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Wigner’s form of the local realist inequality is used to derive its temporal version for an oscillating two-level
system involving two-time joint probabilities. Such an inequality may be regarded as a form of the Leggett-Garg
inequality (LGI) constituting a necessary condition for macrorealism. The robustness of its quantum mechanical
(QM) violation against unsharpness of measurement is investigated by using a suitable model of unsharp
measurements. It is found that there exists a range of values of the sharpness parameter (characterizing precision
of the relevant measurements) for which the usual LGI is satisfied by QM, but Wigner’s form of the LGI (WLGI)
is violated. This implies that for such unsharp measurements, the QM violation of macrorealism cannot be tested
using the usual LGI, but can be tested using WLGI. In showing this, we take into account the general form of the
usual LGI involving an arbitrary number of pairs of two-time correlation functions. Another recently proposed
necessary condition for macrorealism, called “no-signaling in time,” is also probed, showing that its QM violation
persists for arbitrarily unsharp measurements.
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I. INTRODUCTION

Complementing the exploration of the nonclassical features
of the microphysical world, investigation of the fundamental
aspects and validity of quantum mechanics (QM) at the
macroscopic level has been attracting increasing attention over
the past decade [1–9]. For this latter line of study, a key in-
gredient is provided by the Leggett-Garg form of macrorealist
inequality (LGI) [10,11] which is a temporal analog of Bell’s
inequality involving testable temporal correlation functions,
and whose validity can be considered a necessary condition
for what is regarded as macrorealism. LGI is derived from the
notion of macrorealism which is characterized by the following
assumptions.

Macrorealism per se. At any given instant, irrespective
of any measurement, a macroscopic object is in one of the
available states, having definite values for all its observable
properties.

Noninvasive measurability. It is possible, at least in princi-
ple, to determine which of the states a system is in, without
affecting the state itself or the system’s subsequent behavior.

A wide range of studies have probed aspects of LGI and
its QM violation for a variety of systems; see, for example,
a recent comprehensive review [12]. Against this backdrop,
an earlier unexplored variant of LGI is formulated in the
present paper by developing an analogy to the argument used
in deriving Wigner’s form of the local realist inequality [13].
Here we invoke, instead of local realism, the assumption
of macrorealism in the context of an oscillating two-level
system. This is parallel to the way the standard form of LGI
[10,11] involving two-time correlation functions is obtained
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in analogy to the Bell-CHSH local realist inequality [14,15].
The quantum mechanical (QM) violation of thus obtained,
what may be called, Wigner’s form of the LGI (WLGI) is
studied by considering, for simplicity, the two-state oscillation
pertaining to a system oscillating between the degenerate
orthogonal eigenstates of a Hamiltonian where the oscillation
is induced by an external field. Also, to be noted that this
type of example is relevant to some of the actual experiments
probing LGI [12]. For such an example, the robustness of the
QM violation of WLGI with respect to imprecision of the
relevant measurements is investigated in this paper by using
the formalism of what is known as unsharp measurement
[16–20]. Interestingly, it is found that there exists a range
of values of the sharpness parameter characterizing precision
of the relevant measurements for which QM satisfies the
usual form of LGI, but violates WLGI, thereby signifying
the nonequivalence between LGI and WLGI. In particular,
the QM violation of WLGI persists for smaller values of the
sharpness parameter (that correspond to greater imprecision
of the measurements involved) compared to that for the usual
form of LGI. Hence, for such unsharp measurements, the QM
violation of macrorealism can be shown using WLGI, but not in
terms of LGI. This result is, thus, of interest in the context of the
question as regards the extent of imprecision or unsharpness
of the relevant measurements for which the QM violation of
macrorealism is manifested. Here it needs to be noted that
while making the required comparison between WLGI and
LGI, we take into account the general form of the usual LGI
involving n pairs of two-time correlation functions. It is then
found that for the situations studied in this paper, pertaining
to an oscillating two-level system, the QM violation of WLGI
is more robust than that of LGI in the presence of unsharp
measurements of the type considered here.

