).

Second, the meaning of Theorem 1 is that it provides an
ideal reference structure for objectivity, the broadcast structure
(1). Any other nonideal situation should be compared to that
broadcast structure no matter what figure of merit is taken.
On the level of the states, this must be the trace norm, which
has the clear probabilistic interpretation, where the degree of
objectivity is just the trace norm distance to the broadcast
state. The transition of the initial S:E state to the spectrum
broadcast structure (1) identifies a basic process, called here
state information broadcasting, responsible for the appearance
of the perceived objectivity. Formally, it involves broadcasting
of a part of information about the system, the spectrum of its
state after the decoherence Sp�S ≡ {pi} into the environments,
and is thus similar to quantum state [27] and spectrum [23]
broadcasting. Condition (2) forces the correlations in (1) to be
entirely classical and thus the detailed structures of �

Ek

i become
irrelevant for the correlations. From (1) and (2) it follows that
under a suitable convergence

I [�S:f E(∞)] = HS for every fraction f, (11)

where I (�AB) ≡ SvN(�A) + SvN(�B) − SvN(�AB) is the quan-
tum mutual information, SvN(�) ≡ −Tr(� log �) stands for
the von Neumann entropy, and HS ≡ SvN[�S(∞)] = H ({pi})
is the entropy of the decohered state (3). Condition (11),
postulated as a sufficient condition for objectivity in the
quantum Darwinism model, has a clear meaning in the classical
information theory [28]: Every fraction f carries the same
information HS about the system; the latter is redundantly
encoded in the environment. However, in the quantum world
its sense remains unclear (see the next section). Here (11)
follows automatically from the deeper structure (1).

III. DISCUSSION OF THE ENTROPIC OBJECTIVITY
CONDITION AS EVIDENCE OF OBJECTIVITY

Here we show a potential problem with the entropic objec-
tivity condition (11) as a sufficient condition for objectivity
(see, e.g., Refs. [7,9] and references therein). Although our
example below is not fully conclusive, we argue that at
this moment neither is the reasoning of quantum Darwinism
studies.

Condition (11) has been shown to hold in several models,
including the illuminated sphere [11,18] and spin baths [10].

For finite times t , the equality (11) is not strict and holds
within some error δ(t), which defines the redundancy Rδ(t)
as the inverse of the smallest fraction of the environment fδ(t)

for which I [�S:fδ(t)E(t)] = [1 − δ(t)]HS . When satisfied, (11)
implies that the mutual information between the system and
the environment fraction is a constant function of the fraction
size f (up to an error δ for finite times) and the plot of I against
f exhibits a characteristic plateau, called the classical plateau
(see, e.g., Ref. [7]). The appearance of this plateau has been
heuristically explained in the quantum Darwinism literature as
a consequence of the redundancy: Classical information about
the system exists in many copies in the environment fractions
and can be accessed independently and without perturbing
the system by many observers, thus leading to the objective
existence of a state of S [7]. That would certainly be the case
in the classical information setting: The condition (11) there is
equivalent to a perfect correlation of both systems [28], i.e., for
every f the environment fraction has full information about
the system and indeed this information thus exists objectively
in the sense of our definition.

However, in the quantum world the situation may be
different and the condition (11) alone may not be sufficient
to guarantee objectivity due to the holistic nature of quantum
correlations [29]. It is clear that the spectrum broadcast
states (1) satisfy (11), but there may also be entangled states
satisfying it, thus violating the spectrum broadcast form,
derived as a necessary condition for objectivity. As a simple
example in favor of such a statement consider the following
state of two qubits, where one is the system S and the second
the environment E:

�S:E ≡ pP(a|00〉+b|11〉) + (1 − p)P(a|01〉+b|10〉), (12)

where Pψ ≡ |ψ〉〈ψ |, p �= 1/2, a = √
p, and b = √

1 − p.
Then the partial state �S = p̃|0〉〈0| + (1 − p̃)|1〉〈1|, p̃ ≡
pa2 + (1 − p)b2 is diagonal in the basis |0〉,|1〉 and moreover
SvN(�S) = SvN(�S:E) ≡ h(p̃) (the binary Shannon entropy
[28]), so a form of the entropic condition holds, I (�S:E) =
SvN(�S) = HS , HS = h(p̃), but the systems are nevertheless
entangled, which one verifies directly through the positive
partial transpose criterion [30].

The above example is of course not conclusive, as there
is only one environment, but it suggests that the functional
condition (11) in principle might indeed be insufficient to
show objectivity, as defined in previously. We leave this, in
general difficult, question open for further research. In the
above context, the paradigmatic shift we propose here, with
respect to the earlier works on decoherence and quantum
Darwinism models, can already be seen: It is the pivotal
observation governing our approach that the core object of
the analysis should be a derived structure of the full quantum
state of the system S and the observed environment f E rather
than the partial state of the system only (decoherence theory)
or information-theoretic functions (quantum Darwinism).

