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Steady-state one-way Einstein-Podolsky-Rosen steering in optomechanical interfaces
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Einstein-Podolsky-Rosen (EPR) steering is a form of quantum correlation and its intrinsic asymmetry makes
it distinct from entanglement and Bell nonlocality. We propose here a scheme for realizing one-way Gaussian
steering of two electromagnetic fields mediated by a mechanical oscillator. We reveal that the steady-state
one-way steering of the intracavity and output fields is obtainable with different cavity losses or strong mechanical
damping. The conditions for achieving this asymmetric steering are found, and it shows that the steering is robust
against thermal mechanical fluctuations. The present scheme can realize hybrid microwave-optical asymmetric
steering by optoelectromechanics. In addition, our results are generic and can also be applied to other three-mode
parametrically coupled bosonic systems.
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I. INTRODUCTION

Steering was initially introduced by Schrödinger [1] in
response to the famous EPR paradox proposed by Einstein,
Podolsky, and Rosen in 1935 [2]. The paradox describes that
two remote observers Alice and Bob share a pair of entangled
particles and one observer, say Alice, can prepare the state of
Bob’s particle via different types of measurements on her own
particle. Steering was termed as Alice’s ability to nonlocally
control Bob’s state via local measurements.

Recently, steering has been revisted and rigorously formu-
lated in Refs. [3–5]. The violation of a local hidden-state model
for sceptical Bob demonstrates steering from Alice to Bob.
It shows that Bell-nonlocal states violating Bell inequality
[6,7] are a subset of the steerable states which in turn are
a subset of the inseparable states. Steering embodies a kind
of quantum correlation intermediate between entanglement
and Bell nonlocality. Any demonstration of the EPR paradox
is also a demonstration of steering and vice versa [5]. The
EPR paradox was first realized by Ou et al. [8] and steering
has recently been experimentally realized in different systems
[9–11]. Besides being of fundamental interest, quantum
steering is useful for quantum information such as quantum
cryptography [12].

Inherently distinct from entanglement and Bell nonlocality,
steering is intrinsically asymmetric between the two observers.
That is, the roles played in steering by Alice and Bob are
not exchangeable. Very interestingly, recent theoretical and
experimental works have verified there exists asymmetric
steering, i.e., one-way steering, which allows Alice’s steering
the state of Bob’s particle but the reverse Bob-to-Alice steering
is impossible. This one-way steering reflects the asymmetry
of quantum correlations. One-way Gaussian steering has
been experimentally achieved by controlling unequal losses
of two entangled beams [13], and theoretical studies have
also revealed this asymmetric steering in several systems of
continuous and discrete variables [14–19].

In this paper, we propose a scheme for realizing one-
way Gaussian steering of two electromagnetic fields by
optomechanics with continuous pumps. In the past decade,
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considerable progress has been made in the field of quan-
tum optomechanics [20]. Quantum ground-state cooling of
mechanical oscillators [21], mechanically induced squeez-
ing [22], and optomechanical entanglement [23] have been
achieved. It makes optomechanical interfaces a very promising
platform for demonstrating various quantum phenomena.
Our system consists of two driven electromagnetic cavities
mediated by a mechanical oscillator. Photon entanglement
in such optomechanical interfaces has been studied in detail
[24–31]. Here we focus on the steerability and asymmetry
of the photon correlations. The conditions for achieving
one-way steering in different directions for the cases of
weak and strong mechanical damping are identified. Our
scheme can realize hybrid microwave-optical steering in an
optoelectromechanical interface.

This paper is arranged as follows. In Sec. II, the model
is introduced. In Sec. III, the criteria of quantum steering is
reviewed. In Secs. VI and V, the properties of the intracavity
and output steering are investigated in detail. In Sec. V, we
give the main summary.