Furthermore, we consider the other proposed necessary
condition for macrorealism known as “no signaling in time”
(NSIT) suggested by Kofler and Brukner [21] which stipulates
that the statistics of the outcomes of measurements at any
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instant should not show dependence on whether any prior
measurement has been performed; in other words, NSIT is
based on applying the condition of noninvasive measurability
(NIM) at the statistical level whose violation would imply
violation of NIM at the individual level. Here we may note
that Leggett [10,11] has argued that NIM can be regarded to
be a “natural” corollary of the condition of macrorealism per
se in the context of what is known as an ideal negative result
measurement (applicable for testing both LGI and WLGI) that
can, too, be invoked for testing NSIT, as has been noted by
Kofler and Brukner [21]. By investigating the robustness of the
QM violation of NSIT against unsharpness of measurement,
a striking result is obtained that, no matter the value of the
sharpness parameter characterizing precision of the relevant
measurements, QM violates NSIT. In other words, the QM
violation of NSIT turns out to be most robust against unsharp
measurements of the type considered in the present paper.

II. WIGNER’S FORM OF LGI

We begin by recapitulating Wigner’s original argument [13]
that derived a local realist testable inequality for a pair of
spatially separated spin-1/2 particles in the singlet state. This
was based on assuming as a consequence of local realism,
the existence of overall joint probabilities of the definite
outcomes of measuring the relevant dichotomic observables of
the two particles that would yield the pair-wise marginal joint
probabilities which are actually measurable. In the scenario
studied by Wigner, the spin components of each of the two
spatially separated particles are taken to be measured along
three respective directions, say, â,b̂, and ĉ. Then consider, for
example, the observable joint probability of obtaining both the
outcomes +1 if, say, −→σ .â and −→σ .b̂ are measured on the first
and the second particle, respectively, denoted as P (â + ,b̂+).
Using the perfect anticorrelation property of the singlet
state in question, P (â + ,b̂+) can be written as a marginal
in the form P (â + ,b̂+) = ρ(+, − ,+; −, + ,−) + ρ(+, −
,−; −, + ,+) with ρ(v1(â),v1(b̂),v1(ĉ); v2(â),v2(b̂),v2(ĉ)) to
be the overall joint probability of the definite outcomes
of measurements pertaining to all the relevant observables,
where v1(â) represents the outcome (±1) of measurement of
the observable â for the first particle, and so on. Similarly,
considering the expressions for the observable joint probabil-
ities P (ĉ + ,b̂+) and P (â + ,ĉ+) as marginals, and assuming
non-negativity of the overall joint probability distributions, it
follows that

P (â + ,b̂+) − P (â + ,ĉ+) − P (ĉ + ,b̂+) � 0, (1)

which is one of the various forms of Wigner’s version of the
local realist inequality.

Next, in order to obtain the temporal version of Wigner’s
inequality (1) by developing an appropriate analogy with the
preceding argument, we proceed as follows. Let us focus our
attention on an ensemble of systems undergoing temporal
evolution involving oscillation between the two states, say,
1 and 2, and let Q(t) be an observable quantity such that,
whenever measured, it is found to take a value +1(−1)
depending on whether the system is in the state 1(2). Now,
consider a collection of sets of experimental runs, with each
set of runs starting from the same initial state. On the

first set of runs, let Q be measured at times t1 and t2, on
the second Q be measured at t2 and t3, and on the third
at t1 and t3 (here t1 < t2 < t3). From such measurements
one can then determine the pair-wise joint probabilities like
P (Q1,Q2),P (Q2,Q3),P (Q1,Q3) where Qi is the outcome
(±1) of measuring Q at ti , i = 1,2,3. In this scenario, it is
possible to suitably adapt the argument leading to Wigner’s
inequality (1) with the times ti of measurement playing the
role of apparatus settings. Here we note that, as a consequence
of the assumption of macrorealism per se, one can infer
the existence of overall joint probabilities ρ(Q1,Q2,Q3)
pertaining to a different combination of outcomes for the
relevant measurements, while the assumption of noninvasive
measurability implies that such overall joint probabilities
would remain unaffected by measurements, and hence, by
appropriate marginalization, the pair-wise observable joint
probabilities can be obtained. For example, the observable
joint probability P (Q2+,Q3−) of obtaining the outcomes +1
and −1 for the sequential measurements of Q at the instants
t2 and t3, respectively, can be written as