IV. SPECTRUM BROADCAST STRUCTURE IN
THE ILLUMINATED SPHERE MODEL

We exemplify the general findings from Sec. II on one of
the central models of decoherence (see, e.g., [11,17,18]): a
dielectric sphere illuminated by photons (for details see the
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Appendix). We show that in the course of the evolution, a
broadcast state (1) is asymptotically formed in this model,
assuming for simplicity pure environments (see [18] for a more
general analysis). The sphere is initially in a state without
a well-defined position [e.g., in |ψS

0 〉 = (|�x1〉 + |�x2〉)/
√

2].
Photons scatter elastically and slightly differently depend-
ing on where the sphere is, but this difference is vanish-
ingly small for each individual scattering: If the observed
fraction is too small, the postscattering states |�mic

i 〉 ≡ Si |�k0〉
(Si are the scattering matrices) become identical in the

thermodynamic limit 〈�mic
2 |�mic

1 〉 ≡ 〈�k0|S†
2S1�k0〉 therm−−→ 1 and

the joint postscattering state approaches effectively a prod-
uct (

∑
i=1,2 pi |�xi〉〈�xi |) ⊗ |�mic〉〈�mic|⊗μ, where probabilities

pi ≡ |〈ψS
0 |�xi〉|2 form the spectrum of the decohered state

[cf. (3)]. The photons thus force the sphere to be in a definite
position �xi with probability pi , but the observed fraction carries
no information about it (a product phase; see the Appendix,
Sec. 3).

However, when grouped into macroscopic fractions, the
photons become almost perfectly resolving. Imagine that we
divide all the photons scattered up to time t , Nt , into M

macrofractions of mNt , 0 < m < 1, photons (Fig. 1). Then the
macroscopic postscattering states |�mac

i (t)〉 ≡ (Si |�k0〉)⊗mNt

become asymptotically perfectly distinguishable

∣
∣
〈
�mac

2 (t)
∣∣�mac

1 (t)
〉∣
∣

therm−−→ e−m(t/τD ), (13)

where τD is the decoherence time [11,17]. If we observe
f M , 0 < f < 1, macrofractions out of M , then the joint
postscattering state has asymptotically the spectrum broadcast

FIG. 1. (Color online) Coarse graining of the photonic environ-
ment. The photons (green) scattered in time t are grouped into
M equal macroscopic fractions mNt . Only one fraction (bounded
by the red cage) is shown; L is the edge of an artificial box
used for quantization (and removed later; see the Appendix). The
macrofractions may be thought of as representing a sensitivity of the
photon detectors (e.g., an eye) and their exact size mNt is irrelevant;
scaling with the total photon number Nt suffices.

structure (1),

�S:f E(0)=�S
0 ⊗ �mac

0 ⊗ · · · ⊗ �mac
0︸ ︷︷ ︸

f M

t
τD−−−→
therm

�S:f E(∞)

=
∑
i=1,2

pi |�xi〉〈�xi | ⊗ |imac〉〈imac| ⊗ · · · ⊗ |imac〉〈imac|︸ ︷︷ ︸
f M

,

(14)

where |imac〉 ≡ |�mac
i (∞)〉 emerges, due to (13), as the nondis-

turbing environmental basis in the space of each macrofraction.
Equation (14) identifies the state information broadcasting
process: The information about the sphere’s localization {pi}
is redundantly transferred into the environment and becomes
available in multiple copies through the measurements in
{|imac〉}. The process consists of (i) decoherence [17] and (ii)
orthogonalization (13) and defines a broadcasting phase (see
the Appendix, Sec. 3) corresponding to the classical plateau
of [11]. From Fannes-Audenaert [31] and Alicki-Fannes
[32] inequalities, the entropic condition (11) follows as a
consequence of (14) (see the Appendix, Sec. 4). Finally, if all
the photons are observed, the postscattering state maintains the
full quantum correlation with the system and I [�S:f E(∞)] =
Imax (a full information phase).

V. DISCUSSION

In conclusion, based on a universal approach, independent
of any dynamics or a concrete model, we have identified the
primitive state information broadcasting process responsible
for the emergence of the perceived objectivity (for a possible
loosening of some of our assumptions see [12]). Our main
result (Theorem 1) suggests that the states of the form
(14) are notoriously formed in nature. In a laboratory, this
can in principle be directly verified via, e.g., quantum state
tomography [33]. Moreover, it naturally leads to the view
that in fact there may be no quantum-to-classical transition;
what we perceive as classical, e.g., objective information,
may be merely a reflection of some specific properties of
the underlying quantum states, like the spectrum broadcast
structure, a view further strengthened by [34].

There appears to be a deep connection between the
nonsignaling principle and objective existence in the sense
of Definition 1: The core fact that it is at all possible for
observers to determine independently the classical state
of the system is guaranteed by the nonsignaling principle
Tr(1S ⊗ �E�S:E) = TrE(�E�E). There is no contradiction
with the Bohr nondisturbance, as the latter is a strictly stronger
condition than the nonsignaling principle [15] (this is the
core of Bohr’s reply [14] to Einstein, Podolsky, and Rosen).
In fact, the above connection reaches deeper than quantum
mechanics. In a general theory, where it is possible to speak
of probabilities p(ij |MN ) of obtaining results i,j when
performing measurements M,N (however defined), whatever
the definition of objective existence may be, the requirement
of the independent ability to locally determine probabilities
by each party seems indispensable. This is guaranteed in the
nonsignaling theories, where all p(ij |MN ) have well-defined
marginals. In this sense nonsignaling seems a prerequisite of
cognition. In this context, we also believe that our approach
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to objectivity will present a different perspective on the
celebrated Bell theorem [35].