II. MODEL

We consider a double cavity optomechanical system in
which two separate cavity fields of frequencies ωcj (j = 1,2)
are mediated by a mechanical oscillator at frequency ωm.
The cavity fields, driven by coherent fields of frequencies
ωlj , can be optical modes [32], microwave modes [33], or
both [34–36] [see Fig. 1(a)]. In particular, a recent experiment
has realized the reversible transfer between microwave and
optical photons with a mechanical element [34,35]. This
optoelectromechanical interface may allow for quantum in-
formation processing with light at different wavelengths by
exploiting microwave-optical quantum correlations [26–28].
Strong photon nonlinearity can also be achieved in such a
setup, as studied in Ref. [37]. In the rotating frame of the
driving laser frequencies ωlj , the full Hamiltonian of the
three-mode optomechanical system is given by

Ĥ0 = ωmB̂†B̂ +
∑

j

[δj Â
†
j Âj + g0j Â

†
j Âj (B̂j + B̂

†
j )

+ (εj Âj + ε∗
j Â

†
j )], (1)
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FIG. 1. (Color online) (a) The schematic plot of double-cavity
optomechanics in which two separate electromagnetic fields (e.g.,
microwave and optical fields) are mediated by a mechanical oscil-
lator vibrating at frequency ωm. The two cavity fields are driven,
respectively, on the red and blue sidebands of the driving fields.
(b) After the squeezing transformation of Eq. (17), the composite
mode ĉ2 is decoupled to the mechanical mode b̂ which interacts
with the composite mode ĉ1 via a beam-splitter-like interaction and
meanwhile the two composite modes are coupled to an effective
reservoir in a two-mode squeezed vacuum. The mechanical damping
drives the steady two-mode cavity field states to be asymmetric.

where the bosonic operators Âj and B̂ describe, respectively,
the cavity and mechanical modes, the detunings δj = ωcj −
ωlj , g0j represent the single-photon optomechanical couplings,
and εj are the driving amplitudes.

For the strong driving fields, one can linearize the above
Hamiltonian of Eq. (1) by expressing the operators Âj = αss

j +
âj and B̂ = βss + b̂j , where αj (β)ss denote the steady-state
amplitudes of the cavity (mechanical) modes, and the operators
âj and b̂ describe the corresponding quantum fluctuations of
the fields. Then, the linearized Hamiltonian of the system can
be obtained as

Ĥ1 = ωmb̂†b̂ +
2∑

j=1

[�j â
†
j âj + gj (â†

j + âj )(b̂ + b̂†)], (2)

where �j = δj + 2g0j Re(βss) and the effective optomech-
nanical couplings gj = g0jα

ss
j . The steady-state amplitudes

αss
j = |εj |√

κ2
j +�2

j

and βss = −i
∑

j g0j |αj |2
γm+iωm

, where κj and γm are

the loss rates of the cavity fields and the mechanical mode.
The couplings gj are thus controllable via changing the drive
strengths.

We consider that cavity fields 1 and 2 are resonant with
the red and blue sidebands of the driving fields, respectively,
i.e., �1 = −ωm and �2 = ωm. In an interaction picture with
respect to Ĥ0 = ∑

j �j â
†
j âj and under the rotation-wave

approximation (RWA), the Hamiltonian of Eq. (2) becomes

Ĥ2 = g1(â1b̂ + â
†
1b̂

†) + g2(â2b̂
† + â

†
2b̂). (3)

The above Hamiltonian describes two kinds of three-wave
mixing processes. The first part (related to g1) characterizes
that a blue-detuned pumping photon is absorbed (emitted) and
a photon of cavity field 1 and a phonon are simultaneously

emitted (absorbed). In such a parametric conversion, the entan-
glement between cavity field 1 and the mechanical mode can
be formed. While the second part characterizes that the system
absorbs (emits) a red-detuned pumping photon and a phonon
and emits (absorbs) a photon of cavity field 2, which induces
induces quantum-state transfer between cavity field 2 and
the mechanical mode (i.e., upconversion). Consequently, with
the mediation of the mechanical mode, the optomechanical
entanglement is transferred to the two cavity fields, leading
to the cavity-field entanglement. The Hamiltonian of Eq. (3)
represents a typical three-mode parametric interaction and
can be realized in some other bosonic systems [38–40], e.g.,
atomic ensembles coupled to optical fields [41], apart from the
optomechanical interfaces. Our results are therefore generic
and applicable to these systems.

