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Localization by dissipative disorder: Deterministic approach to position measurements
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We propose an approach to position measurements based on the hypothesis that the action of a position detector
on a quantum system can be effectively described by a dissipative disordered potential. We show that such kind of
potential is able, via the dissipation-induced Anderson localization, to contemporary localize the wave function of
the system and to dissipate information to modes bounded to the detector. By imposing a diabaticity condition we
demonstrate that the dissipative dynamics between the modes of the system leads to a localized energy exchange
between the detector and the rest of the environment—the “click” of the detector—thus providing a complete
deterministic description of a position measurement. We finally numerically demonstrate that our approach is
consistent with the Born probability rule.
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A quantum system, when measured, is never found in a
superposition state. Moreover the quantum algorithm is not
able to predict the outcome of the single measurement, only
its probability to happen. This constitutes the measurement
problem in quantum mechanics. In the Copenhagen interpre-
tation, the problem is circumvented by means of projector
operators. The outcome of a single measurement follows from
the nondeterministic “collapse” of the wave packet, i.e., from
an elusive process that gives rise to an individual, objective,
and localized real event: the “click” of the detector [1,2].
In the last decades the decoherence program has provided
a more involved point of view on the measurement processes
[3–5]. Decoherence and einselection respectively destroy the
coherence between the states of a quantum system and select
a preferred set of states which are resilient to the environ-
mental action. Nevertheless the decoherence approach has
not completely solved the measurement problem. In particular
regarding position measurements, it is not able to practically
provide a mechanism that leads to a definite outcome in
a single measurement, i.e., to the click of the detector.
This is mainly due to the fact that all position measuring
devices, be they photographic plates, bubble chambers, charge-
coupled device (CCD) arrays, etc., are highly complicated
and structured systems. Given the huge number of particles
and degrees of freedom involved, a complete description of
their dynamics is practically impossible and the measurement
apparatus is usually described by means of effective models
[3,5–9] or effective potentials [10,11]. As a consequence,
the relevant mechanisms responsible for the measurement
outcomes are difficult to point out. In the vast majority of
the above-mentioned models, such mechanisms are hidden
in the interaction with a generic “noisy” bath. Interestingly,
specifically concerning position measurements, to the best of
our knowledge the spatial disorder on the measurement device
has never been considered as possibly responsible for the
localization of the particle under detection. The hypothesis that
a position measurement device can be effectively described by
a dissipative disordered potential appears natural when dealing
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with a nonidealized detector. First, at the microscopic scale,
nature always tends to arrange in a disordered way. Moreover,
even in the case of the detector consisting of the most perfect
crystal, on its surface the dynamical chemical equilibrium
with the surrounding gas and the presence of already detected
particles strongly modify the potential, effectively disordering
it. Here we thus consider a position measurement device
as a disordered purely absorptive potential [10,12,13]. We
demonstrate that a disordered absorptive potential is indeed
able to reduce an initially delocalized wave function to
a localized one via a particular form of einselection: the
dissipation-induced Anderson localization. Localization by
the environment has been achieved in a large number of
models, see, e.g., [6,8,12–15], but Anderson-like mechanisms
have so far never been considered. In addition here we show
that, making use of a diabaticity condition, the absorption
process induces an energy exchange between the detector and
the rest of the environment which is localized in space and
which represents the measurement outcome, namely the click
of the detector. Given a certain wave function for the quantum
system, the actual realization of the potential deterministically
sets the position of localization and the outcome of the single
measurement. The practically unpredictable modification of
the disordered potential from one measurement to another
changes such position, making the output essentially aleatory.
The repetition of a suitable high number of such kind of
measurement processes allows us to reconstruct the density
distribution of the quantum system, in accordance with the
Born probability rule. In contrast with spontaneous collapse
theories [16–18], our approach does not require any modi-
fication of the Schrödinger equation or the introduction of
underlying noise fields.