The emergence of redundantly encoded information in the
structure of quantum states may also shed light on the life
phenomenon. Since self-replication of the DNA information
is indispensable for the existence of life, it cannot be excluded
that the state information broadcasting may indeed open a
classical window for life processes within quantum mechanics
[36].

ACKNOWLEDGMENTS

We thank W. H. Zurek and C. J. Riedel for discus-
sions and comments and M. Piani for discussions about
strong independence. P.H. and R.H. acknowledge discussions
with K. Horodecki, M. Horodecki, and K. Życzkowski.
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APPENDIX: TECHNICAL DETAILS OF THE
ILLUMINATED SPHERE MODEL FOR PURE

ENVIRONMENTS

1. Description of the model

Here we present a detailed derivation of the spectrum
broadcast structure (1) in the illuminated sphere model for
pure environments (see [18] for a more general situation).
We first recall the basics of the model, following the usual
treatment (see, e.g., Refs. [11,17,37,38]). The system S is
a sphere of radius a and relative permittivity ε, bombarded
by a constant flux of photons, which constitute the multiple
environments and decohere the sphere. The sphere can be
located only at two positions �x1 or �x2, so effectively its state
space is that of a qubit HS ≡ C2 with a preferred orthonormal
(due to the mutual exclusiveness) basis |�x1〉,|�x2〉, which will
become the pointer basis. This greatly simplifies the analysis,
yet allows the essence of the effect to be observed. The sphere
is sufficiently massive compared to the energy of the radiation,
so the recoil due to the scattering can be totally neglected and
the photons’ energy is conserved, i.e., the scattering is elastic.

The environmental photons are assumed to be not energetic
enough to individually resolve the sphere’s displacement
	x ≡ |�x2 − �x1|:

k	x � 1, (A1)

where �k is the characteristic photon momentum. Otherwise,
each individual photon would be able to resolve the position
of the sphere and studying multiple environments would not
bring anything new. On the technical side, following the
traditional approach [11,17,37,38], we describe the photons
in a simplified way using box normalization: We assume that
the sphere and the photons are enclosed in a large box of edge
L and volume V = L3 and photon momentum eigenstates |�k〉
obey periodic boundary conditions. Although a more rigorous
treatment was developed in Ref. [39] with well-localized
photon states, we choose this traditional heuristic approach as,
at the expense of mathematical rigor, it allows us to expose
the physical situation more clearly, without unnecessary
mathematical details (we remark that the findings of Ref. [39]

agree with the previous works using box normalization [40]).
After dealing with formally divergent terms, we remove the
box through the thermodynamic limit (signified by ∼=) [11,38]

V → ∞, N → ∞,
N

V
= const, (A2)

that is, we expand the box and add more photons, keeping the
photon density constant, as the relevant physical quantity is the
radiative power, proportional to N/V . The thermodynamic
limit is crucial in the sense that it defines microscopic and
macroscopic regimes, which will in turn be qualitatively very
distinct.

The detailed dynamics of each individual scattering is
irrelevant; the individual scatterings are treated asymptotically
in time. The interaction time t enters the model differently,
through the number of scattered photons. It may be called
macroscopic time. Assuming photons come from the area of
L2 at a constant rate of N photons per volume V per unit time,
the amount of scattered photons from t = 0 to t is

Nt ≡ L2 N

V
ct, (A3)

where c is the speed of light. Throughout the calculations we
work with a fixed time t and pass to the asymptotic limit
t/τD → ∞ (signified by ≈ or ∞) at the very end.

Since multiphoton scatterings can be neglected and all
the photons are treated equally (symmetric environments),
the effective sphere-photon interaction up to time t is of a
controlled-unitary form

US:E(t) ≡
∑
i=1,2

|�xi〉〈�xi | ⊗ Si ⊗ · · · ⊗ Si︸ ︷︷ ︸
Nt

, (A4)

where (assuming translational invariance of the photon scat-

tering) Si ≡ S�xi
= e−i �xi ·�̂kS0e

i �xi ·�̂k is the scattering matrix when
the sphere is at �xi , S0 is the scattering matrix when the sphere

is at the origin, and ��̂k is the photon momentum operator. Due
to the elastic scattering, the Si have nonzero matrix elements
only between the states |�k〉 of the same energy �c|�k|. In the
sector (A1) the interaction (A4) is vanishingly small at the
level of each individual photon [38]: In the thermodynamic
limit S1

∼= S2 (in a suitable sense we clarify later) and hence∑
i |�xi〉〈�xi | ⊗ Si

∼= 1 ⊗ S. Surprisingly, this will not be true for
macroscopic groups of photons. We also note that unlike in the
previous treatments [11,17,37–39], already at this moment we
explicitly include in the description all the photons scattered
up to the fixed time t . Finally, the preferred role of the basis
|�xi〉 is already singled out now by the form of the interaction
(A4) [7].