Taking into account the cavity dissipation and mechanical
damping, the equations of motion for the system’s operators
are given by

d

dt
â
†
1 = −κ1â

†
1 + ig1b̂ +

√
2κ1â

in†
1 (t), (4a)

d

dt
â2 = −κ2â2 − ig2b̂ +

√
2κ2â

in
2 (t), (4b)

d

dt
b̂ = −γmb̂ − ig1â

†
1 − ig2â2 +

√
2γmb̂in(t), (4c)

where the noise operators âin
j (t) and b̂in(t) satisfy the nonzero

correlations 〈âin
j (t)âin†

j ′ (t)〉 = δjj ′δ(t − t ′), 〈b̂in†(t)b̂in(t ′)〉 =
n̄thδ(t − t ′), and 〈b̂in(t)b̂in†(t ′)〉 = (n̄th + 1)δ(t − t ′), where
n̄th = (e�ωm/kBT − 1)−1, T is the temperature, and kB is the
Boltzmann constant.

Note that the Hamiltonian of Eq. (3) under the RWA is only
valid under the condition

ωm � {gj ,κj ,γmn̄th}. (5)

In addition, with the Routh-Hurwitz criterion, the stability
condition of Eq. (4) can be found to be

(κ2 + γm)
[
(κ1 + κ2)(κ1 + γm) + g2

2

]
> (κ1 + γm)g2

1,
(6)

κ1g
2
2 − κ2g

2
1 + γmκ1κ2 > 0.

In the presence of the decoherence, to obtain the substantial
entanglement between the cavity fields requires that the
coupling rates g2

j /κj exceed the mechanical decoherence rate
γmn̄th [23,28].

III. EPR STEERING CRITERIA

For the quadrature operators X̂j = âj + â
†
j and Ŷj =

−i(âj − â
†
j ), the Heisenberg uncertainty relations are

V (X̂j )V (Ŷj ) � 1, where the variances V (Ô) = 〈Ô2〉 − 〈Ô〉2

for Ô = (X̂j ,Ŷj ). According to Refs. [5,42], the EPR paradox
and steering of bipartite Gaussian states are achievable on
Gaussian measurements when

S12 = Vinf(X̂1)Vinf(Ŷ1) < 1 (7)

or

S21 = Vinf(X̂2)Vinf(Ŷ2) < 1. (8)
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The inferred variances Vinf(Ôj ) are Vinf[Ô1(2)] = V [Ô1(2)] −
V 2(Ô1,Ô2)/V [Ô2(1)]. The condition S12 < 1 (S21 < 1) means
the steerability from cavity field 2 (1) to cavity field 1 (2).
One-way steering occurs when only one of the above two
inequalities holds.

Specifically, for our system, we have the steady average
values 〈â2

j 〉ss = 0 and 〈â1â
†
2〉ss = 0 (see Appendix A). The

steering criteria of Eqs. (7) and (8) then reduce, respectively,
to

|〈â1â2〉ss | >

√
〈â†

1â1〉ss(〈â†
2â2〉ss + 1/2) (9)

and

|〈â1â2〉ss | >

√
〈â†

2â2〉ss(〈â†
1â1〉ss + 1/2), (10)

while the entanglement between the cavity fields measured by
logarithmic negativity [43] requires (see Appendix B)

|〈â1â2〉ss | >

√
〈â†

1â1〉ss〈â†
2â2〉ss . (11)

We see that nonclassical correlations between the two fields are
necessary for the entanglement and steering. It is clearly shown
from Eqs. (9)–(11) that steerable states are strictly inseparable
but not necessarily vice versa.

IV. STEERING OF INTRACAVITY FIELDS

A. Weak mechanical damping regime (γm � κ j )

First, we consider the case that gj > κj � γm such that
we can temporarily neglect the mechanical damping at zero
temperature for simplicity. Then, the steering conditions S12 <

1 and S21 < 1 for the steady cavity states reduce, respectively,
to

(κ1 − κ2)
(
κ2g

2
2 − κ1g

2
1

)
> κ1κ2(κ1 + κ2)2 (12)

and

(κ2 − κ1)
(
κ2g

2
2 − κ1g

2
1

)
> κ1κ2(κ1 + κ2)2, (13)

which are incompatible. The condition for the steady-state
entanglement reduces to

(
κ2g

2
2 − κ1g

2
1

)
> 0. (14)