P (Q2+,Q3−) =
∑

Q1=±
ρ(Q1, + ,−)

= ρ(+, + ,−) + ρ(−, + ,−). (2)

Writing similar expressions for the other measurable marginal
joint probabilities P (Q1−,Q3−) and P (Q1+,Q2+), we get

P (Q1+,Q2+) + P (Q1−,Q3−) − P (Q2+,Q3−)

= ρ(+, + ,+) + ρ(−, − ,−). (3)

Then, invoking non-negativity of the joint probabilities occur-
ring on the right-hand side of Eq. (3), the following form of
WLGI is obtained in terms of three pairs of two-time joint
probabilities,

P (Q2+,Q3−) − P (Q1+,Q2+) − P (Q1−,Q3−) � 0.

(4)

Similarly, other forms of WLGI involving three pairs of
two-time joint probabilities can be derived by using various
combinations of the observable joint probabilities, which are
as follows:

P (Q2+,Q3+) − P (Q1−,Q2+) − P (Q1+,Q3+) � 0,

(5a)

P (Q2+,Q3−) − P (Q1−,Q2+) − P (Q1+,Q3−) � 0,

(5b)

P (Q2+,Q3+) − P (Q1+,Q2+) − P (Q1−,Q3+) � 0,

(5c)

P (Q1+,Q3−) − P (Q1+,Q2−) − P (Q2+,Q3−) � 0,

(5d)

P (Q1+,Q3−) − P (Q1+,Q2+) − P (Q2−,Q3−) � 0,

(5e)

P (Q1+,Q3+) − P (Q1+,Q2+) − P (Q2−,Q3+) � 0,

(5f)
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P (Q1+,Q3+) − P (Q1+,Q2−) − P (Q2+,Q3+) � 0,

(5g)

P (Q1+,Q2−) − P (Q1+,Q3−) − P (Q2−,Q3+) � 0,

(5h)

P (Q1+,Q2−) − P (Q1+,Q3+) − P (Q2−,Q3−) � 0,

(5i)

P (Q1+,Q2+) − P (Q1+,Q3+) − P (Q2+,Q3−) � 0,

(5j)

P (Q1+,Q2+) − P (Q1+,Q3−) − P (Q2+,Q3+) � 0.

(5k)

Altering the signs in each of the above Eqs. (4) and (5),
another set of 12 such three-term WLGIs can be obtained.

Now, let the observable Q be measured in n different pairs
of instants ti (i = 1,2,...,n). From the notion of macrorealism,
one can again assume the existence of the overall joint
probability distributions ρ(Q1,Q2,...,Qn). Considering the
pair-wise observable joint probabilities of the following forms
as the marginals of the overall joint probability distributions,
we then get the following relation:

P (Q1+,Q2−) + P (Q2+,Q3−) + ... + P (Qn−1+,Qn−)

= P (Q1+,Qn−) + (n − 2)2n−2 non-negative terms.

(6)

From the above expression, the form of WLGI in terms of n

pairs of such two-time joint probabilities can be obtained as
follows:

P (Q1+,Qn−) −
n−1∑
i=1

P (Qi + ,Qi+1−) � 0. (7)

Other various forms of the n-term WLGI can be similarly ob-
tained by using different combinations of the joint probabilities
for the outcomes (±1) corresponding to Qi’s. However, for
illustrating the basic relevant features concerning the efficacy
of WLGI, it suffices for our subsequent treatment to confine
our attention to essentially three-term WLGIs involving three
pairs of two-time joint probabilities.