The initial prescattering in state is as usually assumed to be
a full product

�S:E(0) ≡ �S
0 ⊗ (

�
ph
0

)⊗Nt
, (A5)

with �S
0 having coherences in the preferred basis |�xi〉 and

�
ph
0 some initial states of the photons (the environments

are by assumption symmetric). Next we introduce a crucial
environment coarse graining [7]: The full environment (i.e.,
all the Nt photons) is divided into a number of macroscopic
fractions, each containing mNt photons, 0 � m � 1. By
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macroscopic we will always understand scaling with the total
number of photons Nt . By definition, these are the environment
fractions accessible to the independent observers. Such a
division may seem artificial and arbitrary as, e.g., the choice
of m is unspecified. However, observe that in typical situations
detectors used to monitor fractions of the environment,
e.g., eyes, have some minimum detection thresholds; some
minimum amount of radiative energy delivered in a given time
interval is needed to trigger the detection. Each macroscopic
fraction mNt is meant to reflect that detection threshold.
Its concrete value (the fraction size m) is for our analysis
irrelevant; it is enough that it scales with Nt . This coarse-
graining procedure is analogous to the one used, e.g., in the
description of liquids: Each point of a liquid (a macrofraction
m here) is in reality composed of a suitable large number
of microparticles (individual photons). It is also employed in
the mathematical approach to von Neumann measurements
using so-called macroscopic observables (see, e.g., Ref. [41]
and references therein). Thus, we divide the detailed initial
state of the environment (�ph

0 )⊗Nt into M ≡ 1/m macroscopic
fractions

�
ph
0 ⊗ . . . ⊗ �

ph
0︸ ︷︷ ︸

Nt

= �
ph
0 ⊗ . . . ⊗ �

ph
0︸ ︷︷ ︸

mNt

⊗ · · · ⊗ �
ph
0 ⊗ · · · ⊗ �

ph
0︸ ︷︷ ︸

mNt

≡ �mac
0 ⊗ · · · ⊗ �mac

0︸ ︷︷ ︸
M

, (A6)

where �mac
0 ≡ (�ph

0 )⊗mNt is the initial state of each macroscopic
fraction (macrostate for brevity).

2. Dynamical formation of broadcast structure

After all Nt photons have scattered, the asymptotic (in
the sense of the scattering theory) out state �S:E(t) ≡
US:E(t)�S:E(0)US:E(t)† is given, from Eqs. (A4)–(A6), by

�S:E(t) =
∑
i=1,2

〈�xi |�S
0 �xi〉|�xi〉〈�xi | ⊗ �mac

i (t) ⊗ · · · ⊗ �mac
i (t)︸ ︷︷ ︸

M

(A7)

+
∑
i �=j

〈�xi

∣∣�S
0 �xj

〉|�xi〉〈�xj | ⊗ (
Si�

ph
0 S†

j

)⊗mNt ⊗ · · ·︸ ︷︷ ︸
M

,

(A8)

where

�mac
i (t) ≡ (

Si�
ph
0 S†

i

)⊗mNt
, i = 1,2. (A9)

In order for the decoherence to take place, some of the
environment must be traced out. In the current model it is
important that the forgotten fraction must be macroscopic: We
assume that f M , 0 � f � 1, out of all M macrofractions of
Eq. (A6) are observed, while the rest (1 − f )M are traced out.
The resulting partial state reads [cf. Eqs. (A7) and (A8)]

�S:f E(t) =
∑
i=1,2

〈�xi

∣∣�S
0 �xi

〉|�xi〉〈�xi | ⊗ [
�mac

i (t)
]⊗f M

(A10)

+
∑
i �=j

〈�xi

∣∣�S
0 �xj

〉(
Tr Si�

ph
0 S†

j

)(1−f )Nt |�xi〉〈�xj |

⊗ (
Si�

ph
0 S†

j

)⊗f Nt
. (A11)

We finally demonstrate that in the soft scattering sector
(A1), the above state is asymptotically of the broadcast form
(1) by showing that in the deep decoherence regime t 
 τD

two effects take place: (i) The coherent part �
i �=j

S:f E(t) given by
Eq. (A11) vanishes in the trace norm

∣∣∣∣�i �=j

S:f E(t)
∣∣∣∣

tr ≡ Tr
√[

�
i �=j

S:f E(t)
]†

�
i �=j

S:f E(t) ≈ 0 (A12)

and (ii) the postscattering macroscopic states �mac
i (t) [cf.

Eq. (A9)] become perfectly distinguishable

�mac
1 (t)�mac

2 (t) ≈ 0 (A13)

or, equivalently, using the generalized overlap [42]

B
[
�mac

1 (t),�mac
2 (t)

] ≡ Tr
√√

�mac
1 (t)�mac

2 (t)
√

�mac
1 (t) ≈ 0,

(A14)

despite the individual (microscopic) states becoming equal in
the thermodynamic limit.

The first mechanism above is the usual decoherence of S

by f E, the suppression of coherences in the preferred basis
|�xi〉. Some form of quantum correlations may still survive it
since the resulting state (A10) is generally of a CQ form [25].
Those relict forms of quantum correlations are damped by the
second mechanism: the asymptotic perfect distinguishability
(A13) of the postscattering macrostates �mac

i (t). Thus, the state
�S:f E(∞) becomes of the spectrum broadcast form (1) for the
distribution

pi = 〈�xi

∣∣�S
0 �xi

〉
. (A15)

We demonstrate the mechanisms (A12) and (A13) and
hence the formation of the broadcast state (1) for pure initial
environments

�0
ph ≡ |�k0〉〈�k0|, k0	x � 1, (A16)

i.e., all the photons come from the same direction and have the
same momenta �k0, k0 ≡ |�k0|, satisfying (A1). To show (A12),
observe that �i �=j