For the same cavity loss rates (κ1 = κ2), both Eqs. (12) and (13)
can not hold and therefore the steady entangled cavity-field
states are definitely not steerable at zero mechanical damping.
For different cavity loss rates, the direction of one-way steering
depends on the ratio of κ2/κ1. We see that the one-way steering
from cavity field 2 to cavity field 1 (S12 < 1 and S21 > 1)
may be achieved when κ2 > κ1, whereas the reverse one-way
steering may occur when κ2 < κ1. This result is plotted in
Figs. 2 and 3 by considering γm = 10−2κ1. It shows that steady-
state one-way steering can be obtained in two ways, apart from
the transient two-way steering (S12 < 1 and S21 < 1). We thus
conclude that in the steady-state regime only the cavity field
with the larger dissipation rate can be steered by the other
one. This is because in the absence of mechanical damping,
the field under larger dissipation has a smaller steady-state
mean photon number and also smaller quantum fluctuations
[V (Ôj ) = 〈â†

j âj 〉 + 1/2]. This field is therefore more easily

FIG. 2. (Color online) (a) Steady-state S12, which is minimized
with respect to g1/κ1 and κ2/κ1, versus g2/κ1 for κ2 < κ1 and γm =
0.01κ1. From top to bottom, we have n̄th = 1000, 700, 500, 300,
100, and 0. The corresponding values of S21 are larger than one and
not plotted. (b) S12 and S21 versus time for κ2 = 0.4κ1, g1 = 10κ1,
g2 = 20κ1, γm = 0.01κ1, and n̄th = 0. The values of κ2 and g1 in panel
(b) are chosen such that S12 is minimized.

steered by the other one (since it has larger fluctuations and
thus smaller inferred variances of the steered field).

Figures 2(a) and 3(a), respectively, plot the dependence
of the minimized Smin

12 and Smin
21 (maximized steering), with

respect to the couplings g1/κ1 and κ2/κ1, on g2/κ1 in the
steady-state regime. We see that the one-way steering from
the field 2 to the field 1 is much more robust against thermal
fluctuations than the reverse one. This is because the thermal
input leads to much greater enhancement of the mean photon
number 〈â†

2â2〉ss than that of 〈â†
1â1〉ss via the beam-splitter

interaction of the cavity field â2 with the mechanical mode
coupled to the thermal reservoir. Therefore, even for the
environment with a large thermal phonon number, the one-way
field 2-to-1 steering can also be achievable. This shows that
the present scheme can realize asymmetric steering without
precooling the mechanical oscillator to its ground state.

B. Strong mechanical damping regime (γm � κ j )

We next study the role played by strong mechanical
damping in steering. For simplicity, we assume the cavity
loss rates κj = κ . In this case and at zero temperature, the
steady-state entanglement is always present and the steering
condition S21 < 1 reduces to

γm/κ > 1/[(
/2κ)2 − 1], (15)

FIG. 3. (Color online) (a) Steady-state S21, which is minimized
with respect to g1/κ1 and κ2/κ1, versus g2/κ1 for κ2 > κ1 and
γm = 0.01κ1. From top to bottom, we have n̄th = 40, 20, and 0.
The corresponding values of S12 are larger than one and not plotted.
(b) S12 and S21 versus time for κ2 = 2.4κ1, g1 = 12κ1, g2 = 20κ1,
γm = 0.01κ1, and n̄th = 0. In panel (b), the values of κ2 and g1 are
chosen such that S21 is minimized.
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FIG. 4. (Color online) Steady-state S12 and S21 versus γm/κ for
n̄th = 0 (solid curves) and n̄th = 0.3 (dashed curves). The other
parameters are g1 = 6κ and g2 = 10κ .

with 
 =
√

g2
2 − g2

1 . This shows that for 
 � 2κ , weak
mechanical damping can still lead to the cavity field 1-to-2
steering. Meanwhile, the steering condition S12 < 1 becomes
approximately

γm/κ <
(
g2

√

2 − 8κ2 − 
2

)
/2κ2, (16)

for γm � κ . When 
 � 2κ , the right-hand side of Eq. (16) is
larger than that of Eq. (15) and therefore the one-way steering
from cavity field 1 to cavity field 2 can be obtained for γm

violating Eq. (16). This is shown in Fig. 4. We see that strong
mechanical damping in vacuum leads to the steady-state cavity
field 1-to-2 one-way steering and its strength is impaired by
thermal mechanical noise. The maximum obtainable steering
is larger than that in the case of weak mechanical damping
shown in Figs. 2 and 3. In addition, we find that in this regime
of strong mechanical damping, the reverse one-way steering
from cavity field 2 to cavity field 1 is unobtainable (see below
for reason) and strong two-way steering can be achieved by
minimizing S12 and S21 with respect to gj/κ (see Fig. 5).