Now, considering a typical two-state oscillation, let us
focus on a system oscillating between the two states |A〉
and |B〉 which are degenerate orthogonal eigenstates of the
Hamiltonian H0 corresponding to energy E0, with a perturb-
ing Hamiltonian H ′ inducing oscillatory transition between
these two states, with 〈A|H ′|B〉 = 〈B|H ′|A〉 = �E, and
〈A|H ′|A〉 = 〈B|H ′|B〉 = E′. Here we take the off-diagonal
term of the perturbing Hamiltonian as a real quantity since
such a system is typically realized in a double-well-potential
scenario [2,3]. The key point here is that at any instant, such a
system is found to be either in the state |A〉 or in the state
|B〉 corresponding to the measurement of the dichotomic
observable Q = |A〉〈A| − |B〉〈B| = P+ − P− where P+ =
|A〉〈A|, P− = |B〉〈B|. Let the initial state at t1 be of the general
form ρ0(t1) = |ψ0〉〈ψ0| where

|ψ0〉 = cos(θ )|A〉 + exp(iφ) sin(θ )|B〉, (8)

and θ ∈ [0,π/2],φ ∈ [0,2π ]. For the above state, the prob-
ability of obtaining the measurement outcome, say, +1

at the instant t1 is given by tr(ρ0(t1)P+), and after this
measurement, the premeasurement state ρ0(t1) changes to
the state given by ρ+(t1) = P+ρ0(t1)P †

+/tr(ρ0(t1)P+) where
P+ = |A〉〈A| = P

†
+. Subsequently, the postmeasurement state

evolves under the Hamiltonian H = H0 + H ′ to the state
ρ ′

+(t2) = U�tρ+(t1)U †
�t at a later instant t2 where U�t =

exp(−iH�t) taking � = 1 and �t = t2 − t1. Then, consid-
ering the subsequent measurement of Q at the instant t2, the
QM value of, say, the joint probability of obtaining both the
outcomes +1 at the instants t1 and t2 is given by

P (Q1+,Q2+) = tr(ρ0(t1)P+)tr(ρ ′
+(t2)P+)

= tr(U�t (P+ρ0(t1)P+)U †
�tP+)

= cos2(θ ) cos2(τ ), (9)

where τ = �E�t (in the units of � = 1), and the expression
for the unitary matrix U�t = exp(−iH�t) is as follows:

U�t = e−i(E0+E′)�t [cos(τ )I − i sin(τ )(|A〉〈B| + |B〉〈A|)].
(10)

Similarly, one can obtain the QM values of the other relevant
joint probabilities occurring on the left-hand side of the three-
term WLGIs given by Eqs. (4) and (5) (taking t2 − t1 = t3 −
t2 = �t). Consider, for example, the QM expression of the
left-hand side of the inequality (4) given by

P (Q2+,Q3−) − P (Q1+,Q2+) − P (Q1−,Q3−)

= 1
2 sin(2θ ) sin2(τ ) sin(2τ ) sin(φ) + cos2(θ ) cos(2τ )

× sin2(τ ) + sin4(τ ) − cos2(θ ) cos2(τ )

− sin2(θ ) cos2(2τ ), (11)

which is a function of θ, φ, and τ , say f (θ,φ,τ ). For any
given values of θ and τ , if φ is varied, it can easily be seen
that for φ = π/2 [when sin(2τ ) is positive], or for φ = 3π/2
[when sin(2τ ) is negative], the maximum value of f (θ,φ,τ )
is attained. One can thus numerically obtain the simultaneous
solution of the following two equations:

∂

∂τ
f (θ,φ,τ )φ= π

2 , 3π
2

= sin(2θ ) sin(φ)φ= π
2 , 3π

2
(sin2(τ ) cos(2τ )

+ 1

2
sin2(2τ )) + 2 sin(2τ ) cos2(τ )

+ sin2(θ ) sin(4τ ) = 0,
(12)