S:f E(t), defined by Eq. (A11), is of a simple form
in the basis |�xi〉,

�
i �=j

S:f E(t) =
[

0 γC

γ ∗C† 0

]
, (A17)

where γ ≡ 〈�x1|�S
0 �x2〉(TrS1�

ph
0 S†

2)(1−f )Nt and C ≡
(S1�

ph
0 S†

2)⊗f Nt . Since the Si are unitary and �
ph
0 � 0,

Tr�ph
0 = 1, we obtain∣∣∣∣�i �=j

S:f E(t)
∣∣∣∣

tr = |γ |Tr
(
S1�

ph
0 S†

1

)⊗f Nt + |γ |Tr
(
S2�

ph
0 S†

2

)⊗f Nt

(A18)

= 2
∣
∣
〈�x1

∣∣�S
0 �x2

〉∣
∣
∣∣TrS1�

ph
0 S†

2

∣∣(1−f )Nt
. (A19)

The decoherence factor |TrS1�
ph
0 S†

2|(1−f )Nt for the pure
case (A16) has been extensively studied before (see, e.g.,
Refs. [11,17,37–39]). Let us briefly recall the main results.
Under the condition (A1) and using the classical cross section
of a dielectric sphere in the dipole approximation k0a � 1,
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one obtains in the box normalization

〈�k0|S†
2S1�k0〉 = 1 + i

8π	xk5
0 ã

6

3L2
cos � − 2π	x2k6

0 ã
6

15L2

× (3 + 11 cos2 �) + O

(
(k0	x)3

L2

)
, (A20)

where � is the angle between the incoming direction �k0 and the
displacement vector �	x ≡ �x2 − �x1 and ã ≡ a[(ε − 1)/(ε +
2)]1/3. This implies that∣∣TrS1�

ph
0 S†

2

∣∣(1−f )Nt

= |〈�k0|S†
2S1�k0〉|(1−f )Nt

∼=
[

1 − 2π	x2k6
0 ã

6

15L2
(3 + 11 cos2 �)

]L2(1−f )(N/V )ct

(A21)

therm−−→ e−(1−f )(t/τD). (A22)

In the second line above we used Eq. (A20) up to the leading
order in 1/L; in the last line we removed the box normalization
through the thermodynamical limit (A2) and thus obtained the
decoherence time [11,38]

τ−1
D ≡ 2π

15

N

V
	x2ck6

0 ã
6(3 + 11 cos2 �). (A23)

Equations (A19) and (A22) imply that ||�i �=j

S:f E(t)||tr �
2e−(1−f )t/τD |〈�x1|�S

0 �x2〉| since the sequence (1 + x/N)N is
monotonically increasing. As a result, whenever we forget a
macroscopic fraction of the environment (f < 1), the resulting
coherent part �

i �=j

S:f E(t) decays in the trace norm exponentially,
with the characteristic time τD/(1 − f ). This completes the
first step (A12).

The asymptotic orthogonalization (A13) is also straightfor-
ward to show in the case of pure environments. The postscat-
tering states of the environment macrofractions [Eq. (A9)] are
all pure:

�mac
i (t) = (Si |�k0〉〈�k0|S†

i )
⊗mNt ≡ ∣∣�mac

i (t)
〉〈
�mac

i (t)
∣∣, (A24)

so it is enough to consider their overlap (see Fig. 2)
∣
∣
〈
�mac

2 (t)
∣∣�mac

1 (t)
〉∣
∣ = |〈�k0|S†

2S1�k0〉|L2m(N/V )ct (A25)

therm−−→ e−m(t/τD ). (A26)

Thus, for t 
 τD the states of the macrofractions �mac
i (t)

asymptotically orthogonalize and moreover on the same time
scale τD as the decay of the coherent part described by
Eq. (A26) [note that 0 < m and f � 1 so the time scales
from Eqs. (A22) and (A26) do not differ considerably]. This
shows the asymptotic formation of the broadcast state (1) with
pure encoding states �

Ek

i :

�S:f E(0) = �S
0 ⊗ �mac

0 ⊗ · · · ⊗ �mac
0︸ ︷︷ ︸

f M

t
τD−−−→
therm

�S:f E(∞)

=
∑
i=1,2

pi |�xi〉〈�xi |⊗ |imac〉〈imac|⊗ · · · ⊗ |imac〉〈imac|︸ ︷︷ ︸
f M

,

(A27)

FIG. 2. (Color online) Orthogonalization of macroscopic states.
At the microscopic level, the individual postscattering states |�mic

i 〉 ≡
Si |�k0〉, corresponding to the sphere being at �xi (represented by the
small solid slabs on the left) become identical in the thermodynamic
limit [see Eq. (A30)] and hence completely indistinguishable. They
carry a vanishingly small amount of information about the sphere’s
localization, which is due to the assumed weak coupling between
the sphere and each individual environmental photon (A1). On the
other hand, the collective states of macroscopic fractions |�mac

i (t)〉 ≡(
Si |�k0〉

)⊗mNt (represented by the big solid slabs on the right) become
by Eq. (A26) more and more distinguishable in the thermodynamic
(A2) and the deep decoherence t 
 τD limits. Together with the
decoherence mechanism (A12), this leads to the formation of the
spectrum broadcast state (1) with pure environmental states and hence
to the objective existence of the (classical) state of the sphere.