To show the mechanical damping can lead to the asymmet-
ric cavity states, we perform the transformation

ĉj = Ŝ(r)âj Ŝ(−r), (17)

FIG. 5. (Color online) The dependence of the minimized S12 and
S21, with respect to g1/κ and g2/κ , in the steady-state regime on the
γm/κ , for n̄th = 0.

where the two-mode squeezing operator Ŝ(r) = exp
[
r(â†

1â
†
2 −

a1â2)
]

and r = tanh−1(g2/g1), giving ĉ1 = sinh râ
†
1 +

cosh râ2 and ĉ2 = cosh râ1 + sinh râ
†
2. In terms of the opera-

tors ĉj , the equations of Eq. (4) become ∂t ĉ1 = −κĉ1 − i
b̂ +√
2κĉin

1 (t), ∂t ĉ2 = −κĉ2 + √
2κĉin

2 (t), and ∂t b̂ = −γmb̂ −
i
ĉ1 + √

2γmb̂in(t), where the noise operators ĉin
j (t) sat-

isfy the nonzero correlations 〈ĉin†
j (t)ĉin

j (t ′)〉 = sinh2 rδ(t −
t ′), 〈ĉin

j (t)ĉin†
j (t ′)〉 = cosh2 rδ(t − t ′), and 〈ĉin

1 (t)ĉin
2 (t ′)〉 =

sinh r cosh rδ(t − t ′). We see that the composite mode ĉ2 is
decoupled to the mechanical oscillator interacting with the
mode ĉ1 via Ĥc1b = 
ĉ1b̂

† + H.c. and the two modes ĉj

are coupled to a two-mode squeezed vacuum reservoir [see
Fig. 1(b)]. The symmetry of the cavity field states depends on
that of the ĉ1 and ĉ2 modes. For zero mechanical damping,
the two composite modes reduce to the reservoir’s state and
thus are symmetric. However, at finite mechanical damping
in vacuum the mode ĉ1 is cooled down and we have
〈â†

1â1〉ss − 〈â†
2â2〉ss = 〈ĉ†2ĉ2〉ss − 〈ĉ†1ĉ1〉ss > 0, which results

in the violation of Eq. (9) more easily than in that of Eq.
(10) and thus the one-way steering of the field 2 by the field 1.

We note that a large mechanical damping rate can be
obtained by using a low-quality mechanical oscillator with
high resonant frequency. Alternately, it can also be achieved
by weakly coupling a high-quality mechanical oscillator to a
bad electromagnetic cavity to induce an optical heating for the
mechanical oscillator, as analyzed in detail in Ref. [44].

V. OUTPUT STEERING SPECTRA

In this section, we consider the steering spectra of the
output fields which are utilized for measurements and ap-
plications. By performing the Fourier transformation Ô(t) =∫ ∞
−∞ e−iωt Ô[ω]dω/

√
2π on Eq. (4) and using the input-output

relations âout
j = √

2κj âj − âin
j , we have

âout
1 [ω] =M11â

in
1 [ω] + M12â

in†
2 [−ω] + M1bb̂

in†[−ω],
(18)

âout
2 [ω] = − M12â

in†
1 [−ω] + M22â

in
2 [ω] + M2bb̂

in[ω].

The expressions for Mjj ′ and Mjb and the calculation of the
steering spectra S12[ω] and S21[ω] are given in Appendix C.

At zero mechanical damping, we have 〈âout†
1 [ω]aout

1 [ω]〉 =
〈âout†

2 [ω]aout
2 [ω]〉 = |m2

12|, which means that the output states
at frequencies ωcj + ω are symmetric, independent of the ratio
κ2/κ1. Therefore, unlike the intracavity situation, one-way
spectral steering can impossibly be achieved when γm = 0,

FIG. 6. (Color online) (a) The spectra of S12[ω] and S21[ω] for
g1 = 6κ , g2 = 10κ , γm = 0.01κ , and n̄th = 0. (b) S12[0] and S21[0]
versus n̄th.
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FIG. 7. (Color online) (a) The spectra of S12[ω] and S21[ω] for
g1 = 2κ , g2 = 3κ , γm = 9κ , and n̄th = 0. (b) S12[0] and S21[0]
versus n̄th.