∂

∂θ
f (θ,φ,τ )φ= π

2 , 3π
2

= cos(2θ ) sin2(τ ) sin(2τ ) sin(φ)φ= π
2 , 3π

2

+ 1

2
sin(2θ ) sin2(2τ ) = 0,

to find the solutions for θ and τ , whence the global maximum
of the function f (θ,φ,τ ) can be numerically checked. It is
then found that for the initial state given by Eq. (8) when
θ = 1.0666 rad, φ = π/2 or 3π/2, and τ = 1.0083 or 2.1333
(in the units of � = 1), the maximum QM violation of WLGI
given by the inequality (4) occurs with the left-hand side of
Eq. (4) or Eq. (11) given by f (θ,φ,τ ) ≈ 0.5043. It has also
been verified that the QM violation of all the three-term WLGI
inequalities (4) and (5) depend on the initial state and, among
all these inequalities (4) and (5) and the set of other three-term

032117-3



SAHA, MAL, PANIGRAHI, AND HOME PHYSICAL REVIEW A 91, 032117 (2015)

inequalities obtained from them, the maximum QM violation is
obtained of the inequalities (4) and (5a) when the left-hand side
is ≈0.5043. In the discussions of the following two sections,
we will be specifically considering the form of the three-term
WLGI given by the inequality (4).

III. WIGNER’S FORM OF LGI AND
UNSHARP MEASUREMENT

In the preceding discussion, we have taken the relevant
measurements of the observable Q to be essentially “ideal.”
Now, if the “nonidealness” of actual measurements is taken
into account, a natural question arises as to what effect this
would have on the QM violation of WLGI as compared
to that for LGI. In order to address this question, we take
recourse to the formalism of what is known as unsharp
measurement [16–20] which can be regarded as a particular
case of commutating POVM. Note that for an ideal mea-
surement of the dichotomic observable under consideration
given by Q = |A〉〈A| − |B〉〈B| = P+ − P−, the respective
probabilities of the outcomes ±1 and the way a measurement
affects the observed state are determined by the projection
operators that can be written as P± = (1/2)(I ± Q) where
I = |A〉〈A| + |B〉〈B|. Now, in order to capture the effect of
imprecision involved in a nonideal measurement, using the
formalism of unsharp measurement [16–20], a parameter (λ)
known as the sharpness parameter is introduced to characterize
the sharpness of a measurement by defining what are referred
to as the effect operators given by

F± = (1/2)(I ± λQ) = λP± + (1 − λ)I/2, (13)

where (1 − λ) denotes the amount of white noise present in any
unsharp measurement (0 < λ � 1), and F± are mutually com-
muting operators with non-negative eigenvalues; F+ + F− =
I, while for λ = 1 corresponding to sharp measurements, F±
reduce to projection operators P±. Note that Eq. (13) can be
rewritten as a linear combination of projection operators P±
in the following way:

F± =
(

1 ± λ

2

)
P+ +

(
1 ∓ λ

2

)
P−. (14)

Here an important point is that, instead of the projection
operators used in the case of an ideal measurement, in
an unsharp measurement, the operators F± determine the
respective probabilities of the outcomes and the way a premea-
surement state changes due to measurement. Considering the
generalized Lüders operations, for a specific type of unsharp
measurement pertaining to a given state ρ, the probability
of an outcome, say, +1 is given by tr(ρF+) for which the
postmeasurement state is given by (

√
F+ρ

√
F+

†
)/tr(ρF+).

Thus, in a given experiment, by estimating the difference
between the actually observed probability of an outcome and
the corresponding predicted value for an ideal experiment, the
sharpness parameter λ pertaining to the experiment in question
can be determined. This gives an operational significance to
the parameter λ.

