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We consider the information flow on a system observable X corresponding to a positive-operator-valued
measure under a quantum measurement process Y described by a completely positive instrument from the
viewpoint of the relative entropy. We establish a sufficient condition for the relative-entropy conservation law
which states that the average decrease in the relative entropy of the system observable X equals the relative
entropy of the measurement outcome of Y , i.e., the information gain due to measurement. This sufficient
condition is interpreted as an assumption of classicality in the sense that there exists a sufficient statistic
in a joint successive measurement of Y followed by X such that the probability distribution of the statistic
coincides with that of a single measurement of X for the premeasurement state. We show that in the case
when X is a discrete projection-valued measure and Y is discrete, the classicality condition is equivalent to
the relative-entropy conservation for arbitrary states. The general theory on the relative-entropy conservation
is applied to typical quantum measurement models, namely, quantum nondemolition measurement, destructive
sharp measurements on two-level systems, a photon counting, a quantum counting, homodyne and heterodyne
measurements. These examples except for the nondemolition and photon-counting measurements do not satisfy
the known Shannon-entropy conservation law proposed by Ban [M. Ban, J. Phys. A: Math. Gen. 32, 1643
(1999)], implying that our approach based on the relative entropy is applicable to a wider class of quantum
measurements.
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I. INTRODUCTION

In spite of the inevitable state change by a quantum
measurement process, some quantum measurement models are
known to conserve the information about a system observable.
Examples of such measurements in optical systems include
the quantum nondemolition (QND) measurement [1] and the
destructive photon-counting measurement [2–4] on a single-
mode photon number. In the QND measurement, the number of
photons is not destructed and the classical Bayes rule holds for
the photon-number distributions of premeasurement and post-
measurement states. On the other hand, the photon-counting
measurement is a destructive measurement on the system
photon number, but we can still construct the photon-number
distribution of the premeasurement state from the number
of counts and the photon number of the postmeasurement
state.

This kind of information-conserving quantum measure-
ment was discussed by Ban [5–8] quantitatively in terms of
the mutual information Iρ̂(X : Y ) between a system observable
X described by a positive-operator-valued measure (POVM)
and the measurement outcome of a completely positive (CP)
instrument Y [9–12]. Ban established a condition for X and Y

under which the following Shannon-entropy [13] conservation
law holds:

Iρ̂(X : Y ) = Hρ̂(X) − Eρ̂[Hρ̂y
(X)], (1)

where ρ̂ is the premeasurement state, ρ̂y is the postmeasure-
ment state conditioned on the measurement outcome y, Eρ̂[. . .]
denotes the ensemble average over the measurement outcome
y for given ρ̂, and Hρ̂(X) is the Shannon entropy computed
from the distribution of X for state ρ̂. The left-hand side of
Eq. (1) is the information gain about the system observable
X which is obtained from the measurement outcome Y ,

while the right-hand side is a decrease in the uncertainty
about the distribution of X due to the state change of the
measurement. The physical meaning of the condition for the
Shannon-entropy conservation (1) due to Ban is, however, not
clear. There are also measurement models with continuous
outcomes in which information about a system observable is
conserved, but the Shannon-entropy conservation (1) does not
hold due to a strong dependence of the continuous Shannon
entropy, or differential entropy, on a reference measure of the
probability measure. In this sense, it is difficult to regard Eq. (1)
as the quantitative expression of the information conservation
about X.

In this paper, we investigate the information flows of the
measured observable based on the relative entropies [14] of the
measurement process Y and the observable X. Operationally,
the consideration of the relative entropies corresponds to
the situation when the premeasurement state is assumed
to be prepared in one of the two candidate states ρ̂ or σ̂ , and the
observer infers from the measurement outcome Y which state
is actually prepared. This kind of information is quantified as
relative entropy of Y between ρ̂ and σ̂ . The same consideration
applies to X and we can define the relative entropy of X for
candidate states ρ̂ and σ̂ in a similar manner. Thus, we can
compare these relative entropies as Ban did to the Shannon
entropy and mutual information [6,7].

The primary finding of this paper is Theorem 1 which
states that a kind of classicality condition for X and Y implies
the relative-entropy conservation law which states that the
relative entropy of the measurement outcome Y is equal to
the ensemble-averaged decrease in the relative entropy of the
system with respect to the POVM X. The classicality condition
for X and Y assumed in Theorem 1 can be interpreted as the
existence of a sufficient statistic [14,15] in a joint successive
measurement of Y followed by X such that the distribution of
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the statistic coincides with that of X for the premeasurement
state. This condition permits a classical interpretation of the
measurement process Y in the sense that there exists a classical
model that simulates the conditional change of the probability
distribution of X in the measurement process Y computed
from the system’s density operator. It is also shown that
the conservation of the relative entropy (8) holds in a wider
range of quantum measurements than the Shannon-entropy
conservation law (1) since the relative entropy is free from
the dependence on the reference measure as in the Shannon
entropy.