even for the unbalanced cavity losses. The symmetric steering
spectra are plotted in Fig. 6(a). It shows that strong two-way
steering can be obtained around the frequencies

ω = 0 and ω = ±
√


2 − κ2, (19)

at which the cavity fields are strongly excited. Nevertheless,
for weak mechanical damping the one-way steering from the
output field 2 to the field 1 at cavity resonances is obtainable via
thermalizing the mechanical oscillator, as shown in Fig. 6(b),
since the steering in this direction is more robust against
thermal noise than the reverse steering, as is similarly shown
in Figs. 2 and 3. This one-way steering at cavity resonances
(S12[0] < 1 and S21[0] > 1) requires

g2
1/κγm < n̄th < g2

2/κγm − 1. (20)

Hence, the one-way steering from the output field 2 to the
field 1 can still be achieved even for the large number of
thermal phonons when g2

j /κγm � 1. It shows again that this
directional one-way steering is much more robust against
thermal noise than the reverse one, as exhibited in Figs. 2
and 3.

By increasing the mechanical damping rate which enters
the strong damping regime, we plot the steering in Fig. 7.
Interestingly, we see that the one-way steering from the output
field 1 to the field 2 can be achievable over all frequencies. At
zero temperature the condition S21[0] < 1 always holds while
S12[0] > 1 requires the mechanical damping rate

γm/κ > g2
2/κ

2, (21)

for which the one-way steering in this direction is achievable.
We finally discuss the effects of the internal losses of the

cavities on the output steering. The detailed calculation is
presented in the Appendix C. The results are shown in Fig. 8.

FIG. 8. (Color online) The spectra of S12[ω] and S21[ω] for
different internal loss rates of the cavities. The same internal loss rates
κ int

j = κ int are assumed, the parameters in (a) are the same as those
in Fig. 6 (a), and the parameters in (b) are the same as in Fig. 7 (a).
In (a) we have S12[ω] = S21[ω].

One can see that the internal losses can strongly suppress the
strengths of the two-way and one-way steering of the output
fields. It also shows that the directions of the one-way steering
are not changed with the same rates of the internal losses.

VI. CONCLUSION

In summary, we propose a scheme for realizing one-
way steering of two electromagnetic fields by double-cavity
optomechanics. The two cavity fields are mediated by a
mechanical oscillator and driven, respectively, by a red and a
blue detuned strong coherent field. We show that asymmetric
steering can be achieved for unequal cavity losses or strong
mechanical damping in the regime of steady states. The
conditions for achieving one-way steering of the intracavity
and output fields are found. The effect of the internal losses of
the cavities on the steering is also discussed. The asymmetric
steering may be useful in quantum communication and
information. Besides optoelectromechanical interfaces, our
results are also applicable to other three-mode parametrically
coupled bosonic systems. Further work will consider tripartite
steering in the present system.
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APPENDIX A: THE STEADY-STATE SOLUTION
OF THE SYSTEM

Equations (4a) to (4c) can be rewritten into the simple form

d

dt
ψ = Aψ +

√
2Kψin(t), (A1)

where ψ = (â1,â
†
1,â2,â

†
2,b̂,b̂†)T , K = diag(κ1,κ1,κ2,κ2,γm,

γm), and ψin = (âin
1 ,â

in†
1 ,âin

2 ,â
in†
2 ,b̂in,b̂in†)T . The matrix

A =

⎛
⎜⎜⎜⎜⎜⎝

−κ1 0 0 0 0 −ig1

0 −κ1 0 0 ig1 0
0 0 −κ2 0 −ig2 0
0 0 0 −κ2 0 ig2

0 −ig1 −ig2 0 −γm 0
ig1 0 0 ig2 0 −γm

⎞
⎟⎟⎟⎟⎟⎠

. (A2)

From Eq. (A1) the second-order moments � = 〈ψψT 〉 satisfy

d

dt
� = A� + �AT + 2KD, (A3)

where D = diag(D1,D2,D3), with the entries D1,2 = (0 1

0 0
) and

D3 = ( 0 n̄th+1

n̄th 0
). In the steady-state regime, we have
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〈â†
1â1〉ss = κ2(κ1 + κ2 + γm)g2

1g
2
2 + γm(n̄th + 1)