Using Eq. (13) or (14) and by following the prescription
outlined above, the QM value of the LHS of WLGI given by
(4) is now calculated as follows for unsharp measurements
pertaining to the two-state oscillation by taking ρ0(t1) =
|ψ0〉〈ψ0| where |ψ0〉 is given by Eq. (8), whence one obtains

P (Q2+,Q3−) − P (Q1+,Q2+) − P (Q1−,Q3−)

= tr(U�t (
√

F+(U�tρ0(t1)U †
�t )

√
F+

†
)U †

�tF−) − tr(U�t (
√

F+ρ0(t1)
√

F+
†
)U †

�tF+) − tr(U2�t (
√

F−ρ0(t1)
√

F−
†
)U †

2�tF−)

= 1

4
[2λ sin2(τ )( cos(2θ ) cos(2τ ) + sin(2θ ) sin(2τ ) sin(φ) + cos(2θ )) − 2λ sin2(2τ ) cos(2θ )

+ λ
√

1 − λ2 sin(2τ )( sin(2τ ) cos(2θ ) + cos(2τ ) sin(2θ ) sin(φ) − sin(2θ ) sin(φ)) − 2λ2 cos(2τ ) − λ2 cos(4τ ) − 1]. (15)

Considering the situation where the sharpness parameter is
unknown, in the above expression, we take certain fixed
values of θ = 1.0666 rad, φ = π/2, and τ = 1.0083 for
the parameters characterizing the initial state and the time
evolution. Recall that for these specific choices, as mentioned
after Eq. (12) in the preceding section, the QM violation of
the three-term WLGI given by the inequality (4) is maximum
using the joint probabilities calculated for ideal measurements.
Then for these choices of the relevant parameters, the LHS of
WLGI (4) or Eq. (15), which is a function of λ, reduces to the
following form:

P (Q2+,Q3−) − P (Q1+,Q2+) − P (Q1−,Q3−)

= 0.3816λ(1 −
√

1 − λ2) + 0.3726λ2 − 0.25. (16)

Note that the above expression (16) is a monotonically
increasing function of λ ∈ (0,1]. This ensures that the solution

of

0.3816λ(1 −
√

1 − λ2) + 0.3726λ2 − 0.25 = 0 (17)

provides the critical value of the sharpness parameter λ above
which, as measurements become more precise, WLGI (4) can
be violated by the QM predictions. It is then checked that the
only solution of Eq. (17) within the allowed range of values
of λ (0,1] is approximately 0.69. Thus, within the range λ �
0.69, the maximum QM value of the left-hand side of (4)
remains nonpositive, implying that within this bound of λ for
unsharp measurements, the QM predictions always satisfy the
three-term WLGI (4). We shall now compare this critical value
of λ with that for LGI.

IV. COMPARISON BETWEEN WLGI AND LGI WITH
RESPECT TO UNSHARP MEASUREMENT

General form of the LGI involving n pairs of two-time
correlation functions can be expressed in the following
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way [12]:

−n � Kn � n − 2 for odd n � 3
(18)

−(n − 2) � Kn � n − 2 for even n � 4,

where Kn = C21 + C32 + C43 + ..... + Cn(n−1) − Cn1, and the
correlation function Cij = 〈QiQj 〉. Here we note that for the
case of two-state oscillation under consideration, the QM
violation of LGI is independent of the initial state [12], in
contrast to the QM violation of WLGI crucially depending
on the initial state. For example, for the initial state given by
Eq. (8) for which θ = 0; i.e., when the initial state is |A〉, it
can easily be seen that the expression on the right-hand side of
Eq. (11) is essentially a nonpositive quantity for any value of τ ,

implying that for this initial state, the QM predictions do not
contradict the form of WLGI given by the inequality (4). On
the other hand, the QM predictions violate LGI in this context,
for instance, for the initial state |A〉 that has been explicitly
shown [23], thereby indicating the nonequivalence between
LGI and WLGI.

Here it may also be worth mentioning that for an experi-
mental test of the QM violation of the n-term WLGI involving
the joint probabilities, one has to run the experiment over n

subensembles, while for testing the n-term LGI (18) involving
n correlation functions, experiments over 2n subensembles are
required.