This paper is organized as follows. In Sec. II, we show the
relative-entropy conservation law as Theorem 1 under a clas-
sicality condition for a system POVM X and a measurement
process Y . A special case in which X is projection valued is
formulated in Theorem 2. By further assuming the discreteness
of both the projection-valued measure X and the measurement
outcome of Y , we establish in Theorem 3 the equivalence
between the relative-entropy conservation law for arbitrary
candidate states and the classicality condition assumed in The-
orem 2, i.e., the classicality condition is a necessary and suffi-
cient condition for the relative-entropy conservation law in this
case. In Sec. III, we show that typical quantum measurements
satisfy the classicality condition, which are quantum nonde-
molition measurements, destructive sharp measurements on
two-level systems, photon-counting measurement, quantum-
counter measurement, balanced homodyne measurement, and
heterodyne measurement. In these examples, except for the
quantum nondemolition and photon-counting measurements,
we show that the Shannon-entropy conservation law (1) does
not hold. In Sec. IV, we summarize the main results of this
paper.

II. RELATIVE-ENTROPY CONSERVATION LAW

In this section, we consider a quantum system described
by a Hilbert space H, a system’s POVM X, and measurement
process Y described by a CP instrument. Here, we assume
that X is described by a density {ÊX

x }x∈�X
of POVM with

respect to a reference measure ν0(dx) and that Y is described
by a density of CP instrument {EY

y }y∈�Y
with respect to a

reference measure μ0(dy). The probability densities for the
measurement outcomes for X and Y for a given density
operator ρ̂ are given by

pX
ρ̂ (x) = tr

[
ρ̂ÊX

x

]
and

pY
ρ̂ (y) = tr

[
EY

y (ρ̂)
] = tr

[
ρ̂ÊY

y

]
, (2)

respectively, where ÊY
y = EY

y

†
(Î ) is the density of the POVM

for the measurement outcome y, Î is the identity operator, and
the adjoint E† of a superoperator E is defined by tr[ρ̂E†(Â)] :=
tr[E(ρ̂)Â] for arbitrary ρ̂ and Â. The postmeasurement
state for a given measurement outcome y of Y is given
by

ρ̂y = EY
y (ρ̂)

P Y
ρ̂ (y)

. (3)

The densities of POVMs ÊX
x and ÊY

y satisfy the following
completeness conditions:∫

μ0(dy)ÊY
y = Î , (4)

∫
ν0(dx)ÊX

x = Î . (5)

As the information content of the measurement outcome, we
consider the relative entropies of the measurement outcomes
for X and Y given by

DX(ρ̂||σ̂ ) := D
(
pX

ρ̂

∣∣∣∣pX
σ̂

)
=

∫
ν0(dx)pX

ρ̂ (x) ln

[
pX

ρ̂ (x)

pX
σ̂ (x)

]
(6)

and

D
(
pY

ρ̂

∣∣∣∣pY
σ̂

) =
∫

μ0(dy)pY
ρ̂ (y) ln

[
pY

ρ̂ (y)

pY
σ̂ (y)

]
, (7)

respectively. The relative entropies in Eqs. (6) and (7) are in-
formation contents obtained from the measurement outcomes
as to which state ρ̂ or σ̂ is initially prepared.

The main goal of this work is to establish a condition for X

and Y such that the relative-entropy conservation law

D
(
pY

ρ̂

∣∣∣∣pY
σ̂

) = D
(
pX

ρ̂

∣∣∣∣pX
σ̂

) − Eρ̂

[
D

(
pX

ρ̂y

∣∣∣∣pX
σ̂y

)]
(8)

holds. Before discussing the condition for X and Y we rewrite
Eq. (8) in a more tractable form as in the following lemma.

Lemma 1. Let {ÊX
x }x∈�X

be a density of POVM with respect
to a reference measure ν0(dx) and let {EY

y }y∈�Y
be a density

of CP instrument with respect to a reference measure μ0(dy).
Then, the relative-entropy conservation law (8) is equivalent
to

D
(
p̃XY

ρ̂

∣∣∣∣p̃XY
σ̂

) = D
(
pX

ρ̂

∣∣∣∣pX
σ̂

)
, (9)

where p̃XY (x,y) is the probability distribution for a successive
joint measurement of Y followed by X.