[
κ1g

2
2 − κ2g

2
1 + κ2(κ1 + κ2)(κ2 + γm)

]
g2

1(
κ1g

2
2 − κ2g

2
1 + γmκ1κ2

)[
(κ2 + γm)g2

2 − (κ1 + γm)g2
1 + (κ1 + κ2)(κ1 + γm)(κ2 + γm)

] , (A4a)

〈â†
2â2〉ss = κ1(κ1 + κ2 + γm)g2

1g
2
2 + γmn̄th

[
κ1g

2
2 − κ2g

2
1 + κ1(κ1 + κ2)(κ1 + γm)

]
g2

2(
κ1g

2
2 − κ2g

2
1 + γmκ1κ2

)[
(κ2 + γm)g2

2 − (κ1 + γm)g2
1 + (κ1 + κ2)(κ1 + γm)(κ2 + γm)

] , (A4b)

〈â1â2〉ss = −κ1g1g2
[
κ2g

2
1 + (κ2 + γm)

(
g2

2 + κ2γm

)] + γmn̄th
[
κ1g

2
2 − κ2g

2
1 + κ1κ2(κ1 + κ2 + 2γm)

]
(
κ1g

2
2 − κ2g

2
1 + γmκ1κ2

)[
(κ2 + γm)g2

2 − (κ1 + γm)g2
1 + (κ1 + κ2)(κ1 + γm)(κ2 + γm)

] . (A4c)

APPENDIX B: THE DERIVATION OF THE
ENTANGLEMENT CONDITION IN EQ. (11)

The correlation matrix σ of the steady two-mode cav-
ity field states, defined as σij = 〈ξiξj + ξj ξi〉/2 and ξ =
(X̂1,Ŷ1,X̂2,Ŷ2), can be obtained as

σ =

⎛
⎜⎝

n1 0 c 0
0 n1 0 −c

c 0 n2 0
0 −c 0 n2

⎞
⎟⎠ , (B1)

with nj = 〈â†
j âj 〉ss + 1/2 and c = 〈â1â2〉ss . Here, the quadra-

ture operators are scaled by 1/2 with respect to their definition
in the text. By expressing the correlation matrix σ in terms

of three 2 × 2 matrices σ1, σ2, and σ3 as σ = (σ1 σ3

σT
3 σ2

), the

logarithmic negativity EN is defined as

EN = max[0, − ln(2λ)], (B2)

where λ = 2−1/2
√

�(σ ) − √
�(σ ) − 4detσ and �(σ ) =

detσ1 + detσ2 − 2detσ3. The entanglement thus occurs for
λ < 1/2, which is equivalent to

[c2−(n1+1/2)(n2+1/2)][c2−(n1 − 1/2)(n2 − 1/2)] < 0.

(B3)

Since the positivity of the two-mode cavity-field states requires
that c2 < (n1 + 1/2)(n2 + 1/2), the above entanglement con-
dition reduces to

|〈â1â2〉ss | >

√
〈â†

1â1〉ss〈â†
2â2〉ss . (B4)

APPENDIX C: THE CALCULATION OF THE STEERING SPECTRA

When considering the internal losses of the cavities, the equations of motion in Eq. (4) can be generalized to

d

dt
â
†
1 = − (

κ1 + κ int
1

)
â
†
1 + ig1b̂ +

√
2κ1â

in†
1 (t) +

√
2κ int

1 â
int†
1 (t), (C1a)

d

dt
â2 = − (

κ2 + κ int
2

)
â2 − ig2b̂ +

√
2κ2â

in
2 (t) +

√
2κ int

2 âint
2 (t), (C1b)

d

dt
b̂ = −γmb̂ − ig1â

†
1 − ig2â2 +

√
2γmb̂in(t), (C1c)

where κ int
j denote the intrinsic loss rates of the cavities. The noise operators âint

j (t) satisfy nonzero correlations 〈âint
j (t)âint†

j ′ (t)〉 =
δjj ′δ(t − t ′). Note that in the presence of the internal losses, the expressions of 〈â†

j âj 〉 and 〈â1â2〉 are still unchanged when
replacing κj → κj + κ int

j . So, the conditions for the intracavity steering (discussed in the main text) remain the same when κj

represent the total loss rates.
By performing the Fourier transformation Ô(t) = ∫ ∞