Next, considering unsharp measurements, the correlation
function for any initial state is obtained in the following form:

〈QiQj 〉unsharp = P (Qi+,Qj+) + P (Qi−,Qj−) − P (Qi−,Qj+) − P (Qi+,Qj−)

= tr(U�t (
√

F+ρ(ti)
√

F+
†
)U †

�tF+) + tr(U�t (
√

F−ρ(ti)
√

F−
†
)U †

�tF−)

− tr(U�t (
√

F−ρ(ti)
√

F−
†
)U †

�tF+) − tr(U�t (
√

F+ρ(ti)
√

F+
†
)U †

�tF−)

= λ2 cos(2τ ) = λ2〈QiQj 〉sharp, (19)

where 〈QiQj 〉sharp is the correlation function for sharp
measurements corresponding to λ = 1. Using Eq. (19) and
the result that for any given n, the maximum QM value of
Kn for sharp measurements has been found to be n cos(π/n)
[12], it follows that for unsharp measurements, if the QM
predictions are to satisfy the general form of LGI given by
(18), the following inequality needs to hold good,

λ2ncos(π/n) � n − 2, (20a)

for any n, which implies

λ �
√

n − 2

ncos(π/n)
. (20b)

By evaluating the derivative of the RHS of (20b) with
respect to n, it is found that as n increases (n � 3), the
right-hand side of (20b) also increases, thereby implying
an increase of the critical value of λ (denoted by, say, λc)
above which, as measurements become more precise, the QM
results can violate the general form of LGI given by (18). The
minimum value of λc(=√

2/3≈0.816) occurs for n = 3. For
n = 4, λc is given by (1/2)1/4 ≈ 0.84 which is the same as the
corresponding λc [22] obtained for the Bell-CHSH inequality.
Now, comparing the above mentioned minimum value of
λc(≈0.816) for the three-term LGI with the corresponding
critical value of λc(≈0.69) for the three-term WLGI given by
(4), it is seen that for the range of values of λ ∈ (0.69,0.816]
corresponding to unsharp or imprecise measurements, the QM
violation of macrorealism can be tested using the three-term
WLGI, but not in terms of LGI. This, therefore, shows the
nonequivalence between WLGI and LGI.

Here it needs to be stressed that our study is restricted
for the choice of a two-level system subjected to a suitable
interaction causing oscillation between the two states. Also,
it should be noted that our study pertains to a restricted class
of generalized measurements characterized by the model of

unsharp measurements used here that involves commuting
POVMs. Of course, the comparative study between WLGI
and LGI needs to be extended by considering different types
of generalized measurements. Importantly, in view of the
recent demonstration of the QM violation of LGI for multilevel
systems [24], a similar study is required using WLGI in order
to establish its efficacy. It should also be worth trying to
formulate a comprehensive procedure for constructing and
studying the n-term WLGIs, analogous to the way higher
order LGIs can be constructed from the three-term case by
analyzing the relationship between LGI and the geometry of
the “cut polytope” [25].

V. NO-SIGNALING IN TIME AND
UNSHARP MEASUREMENT

As already mentioned in the introductory section, an
alternative necessary condition for the validity of macrorealism
has recently been proposed [21] by assuming that the outcome
statistics of a measurement would remain unaffected by
any prior measurement. This condition, referred to as “no-
signaling in time” (NSIT), is the statistical version of NIM
used in deriving LGI and can be viewed as the temporal
analog of the no-signaling condition for the spacelike separated
measurements used in the EPR-Bohm scenario, with the
difference that while any violation of the latter would violate
special relativity, the violation of NSIT does not imply any
such inconsistency. Now, in order to express NSIT in a
mathematical form, let us again consider a system oscillating
in time between two possible states. The probability of
obtaining a particular outcome, say, +1 for the measurement
of a dichotomic observable Q at an instant, say, t2, without
any earlier measurement being performed, is denoted by
P (Q2 = +1). NSIT requires that P (Q2 = +1) should be the
same even when an earlier measurement of, say, Q is made
at an instant, say, t1. In other words, if we denote by P (Q2 =
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+1|Q1 = ±1) the probability of obtaining an outcome +1
for the measurement of Q at the instant t2 when an earlier
measurement of Q has been performed at t1 having an outcome
±1, NSIT can be expressed as the equality condition given by
P (Q2 = +1) = P (Q2 = +1|Q1 = ±1) which implies that

P (Q2 = +1) = P (Q1+,Q2+) + P (Q1−,Q2+), (21)

where the terms on the right-hand side of Eq. (21) are the
relevant joint probabilities.