We start our treatment considering the idealized situation
of a particle and the surrounding environment and defining
the corresponding Hilbert spaces as HS and HE . The total
Hilbert space can be written as the tensor product H = HS ⊗
HE and the states can be written as � = �S�E , obeying the
Schrödinger equation H� = E�. We additionally impose the
normalization condition

∫ |�S |2 = 1 ∀ t . Let us now consider
the subspace HD and its projector Q, so that QH = HD ,
which are associated with a position detector (see Fig. 1). The
detector is where the environment and the particle interact and
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FIG. 1. (Color online) Pictorial representation of a position mea-
surement. A generic quantum system, whose associated Hilbert space
is HS is confined but delocalized in a region of space of length L.
The environment, with Hilbert space HE , is instead spread all over
the space. At t = 0 the environment and the quantum system interact
through a detector, whose spatial extension is at least L. The vertical
dimension is used to pictorially represent the extension of the Hilbert
spaces.

we suppose that for t � 0 such interaction is off and Q�S(t <

0) = 0. By means of the Feshbach partition theorem [19–21]
it is possible to demonstrate that the wave function outside the
detector �O = P� = (1 − Q)� evolves under the action of
both Hermitian and non-Hermitian terms. By formally tracing
out the environment degrees of freedom and making use of
a Markovian approximation for the detector configurations
[20,22,23], we can obtain a simple expression for the evolution
of the wave vector ψ of the particle outside the detector:

i�∂tψ = HSψ + Dintψ = HSψ − iθ (t − 0)V (x)ψ, (1)

where the θ function renders the sudden switch-on of the
detector at t = 0. Similar approaches have been used for
example in [10–13,24]. Irrespective of the details of the mi-
croscopic interactions, be they chemical reactions, ionization
mechanisms, etc., our ansatz is that V (x) has a disordered
spatial dependence [6,8]. Equation (1) describes the evolution
of the particle as an open system connected to the detector,
where the nonunitary evolution implies that the norm of
ψ is not conserved, i.e., dt [

∫ |ψ |2] �= 0. It then holds that
�S = ψ + φ with �S(t � 0) ≡ ψ(t � 0) and dt [

∫ |�S |2] =
dt [

∫ |ψ + φ|2] = 0. The two components ψ and φ are not
necessarily orthogonal. In fact, owing to the elimination of the
environment degrees of freedom, it is not possible to define a
projector PS (corresponding to P ) such that ψ = PS�S [so
that φ �= (1 − PS)�S]. The interpretation of the two wave
functions is readily done: ψ is the component which is external
to the detector while φ corresponds to the internal component,
e.g., to bound states inside the detector. The integrals of their
density distributions correspond respectively to the survival
probability in the initial system and to the probability of the
particle to be absorbed by the detector and they are obviously
bounded to 1, i.e.,

∫ |ψ |2 � 1 and
∫ |φ|2 � 1. The equation for

the evolution of φ could be obtained with a similar procedure
starting from �D . Nonetheless, and this is the second ansatz
of our treatment, this is not needed. Indeed, given Eq. (1),
the complete evolution of the two components of �S during
the measurement process is already known if we impose the

diabaticity condition

dt [�S]t<tM = 0, (2)

where tM is the time at which the detector clicks. This condition
follows from the fact that here we are interested in strong
measurements, i.e., in measurements where the detector is
able to rapidly and irreversibly localize the particle. For t < 0,
when the environment and the system do not interact, it
holds H�S = ES�S with ES � E. The time evolution in
the system then is �S(t) = exp[−iESt/�]�S(τ ), where τ < 0
sets the time at which the quantum system was prepared. We
can define the measurement time as tM � �/Im(Eint), with
Dintχ = Eintχ . The absorption term Dint for our projective
detector must then satisfy the condition Im(Eint) � ES . From
which follows that �S(tM ) = exp[−iES/Im(Eint)]�S(0) �
�S(0). The diabaticity condition can thus also be written
as 〈|HS |〉 � 〈|Dint|〉. Similar conditions are found in the
spontaneous collapse theories [16].