where pi is given by Eq. (A15) and |imac〉 ≡ |�mac
i (∞)〉

emerges as the nondisturbing environmental basis in the space
of each macrofraction, spanning a two-dimensional subspace,
which carries the correlation between the macrofraction and
the sphere (this basis depends on the initial state |�k0〉). Thus,
the correlations become effectively among the qubits. The full
process (A27) is a combination of the measurement of the
system in the pointer basis |�xi〉 and spectrum broadcasting of
the result, described by a CC-type channel [23]

S→f E
∞

(
�S

0

) ≡
∑

i

〈�xi

∣∣�S
0 �xi

〉|imac〉〈imac|⊗f M. (A28)

The entropic objectivity condition and the classical plateau
follow now from Eq. (A27),

I [�S:f E(t)] ≈ HS, (A29)

because of the conditions (A12) and (A14) (see the next
section for details). Thus the mutual information becomes
asymptotically independent of the fraction f (as long as it
is macroscopic).

In quantum Darwinism simulations for finite fixed times t

(see, e.g., Refs. [11,38]), one can observe that the formation
of the plateau is more strongly driven by increasing the time
rather than the macrofraction f (keeping all other parameters
equal). This can be straightforwardly explained by looking at
Eqs. (A22) and (A26): The fractions f and m are by definition
at most 1 and hence have little effect on the decay of the
exponential factors, while t can be arbitrarily greater than τD ,
thus accelerating the formation of the broadcast state (A27).
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FIG. 3. (Color online) Information-theoretic phases of the sphere
model (see [11]). Schematic phase diagram, showing three different
phases of the illuminated sphere model, appearing in the thermody-
namic and the deep decoherence t 
 τD limits. The horizontal axis
is the observed fraction f of the total photon number, understood
modulo a microfraction. The vertical axis is the asymptotic mutual
information between the sphere S and the fraction f E, I [�S:f E(∞)].
This is the limiting diagram for those from [11] obtained for finite t .
There are two phase transitions: at f = 0 from the singular product
phase (represented by the black point at zero) to the broadcasting
phase (the black line at HS) and at f = 1 from the broadcasting
phase to the singular full information phase (black dot at Imax).

3. Information-theoretic phases

There is a very distinct difference in the macroscopic and
microscopic behaviors of the environment, already alluded to
in Refs. [11,38] and summarized in Fig. 3. From Eq. (A20)
it follows that within the sector (A1) the postscattering states
of individual photons (microstates) |�mic

i 〉 ≡ Si |�k0〉 become
identical in the thermodynamic limit and hence encode no
information about the sphere’s localization:〈

�mic
2

∣∣�mic
1

〉 ≡ 〈�k0|S†
2S1�k0〉 therm−−→ 1. (A30)

This is not surprising due to the condition (A1). On the
other hand, despite (A1), by Eq. (A26) macroscopic groups
of photons are able to resolve the sphere’s position and
in the asymptotic limit resolve it perfectly. This leads to
the appearance of the different information-theoretic phases
in the model, which we now describe. We stress that the
macrofraction m can be arbitrarily small [which only prolongs
the orthogonalization time; cf. Eq. (A26)], but must scale with
the total number of photons Nt . Indeed, for a microscopic,
i.e., not scaling with Nt , fraction μ the limit (A30) still

holds: [〈�k0|S†
2S1�k0〉]μ therm−−→ 1. Thus, if the observed portion of

the environment is microscopic, the asymptotic postscattering
state is in fact a product one:

�S:μE(0) = �S
0 ⊗ (

�mac
0

)⊗μ t
τD−−−→
therm

�S:μE(∞)

=
∑
i=1,2

pi |�xi〉〈�xi | ⊗ (Si |�k0〉〈�k0|S†
i )

⊗μ (A31)

=
(∑

i=1,2

pi |�xi〉〈�xi |
)

⊗ |�mic〉〈�mic|⊗μ, (A32)

where |�mic〉 ≡ S1|�k0〉 ∼= S2|�k0〉 because of Eq. (A30) [∼=
denotes equality in the thermodynamic limit (A2)]. This is
the product phase, in which I [�S:μE(∞)] = 0.

Conversely, if we have access to the full environment,
ignoring perhaps only a microscopic fraction μ, the arguments
leading to Eqs. (A22) and (A26) do not work anymore, since
from Eq. (A30) ∣∣TrS1�

ph
0 S†

2

∣∣μ therm−−→ 1 (A33)

and thus there is no decoherence or orthogonalization. The
postscattering state contains then the full quantum information
about the system due to the unsuppressed system-environment
entanglement produced by the controlled-unitary interaction
(A4). As a result, the mutual information attains in the
thermodynamical limit its maximum value Imax = 2HS [for
a pure �S

0 , since the interaction is of a controlled-unitary
form (A4)] and this defines the full information phase. We
note that the rise of IS:f E above HS certifies the presence
of entanglement [43]. The intermediate phase described by
Eq. (A27) is the broadcasting phase (see Fig. 3).