Proof. The joint distribution p̃XY (x,y) and the conditional
probability distribution p̃

X|Y
ρ̂ (x|y) of X under given measure-

ment outcome y are given by

p̃XY
ρ̂ (x,y) = tr

[
EY

y (ρ̂)ÊX
x

] = tr
[
ρ̂EY

y

†
(ÊX

x )
]

and

p̃
X|Y
ρ̂ (x|y) := p̃XY

ρ̂ (x,y)

pY
ρ̂ (y)

= pX
ρ̂y

(x), (10)

respectively. In deriving Eq. (10), we used the fact that the
marginal distribution of Y is given by Eq. (2) and the definition
of the postmeasurement state in Eq. (3). From the chain rule
for the classical relative entropy (e.g., Chap. 2 of Ref. [16]),
we have

D
(
p̃XY

ρ̂

∣∣∣∣p̃XY
σ̂

) = D
(
pY

ρ̂

∣∣∣∣pY
σ̂

) + Eρ̂

[
D(p̃X|Y

ρ̂ (·|y)
∣∣∣∣p̃X|Y

σ̂ (·|y))
]

= D
(
pY

ρ̂ ||pY
σ̂

) + Eρ̂

[
D

(
pX

ρ̂y

∣∣∣∣pX
σ̂y

)]
, (11)

where we used Eq. (10) in deriving the second equality. Here,
D(p̃X|Y

ρ̂ (·|y)||p̃X|Y
σ̂ (·|y)) denotes the relative entropy between
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the conditional probabilities (10) under a given measurement
outcome y. The equivalence between Eqs. (8) and (9) is now
evident from Eq. (11). �

Equation (9) indicates that the information about X con-
tained in the original states ρ̂ and σ̂ is equal to the information
obtained from the joint successive measurement of Y followed
by X.

Now, our first main result is the following theorem on the
relative-entropy conservation law:

Theorem 1. Let X be a density of POVM {ÊX
x }x∈�X

with respect to a reference measure ν0(dx) and let Y be a
density of an instrument {EY

y }y∈�Y
with respect to a reference

measure μ0(dy). Suppose that X and Y satisfy the following
conditions.

(1) POVM of Y is the coarse graining of X, i.e., there exists
a conditional probability p(y|x) � 0 such that

ÊY
y =

∫
ν0(dx)p(y|x)ÊX

x (12)

with the normalization condition∫
μ0(dy)p(y|x) = 1. (13)

(2) There exist functions x̃(x; y) and q(x; y) � 0 such that

EY
y

†(
ÊX

x

) = q(x; y)ÊX
x̃(x;y) (14)

for any x and y.
(3) For any y and any smooth function F (x),∫

ν0(dx)q(x; y)F (x̃(x; y)) =
∫

ν0(dx)p(y|x)F (x). (15)

Then, the relative-entropy conservation law (8) or (9) holds.
Proof. We prove Eq. (9). By taking a quantum expectation

of Eq. (14) with respect to ρ̂, we obtain

p̃XY
ρ̂ (x,y) = q(x; y)pX

ρ̂ (x̃(x; y)). (16)

Equation (16) implies that, from the factorization theorem for
the sufficient statistic [15], the stochastic variable x̃(x; y) is
a sufficient statistic of the joint successive measurement of
Y followed by X. Let us denote the probability distribution
function of x̃(x; y) with respect to the reference measure ν0 as
pX̃

ρ̂ (x). From the definition of pX̃
ρ̂ (x) and the condition (15),

for any function F (x) we have∫
ν0(dx)pX̃

ρ̂ (x)F (x)

=
∫

ν0(dx)
∫

μ0(dy)p̃XY
ρ̂ (x,y)F (x̃(x; y))

=
∫

μ0(dy)
∫

ν0(dx)p(y|x)pX
ρ̂ (x)F (x)

=
∫

ν0(dx)pX
ρ̂ (x)F (x),

which implies that the probability distribution of x̃(x; y)
coincides with that of the single measurement of X. Thus,
the condition (15) ensures

pX̃
ρ̂ (x) = pX

ρ̂ (x). (17)

From Eqs. (16) and (17), we have

D
(
p̃XY

ρ̂

∣∣∣∣p̃XY
σ̂

) = D
(
pX̃

ρ̂

∣∣∣∣pX̃
σ̂

) = D
(
pX

ρ̂

∣∣∣∣pX
σ̂

)
,

where in deriving the first equality, we used the relative entropy
conservation for the sufficient statistic due to Kullback and
Leibler [14]. �

The physical meaning of the conditions (14) and (15) is
clear from Eqs. (16) and (17); the condition (14) implies
that x̃(x; y) is a sufficient statistic for the joint successive
measurement of Y followed by X and the condition (15)
ensures that the distribution of x̃(x; y) is equivalent to that
of X for the premeasurement state.

The assumptions 1, 2, 3 in Theorem 1 are interpreted as
a kind of classicality condition as the proof uses only the
classical probabilities. In fact, a statistical model

p̃(xin,y,xout) = δxin,x̃(xout;y)q(xout; y)pX
ρ̂ (xin)

with its sample space �X × �Y × �X reproduces all the
probabilities that appear in the proof, where xin and xout are the
system’s values of X before and after the measurement of Y ,
respectively, and y is the outcome of Y . Here, we assumed the
discreteness of �X for simplicity, but the same construction
still applies to the continuous case.