Given the above scenario we now describe the process
that, starting from Eq. (1), distillates the states that are
more resilient to the dissipative action. We consider a finite-
size system of length L (corresponding to the confinement
volume of the particle or to the detector size), whose discrete
spectrum is characterized by eigenvalues Etot

n and eigenvectors
φn(x) = 〈x|n〉 with Etot

n = En + iVn. Given a certain initial
wave function 〈x|ψ(0)〉 one obtains that its evolution can be
expressed in term of the eigenstates |n〉 as [25]

〈x|ψ(t)〉 =
∑

n

〈x|n〉〈n′|ψ(0)〉e−iEtot
n t/�

=
∑

n

c′
nφn(x)e−i(En+iVn)t/�, (3)

where cn′ = 〈n′|ψ(0)〉. The right and left eigenstates are
complex conjugate |n′〉 = |n〉∗, from which it follows that
cn′ = |cn|e−iθn , with cn = 〈n|ψ(0)〉 = |cn|eiθn being the co-
efficient of the expansion over the right eigenstates. For the
density one obtains

|ψ(x,t)|2 =
∑

n

|cn|2|φn(x)|2e2(Vnt/�)

+
∑

n�=m

|cn||cm|φ∗
n(x)φm(x)ei	ϕnm(t)e(Vn+Vm)t/� (4)

with 	ϕnm(t) = (θm − Emt

�
) − (θn − Ent

�
). Since Vn < 0 we

have that (i) in the first sum, only the terms with smaller |Vn|
survive at long times and (ii) in the second sum, at long times
only the terms with smaller |Vn| and |Vm| survive as well. In
particular, since |Vn| < |Vm>n| the terms of the second sum
are suppressed faster than the first sum. The total effect is
thus a particular form of einselection: the dissipative action of
the detector irreversibly distillates the sets of states with the
smaller imaginary energy Vn.

As an example of dissipative disorder potential we choose
V (x) = ∑Nd

j=1 γ exp[−(x − xj )2/(2σ 2)], hence a specklelike
potential. The centers of the speckles xj are uniformly
randomly distributed over the detector size L. Nd , γ , and
σ are respectively the number of speckles, the amplitude, and
the size of the speckles. Moreover we set HS = �

2∇2/(2m).
In the following we use σ as the length unit and then
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FIG. 2. (Color online) Typical normalized density distribution of
the eigenstates φ1 for the disordered dissipative potential described
in the text, for different amplitudes of the speckles. The vertical
logarithmic scale allows us to appreciate the exponentially localized
character when γ > 10−3.

�
2/(2mσ 2) as the energy unit, with m being the mass of

the particle. In Fig. 2 we show the density distribution of
the states with the smallest Vn, for a given realization of the
disorder potential with L = 2000, Nd = 1000, and different
values of γ . In case the dissipation is sufficiently strong they
are exponentially localized so we call the distillation pro-
cess dissipation-induced Anderson localization [26,27]. We
remark that, while Anderson localization originates from the
destructive interference of waves in disordered conservative
potentials, here the localization results from the selection of
the states which are most resilient to a random distribution of
absorbing potentials.

Hence Eq. (1) with a disordered potential V (x) leads to the
contemporary localization and dissipation of ψ while, given
Eq. (2), the time evolution of φ is then simply set by the
equation dtφ = −dtψ . The aim of the measurement protocol is
then to obtain |ψ(x,0)|2 = |�S(x,0)|2. From the normalization
condition it follows that

∫ |ψ |2 + ∫ |φ|2 + 2Re
∫

(ψ∗φ) =
I1 + I2 + I3 = 1 ∀ t . At t = 0, when the measurement starts,
the detector entangles ψ and φ; indeed I3 �= 0. Moreover
it starts to acquire information dissipating it from ψ and
transferring it to φ. The click of the detector happens
when I2 = 1, i.e., when the available information has been
fully absorbed. In this case the detector has the certainty
about the particle existence and additionally it cannot further
absorb (I2 � 1), hence the measuring process must stop. The
diabaticity condition allows such a scenario to manifest at
a finite time t = tM . Indeed it makes it possible to reach
the condition I2(tM ) = 1 with I1(tM ) = −I3(tM ). Stopping the
measurement implies the disentanglement of φ and ψ which,
in turn, implies the orthogonality of the two wave functions.
Moreover, since I2 = 1, it also implies that ψ(t > tM ) = 0.
Notably, in contrast with spontaneous localization theories,
our treatment does not suffer from tails problems [5,28].