The quantity experiencing discontinuous jumps is the
mutual information between the system S and the observed
environment f E and the parameter that drives the phase
transitions is the fraction size f . As discussed above, each
value of f has to be understood modulo a microfraction. The
appearance of the phase diagram is a reflection of both the
thermodynamic and the deep decoherence limits and its form
is in agreement with the previously obtained results (see, e.g.,
Refs. [11,38]).

4. Derivation of the entropic objectivity condition
in the illuminated sphere model

Here we present an independent derivation of the entropic
objectivity condition

I [�S:f E(t)] ≈ HS (A34)

for the illuminated sphere model. Although illustrated on a
concrete model, our derivation is indeed more general: Instead
of a direct asymptotic calculation of the mutual information
I [�S:f E(t)] in the model (cf. Refs. [9,11,38]), we will show
that Eq. (A34) follows from the mechanisms of (i) decoherence
[Eq. (A12)] and (ii) distinguishability [Eq. (A14)], once they
are proven. In light of our findings, this gives a clear physical
meaning to Eq. (A34): It is a consequence of the state
information broadcasting. Most of the proof is for general
mixed states.

Let the postinteraction S:f E state for a fixed finite box L

and time t be �S:f E(L,t). It is given by Eqs. (A10) and (A11)
and now we explicitly indicate the dependence on L in the
notation. Then

|HS − I [�S:f E(L,t)]| �
∣∣I [�S:f E(L,t)] − I

[
�

i=j

S:f E(L,t)
]∣∣

(A35)

+ ∣∣HS − I
[
�

i=j

S:f E(L,t)
]∣∣, (A36)

where �
i=j

S:f E(L,t) is the decohered part of �S:f E(L,t), given
by Eq. (A10). We first bound the difference (A35), decom-
posing the mutual information using conditional information
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SvN(�S:f E|�f E) ≡ SvN(�S:f E) − SvN(�f E):

I (�S:f E) = SvN(�S) − SvN(�S:f E|�f E), (A37)

so that ∣∣I [�S:f E(L,t)] − I
[
�

i=j

S:f E(L,t)
]∣∣

�
∣∣SvN[�S(L,t)] − SvN

[
�

i=j

S (L,t)
]∣∣ (A38)

+ |SvN[�S:f E(L,t)|�f E(L,t)]

− SvN
[
�

i=j

S:f E(L,t)
∣∣�i=j

f E (L,t)
]∣∣. (A39)

From Eq. (A1), the total S:f E Hilbert space is finite
dimensional for a finite L,t : There are f Nt =f L2(N/V )ct
photons [cf. Eq. (A3)] and the number of modes of each
photon is approximately (4π/3)(L/2π	x)3. Hence, the total
dimension is 2 × L2f (N/V )ct × (1/6π2)(L/	x)3 < ∞ and
we can use the Fannes-Audenaert [31] and the Alicki-Fannes
[32] inequalities to bound (A38) and (A39), respectively (cf.
Ref. [9]). For (A38) we obtain∣∣SvN[�S(L,t)] − SvN

[
�

i=j

S (L,t)
]∣∣

� 1

2
εE(L,t) log(dS − 1) + h

[
εE(L,t)

2

]
, (A40)

where h(ε) ≡ −ε log ε − (1 − ε) log(1 − ε) is the binary
Shannon entropy and

εE(L,t) ≡ ∣∣∣∣�S(L,t) − �
i=j

S (L,t)
∣∣∣∣

tr
(A41)

= ∣∣∣∣�i �=j

S (L,t)
∣∣∣∣

tr
∼= 2|c12|

×
[

1 − 1

cτDL2

(
N

V

)−1
]L2(N/V )ct

(A42)

with c12 ≡ 〈�x1|�S
0 �x2〉, where we have used the reasoning

(A17)–(A22), but with f = 0. For (A39) the same reasoning
and the Alicki-Fannes inequality give

|SvN[�S:f E(L,t)|�f E(L,t)] − SvN
[
�

i=j

S:f E(L,t)
∣∣�i=j

f E (L,t)
]∣∣

� 4εf E(L,t) log dS + 2h[εf E(L,t)], (A43)

with

εf E(L,t) ≡ ∣∣∣∣�S:f E(L,t) − �
i=j

S:f E(L,t)
∣∣∣∣

tr
(A44)

= ∣∣∣∣�i �=j

S:f E(L,t)
∣∣∣∣

tr
(A45)

∼= 2|c12|
[

1 − 1

cτDL2

(
N

V

)−1
]L2(1−f )(N/V )ct

.

(A46)

Above L and t are big enough so that εE(L,t),εf E(L,t) < 1.
Equations (A38)–(A46) give an upper bound on the difference
(A35) in terms of the decoherence speed (A12).