−∞ e−iωt Ô[ω]dω/
√

2π on Eq.(4), we have

− iωâ
†
1[−ω] = −κ1â

†
1[−ω] + ig1b̂[ω] + √

2κ in
1 â

in†
1 [−ω] +

√
2κ int

1 â
int†
1 [−ω], (C2)

−iωâ2[ω] = −κ2â
†
1[ω] + ig2b̂[ω] +

√
2κ2â

in†
2 [ω] +

√
2κ int

2 â
int†
2 [ω], (C3)

−iωb̂[ω] = −γmb̂[ω] − ig1â
†
1[−ω] − ig2â2[ω] +

√
2γmb̂in[ω]. (C4)

With the input-output relations âout
j [ω] = √

2κj âj [ω] − âin
j [ω], we can express the output fields, in terms of the input ones, as

âout
1 [ω] = M11â

in
1 [ω] + M12â

in†
2 [−ω] + N11â

int
1 [ω] + N12â

int†
2 [−ω] + M1bb̂

in†[−ω], (C5a)

âout
2 [ω] = −M12â

in†
1 [−ω] + M22â

in
2 [ω] − N12â

int†
1 [−ω] + N22â

int
2 [ω] + M2bb̂

in[ω], (C5b)
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where

M11[ω] = (κ2 − iω)g2
1 + (

κ1 − κ int
1 + iω

)[
g2

2 + (κ2 − iω)(γm − iω)
]

(κ1 − iω)g2
2 − (κ2 − iω)g2

1 + (κ1 − iω)(κ2 − iω)(γm − iω)
,

M12[ω] = 2
√

κ1κ2g1g2

(κ1 − iω)g2
2 − (κ2 − iω)g2

1 + (κ1 − iω)(κ2 − iω)(γm − iω)
,

N11[ω] = 2
√

κ1κ
int
1

[
g2

2 + (κ2 − iω)(γm − iω)
]

(κ1 − iω)g2
2 − (κ2 − iω)g2

1 + (κ1 − iω)(κ2 − iω)(γm − iω)
,

N12[ω] = 2
√

κ1κ
int
2 g1g2

(κ1 − iω)g2
2 − (κ2 − iω)g2

1 + (κ1 − iω)(κ2 − iω)(γm − iω)
,

M1b[ω] = −2i
√

κ1γmg1(κ2 − iω)

(κ1 − iω)g2
2 − (κ2 − iω)g2

1 + (κ1 − iω)(κ2 − iω)(γm − iω)
,

M22[ω] = − (κ1 − iω)g2
2 + (

κ2 − κ int
2 + iω

)[
g2

1 − (κ1 − iω)(γm − iω)
]

(κ1 − iω)g2
2 − (κ2 − iω)g2

1 + (κ1 − iω)(κ2 − iω)(γm − iω)
,

M2b[ω] = −2i
√

κ2γmg2(κ1 − iω)

(κ1 − iω)g2
2 − (κ2 − iω)g2

1 + (κ1 − iω)(κ2 − iω)(γm − iω)
.

With the spectral definitions of the quadratures X̂out
j [ω] = âout

j [ω] + â
out†
j [−ω] and Ŷ out

j [ω] = −iâout
j [ω] + iâ

out†
j [−ω], we have

〈
X̂2

1[ω]
〉 = 〈

Y 2
1 [ω]

〉 = |M11[ω]|2 + |M12[−ω]|2 + |N11[ω]|2 + |N12[−ω]|2 + |M1b[−ω]|2(n̄th + 1) + |M1b[ω]|2n̄th, (C6)
〈
X̂2

2[ω]
〉 = 〈

Y 2
2 [ω]

〉 = |M22[ω]|2 + |M12[−ω]|2 + |N22[ω]|2 + |N12[−ω]|2 + |M2b[ω]|2(nth + 1) + |M2b[−ω]|2n̄th, (C7)

〈X̂1[ω]X̂2[ω]〉 = −〈Ŷ1[ω]Ŷ2[ω]〉 = −M11[ω]M12[−ω] + M∗
12[−ω]M∗

22[ω] − N11[ω]N12[−ω] + N∗
12[−ω]N∗

22[ω]

+M∗
1b[−ω]M∗

2b[ω](n̄th + 1) + M1b[ω]M2b[−ω]n̄th. (C8)
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