Ending the measurement thus requires an energy amount
to disentangle ψ and φ and to annihilate ψ . The environment,
which continuously interacts with the detector, can provide

such energy, corresponding to the click of the detector. At
the beginning of the measurement the energy of the particle
is ES = ∫

[ψ∗(0)Hψ(0)] while immediately after the click
it becomes ES ′ = ∫

[φ∗(tM )Hφ(tM )] > ES . The difference
between ES and ES ′ is mainly [29] the energy associated
with the entanglement at the end of the measurement E =∫

[φ∗(tM )Hψ(tM ) + ψ∗(tM )Hφ(tM )] = ∫
[ξ (tM,x)], with ξ

being the energy density. By ending the measurement process
such energy is indeed absorbed by the detector from the
environment and, in case it is localized in space, represents
the read out of the measurement. This can happen if at least
one of the two wave functions is localized before the click,
a condition ensured in our case by the dissipation-induced
Anderson localization of ψ . The collapse in the frame of our
treatment is thus a consequence of the disentanglement, which
implies ψ(t � tM ) = 0. Formally we can include the click and
the end of the measurement process as

�S(t) = θ (I2(t) − 1)ψ(t) + φ(t). (5)

Immediately after the measurement the particle has been fully
absorbed by the detector and it is still completely described by
the wave function φ (with unitary norm).

In order to verify our approach we have performed a series
of numerical simulations choosing the dissipative potential
V (x) to have the form described above. As shown in Fig. 2
the states with the smallest imaginary parts of the spectrum
are exponentially localized. In Fig. 3 we report an example
of the dynamics, with L = 2000, Nd = 1000, and γ = 10−2

starting from ψ(0) being completely delocalized over L. Such
choice of γ and Nd fulfill the condition 〈|HS |〉 � 〈|Dint|〉.
In Figs. 3(a) and 3(b) we show the behaviors of |ψ(x)|2 and
|φ(x)|2 during the dynamics. In particular in Fig. 3(a) it is
possible to appreciate the exponential localization of |ψ(x)|2
accompanied by the dissipation. The action of the dissipative
potential gradually suppresses the norm of ψ (I1) while what
is dissipated from ψ represents a gain for φ, whose norm I2

goes from 0 to 1 at t = tM [Fig. 3(c)]. The cross term I3,
which takes into account the overlap of ψ and φ, starts from
0, has its maximum when I1 � I2, and then goes below 0
around tM . In Fig. 3(d) we plot the energy density ξ (x) at
t = tM , which is localized (as also evident from its integral)
approximately in the same position as |ψ(tM,x)|2. The width of
ξ naturally sets the resolution of the detector. For the particular
disordered potential we have chosen, we have found that the
typical FWHM of ξ is � 30.

Our approach to a position measurement therefore allows
a localized energy exchange starting from a delocalized wave
function. We now demonstrate that our approach is compatible
with the Born probability rule, i.e., that it is possible to
reconstruct the space dependence of modulus squared of an
arbitrary initial wave function |ψ(t = 0,x)|2. As in standard
experiments this can indeed be inferred summing up the results
of a suitable number of single position measurements (ideally
infinite). We start from four different kinds of initial wave
functions ψ(t = 0,x): a completely delocalized one (flat),
two Gaussians with different widths, and a sine. For this set
of simulations we use the same kind of speckle potential
described above. We let the system evolve according to
Eqs. (1), (2), and (5) for 5000 different realization of the
disordered potential. In a few cases (<1%) the protocol is
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FIG. 3. (Color online) Dynamics of the dissipation-induced Anderson localization. (a),(b) The evolution of |ψ(t)|2 and of |φ(t)|2 as a
function of time until the measurement time tM . The vertical scale in (a) is logarithmic highlighting the exponential localization of the final
state. (c) I1, I2, and I3 as a function of time. (d) The energy density ξ and its integral

∫ x

0 [ξ ] as a function of x for t = tM .

not able to localize the particle in the maximum time allowed
and such runs are discarded. In the other cases, when I2 = 1
the dynamics is stopped and ξ (x) is calculated. We then build
the histogram of the positions where ξ (x) is localized with a
binning of 50, safely larger than the average FWHM of ξ itself.