To bound the orthogonalization part (A36) (see Ref. [9] for
a related analysis), we note that since �

i=j

S:f E(L,t) is a CQ state
[cf. Eq. (A10)], its mutual information is given by the Holevo
quantity [44]

I
[
�

i=j

S:f E(L,t)
] = χ

{
pi,�

mac
i (t)⊗f M

}
, (A47)

where pi is given by Eq. (A15). From the Holevo theorem it
is bounded by [44]

Imax(t) � χ
{
pi,�

mac
i (t)⊗f M

}
� H ({pi}) ≡ HS, (A48)

where Imax(t) ≡ maxE I [piπ
E
j |i(t)] is the fixed-time maximal

mutual information, extractable through generalized mea-
surements {Ej } on the ensemble {pi,�

mac
i (t)⊗f M}, and the

conditional probabilities read

πE
j |i(t) ≡ Tr

[
Ej�

mac
i (t)⊗f M

]
(A49)

(here and below i labels the states and j the measurement
outcomes). We now relate Imax(t) to the generalized overlap
B[�mac

1 (t)⊗f M,�mac
2 (t)⊗f M ] [cf. Eq. (A14)], which we have

calculated for pure states in Eqs. (A25) and (A26). Using the
method of Ref. [42], slightly modified to unequal a priori
probabilities pi , we obtain for an arbitrary measurement E

I
(
πE

j |ipi

) = I
(
πE

i|jπ
E
j

) = H ({pi}) −
∑
j=1,2

πE
j h

(
πE

1|j
)

(A50)

� H ({pi}) − 2
∑
j=1,2

πE
j

√
πE

1|j
(
1 − πE

1|j
)

(A51)

= H ({pi}) − 2
√

p1p2

∑
j=1,2

√
πE

j |1π
E
j |2, (A52)

where we used first the Bayes theorem πE
i|j = (pi/π

E
j )πE

j |i ,
πE

j ≡ ∑
i π

E
j |ipi = Tr(Ej

∑
i �i), then the fact that we have

only two states πE
2|j = 1 − πE

1|j , so that H (πE
·|j ) = h(πE

1|j ), and
finally h(p) � 2

√
p(1 − p). On the other hand, B(�1,�2) =

minE
∑

j

√
πE

j |1π
E
j |2 [42]. Denoting the optimal measurement

by EB
∗ (t) and recognizing that H ({pi}) = HS , we obtain

Imax(t) � I
[
piπ

EB
∗ (t)

j |i (t)
]

(A53)

� HS − 2
√

p1p2B
[
�mac

1 (t)⊗f M,�mac
2 (t)⊗f M

]
(A54)

= HS − 2
√

p1p2B
[
�mac

1 (t),�mac
2 (t)

]f M
. (A55)

Inserting the above into the bounds (A48) gives the desired
upper bound on the difference (A36):

∣∣HS − I
[
�

i=j

S:f E(L,t)
]∣∣ � 2

√
p1p2B

[
�mac

1 (t),�mac
2 (t)

]f M
,

(A56)

where the generalized overlap is given by Eqs. (A25) and
(A26):

B
[
�mac

1 (t),�mac
2 (t)

] = ∣
∣
〈
�mac

2 (t)
∣∣�mac

1 (t)
〉∣
∣

∼=
[

1 − 1

cτDL2

(
N

V

)−1
]L2m(N/V )ct

.

(A57)

Gathering all the above facts together finally leads to a
bound on |HS − I [�S:f E(L,t)]| in terms of the speed of (i)
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decoherence (A12) and (ii) distinguishability (A14):

|HS − I [�S:f E(L,t)]|

� h

[
εE(L,t)

2

]
+ 2h[εf E(L,t)] (A58)

+ 4εf E(L,t) log 2 + 2
√

p1p2B
[
�mac

1 (t),�mac
2 (t)

]f M
,

(A59)

where εE(L,t), εf E(L,t), and B[�mac
1 (t),�mac

2 (t)] are given
by Eqs. (A42), (A46), and (A57), respectively. Choosing L

and t big enough so that εE(L,t),εf E(L,t) � 1/2 [when the
binary entropy h(·) is monotonically increasing], we remove
the unphysical box and obtain an estimate on the speed of
convergence of I [�S:f E(L,t)] to HS :

lim
L→∞

|HS − I [�S:f E(L,t)]|

� h(|c12|e−(t/τD)) (A60)

+ 2h(2|c12|e−(1−f )(t/τD )) + 8|c12|e−(1−f )(t/τD ) log 2

(A61)

+ 2
√

p1p2e
−f (t/τD). (A62)

This finishes the derivation of the condition (A34).
We note that the result (A58) and (A59) is in fact a general

statement, valid in any model where (i) the system S is

effectively a qubit and (ii) the system-environment interaction
is of a environment-symmetric controlled-unitary type.

Lemma. Let a two-dimensional quantum system S in-
teract with N identical environments, each described by a
d-dimensional Hilbert space, through a controlled-unitary
interaction

U (t) ≡
∑
i=1,2

|i〉〈i| ⊗ Ui(t)
⊗N. (A63)

Let the initial state be �S:E(0) = �S
0 ⊗ (�E

0 )⊗N and �S:E(t) ≡
U (t)�S:E(0)U (t)†. Then for any 0 < f < 1 and t big enough

|H ({pi}) − I [�S:f E(t)]|

� h

[
εE(t)

2

]
+ 2h[εf E(t)] (A64)

+ 4εf E(t) log 2 + 2
√

p1p2 B[�1(t),�2(t)]f N , (A65)

where

pi ≡ 〈i|�S
0 |i〉, �i(t) ≡ Ui(t)�

E
0 Ui(t)

†, (A66)

εE(t) ≡ ∣∣∣∣�S(t) − �
i=j

S

∣∣∣∣
tr
, (A67)

εf E(t) ≡ ∣∣∣∣�S:f E(t) − �
i=j

S:f E(t)
∣∣∣∣

tr
. (A68)
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