Next, pertaining to the two-state oscillation between the
states |A〉 and |B〉 with the state ρ0(t1) = |ψ0〉〈ψ0| at the instant
t1 where |ψ0〉 = cos θ |A〉 + exp(iφ) sin θ |B〉, the QM viola-
tion of the condition given by Eq. (21) for ideal measurements
can be obtained as follows, based on calculations similar to
that involving Eq. (9) as discussed earlier,

P (Q2 = +1) − [P (Q1+,Q2+) + P (Q1−,Q2+)]

= tr(U�tρ0(t1)U †
�tP+) − tr(U�t (P+ρ0(t1)P+)U †

�tP+)

− tr(U�t (P−ρ0(t1)P−)U †
�tP+)

= 1
2 sin(2τ ) sin(2θ ) sin(φ). (22)

It can be seen from Eq. (22) that, for sharp or ideal
measurements, the maximum QM violation of the NSIT
condition as given by Eq. (21) is 1/2 corresponding to the
choices θ = π/4,φ = π/2, and τ = �E�t = π/4 (in the
units of � = 1). Next, taking into account the unsharpness
of measurements involved, the QM violation of the NSIT
condition of the form (21) is obtained as follows on the basis
of calculations similar to that leading to Eq. (15),

P (Q2 = +1) − [P (Q1+,Q2+) + P (Q1−,Q2+)]

= tr(U�tρ0(t1)U †
�tF+) − tr(U�t (

√
F+ρ0(t1)

√
F+

†
)U †

�tF+)

− tr(U�t (
√

F−ρ0(t1)
√

F−
†
)U †

�tF+)

= 1
2λ sin(2τ ) sin(2θ ) sin(φ)(1 −

√
1 − λ2). (23)

It is then seen from Eq. (23) that, while the magnitude
of the QM violation of NSIT depends on the value of
the sharpness parameter λ (this violation is maximum for
λ = 1 corresponding to sharp measurement), a particularly
noteworthy feature is that unless the state at the instant t1 is
such that either sin(2θ ) or sin(φ) vanishes, the QM violation of

NSIT persists for any nonzero value of λ, i.e., for any arbitrarily
unsharp measurement. This shows remarkable robustness of
the QM violation of NSIT with respect to unsharp or nonideal
measurements.

VI. CONCLUDING DISCUSSION

Three different necessary conditions for the validity of
macrorealism are considered, including the two earlier pro-
posed conditions namely LGI, NSIT, and the alternative
condition WLGI proposed in this paper. Comparison between
these three conditions in terms of the robustness of their
respective QM violations against unsharpness of the relevant
measurements is the central theme of the present paper. Our
investigation reveals that the QM violation of macrorealism
in terms of the macrorealist inequality WLGI can occur for
greater imprecision or unsharpness of measurements than that
for LGI. Next, coming to NSIT, interestingly, we find that its
QM violation occurs no matter the unsharpness of the relevant
measurements. Thus, corresponding to this quantum feature,
classicality does not emerge, irrespective of how unsharp the
relevant measurements are. Implication of this curious finding
calls for further reflection. Here it is relevant to mention
that, very recently, Clemente and Kofler [26] have proposed a
combination of NSIT conditions that are claimed to serve as
both necessary and sufficient conditions for macrorealism. It
would therefore be interesting to try to extend the investigation
of this paper for such a combination of NSIT conditions. We
also note the study by Kofler and Brukner [27] providing an
incisive analysis of how classicality emerges within quantum
theory for any spin system under the coarse graining of
measurements. Taking into account such works it should,
therefore, be instructive to make a comprehensive comparison
of the results of our present paper with that using different
characterizations of coarse-grained measurements that are
invoked while probing the emergence of classicality within
quantum theory under imprecise measurements.
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