FIG. 4. (Color online) Histograms obtained after 5000 simula-
tions of position measurements following our algorithm. In each panel
the results are reported together with the corresponding initial density
distribution |ψ(0)|2 (line). The bin size is set to be safely larger than
the typical full width at half maximum (FWHM) of ξ .

In Fig. 4 we report the results of the simulations together with
the corresponding initial states for all four cases; the agreement
is excellent demonstrating the plausibility of our approach.

In summary, we have introduced an approach to position
measurements mainly built on the hypothesis that a position
detector is a disordered absorptive potential. We have shown
that the interaction of such a detector with the quantum system
gives rise to the dissipation-induced Anderson localization.
The subsequent click of the detector is obtained by imposing a
diabaticity condition. We have performed a numerical experi-
ment following the above-described measurement process and
we have been able to excellently reconstruct four different
density distributions. The onset of the dissipation-induced
Anderson localization could be observed in controlled systems
like Bose-Einstein condensates under the action of suitably
engineered dissipative potentials [30]. In such experiments
the competition of disorder and order in the localization
of a particle under measurement could indeed be tested.
Our approach could also be compared with other models
of wave-function reduction [16], chaotic systems [31], or
Bohmian mechanics [32]. Additionally its extension to other
contexts, like to the quantal definition of the time of arrival
[10,33], may lead to interesting new insights.

We are grateful to M. Modugno for reading the manuscript
and for fruitful discussions.

032114-4



LOCALIZATION BY DISSIPATIVE DISORDER: . . . PHYSICAL REVIEW A 91, 032114 (2015)

[1] R. Omnés, Rev. Mod. Phys. 64, 339 (1992).
[2] J. von Neumann, Die Mathematische Grundlagen der Quanten-

mechanik (Springer, Berlin, 1932).
[3] W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003), and references

therein.
[4] J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73,

565 (2001).
[5] M. Schlosshauer, Rev. Mod. Phys. 76, 1267 (2005).
[6] E. Joos and H. D. Zeh, Z. Phys. B: Condens. Matter 59, 223

(1985).
[7] A. Konetchnyi, M. Mensky, and V. Namiot, Phys. Lett. A 177,

283 (1993).
[8] A. O. Caldeira and A. J. Leggett, Physica A 121, 587 (1983).
[9] D. Cohen, Phys. Rev. E 55, 1422 (1997); ,Phys. Rev. Lett. 78,

2878 (1997).
[10] G. R. Allcock, Ann. Phys. (NY) 53, 253 (1969); ,53, 286 (1969);

,53, 311 (1969).
[11] J. Echanobe, A. del Campo, and J. G. Muga, Phys. Rev. A 77,

032112 (2008).
[12] M. Gell-Mann and J. B. Hartle, Phys. Rev. D 47, 3345 (1993).
[13] M. B. Menskii, Usp. Fiz. Nauk 173, 1199 (2003).
[14] W.-M. Zhang and D. H. Feng, Phys. Rev. A 52, 1746 (1995).
[15] J. Halliwell and A. Zoupas, Phys. Rev. D 52, 7294 (1995).
[16] A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht,

Rev. Mod. Phys. 85, 471 (2013).
[17] P. Pearle, Phys. Rev. A 39, 2277 (1989).
[18] G. C. Ghirardi, P. Pearle, and A. Rimini, Phys. Rev. A 42, 78

(1990).
[19] H. Feshbach, Ann. Phys. (NY) 5, 357 (1958); ,19, 287 (1962).

[20] J. G. Muga, J. P. Palao, B. Navarro, and I. L. Egusquiza,
Phys. Rep. 395, 357 (2004), and references therein.

[21] M. Zwanzig, J. Chem. Phys. 33, 1338 (1960).
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