In Ref. [7], Ban proves the conservation for the Shannon
entropy (1) by assuming Eqs. (12), (13), (15), and

EY
y

†(
ÊX

x

) = p(x|x̃(x; y))ÊX
x̃(x;y) (18)

for all x and y. The condition (18) is stronger than our condition
(14) since q(x; y) is, in general, different from p(x|x̃(x; y)).
In some examples discussed in the next section, we will
show that condition (18) together with the Shannon-entropy
conservation law (1) does not hold, whereas our condition for
the relative-entropy conservation law (8) does. This implies
that our condition can be applicable to a wider range of
quantum measurements. Furthermore, for the case in which
X is a projection-valued measure and labels x and y are both
discrete, we can show that condition (18) is equivalent to the
condition that the postmeasurement state is one of eigenstates
of X if the premeasurement state is also one of them (see
Appendix A for detail).

Now, we consider the case in which the reference POVM
is a projection-valued measure (PVM) ÊX

x which satisfies the
following orthonormal completeness condition:

ÊX
x ÊX

x ′ = δx,x ′ÊX
x ,

∑
x∈�X

ÊX
x = Î for discrete x; (19)

ÊX
x ÊX

x ′ = δ(x − x ′)ÊX
x ,

∫
R

dxÊX
x = Î for continuous x,

(20)

where δx,x ′ is the Kronecker delta and δ(x − x ′) is the Dirac
delta function. If ÊX

x is written as |x〉〈x|, the X-relative entropy

Ddiag(ρ̂||σ̂ ) :=
⎧⎨
⎩

∑
x∈�X

〈x|ρ̂|x〉 ln
(

〈x|ρ̂|x〉
〈x|σ̂ |x〉

)
,∫

dx〈x|ρ̂|x〉 ln
(

〈x|ρ̂|x〉
〈x|σ̂ |x〉

)
is called the diagonal-relative entropy. For this reference PVM,
the condition for the relative-entropy conservation law is
relaxed as shown in the following theorem.
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Theorem 2. Let {EY
y }y∈�Y

be a density of an instrument

with respect to a reference measure μ0(dy) and ÊX
x be a PVM

with the completeness condition (19) or (20). Suppose that
X and Y satisfy the condition (14) in Theorem 1. Then there
exists a unique positive function p(y|x) satisfying Eqs. (12)
and (13). Furthermore, the relative-entropy conservation law
in Eq. (8) holds.

Proof. For simplicity, we only consider the case in which
the label x for the PVM is discrete. The following proof can
easily be generalized to continuous X by replacing the sum∑

x . . . with the integral
∫

dx . . . and the Kronecker delta δx,x ′

with the Dirac delta function δ(x − x ′).
The summation of Eq. (14) with respect to x gives

ÊY
y =

∑
x∈�X

q(x; y)ÊX
x̃(x;y)

=
∑

x ′∈�X

[ ∑
x∈�X

δx ′,x̃(x;y)q(x; y)

]
ÊX

x ′ . (21)

Therefore,

p(y|x) =
∑

x ′∈�X

δx,x̃(x ′;y)q(x ′; y) (22)

satisfies Eq. (12). The uniqueness and the normalization
condition (13) for p(y|x) follow from Eq. (21) and the
completeness condition (4) for ÊY

y noting that {ÊX
x }x∈�X

is
linearly independent.

Next, we show the relative-entropy conservation law (8).
From Theorem 1, it is sufficient to show the condition (15).
For an arbitrary function F (x) we have

∑
x∈�X

q(x; y)F (x̃(x; y)) =
∑

x ′∈�X

[ ∑
x∈�X

δx ′,x̃(x;y)q(x; y)

]
F (x ′)

=
∑
x∈�X

p(y|x)F (x),

where we used Eq. (22) in the second equality. Then, the
condition (15) holds. �

Next, we consider the case in which X is a discrete PVM
{ÊX

x }x∈�X
with the discrete complete orthonormal condition

(19) and Y is a discrete measurement on a sample space �Y

described by a set of CP maps {EX
y }y∈�Y

with the completeness
condition ∑

y∈�Y

EY
y

†
(Î ) = Î . (23)

In this case, we can show the equivalence between the
established condition (14) in Theorem 2 and the relative-
entropy conservation law (8).

Theorem 3. Let X be a discrete PVM {ÊX
x }x∈�X

with a
discrete complete orthonormal condition (19) and let Y be a
quantum measurement corresponding to a CP instrument on
a discrete sample space �Y described by a set of CP maps
{EX

y }y∈�Y
with the completeness condition (23). Then, the

following two conditions are equivalent:
(i) The condition (14) holds for all x and y.
(ii) The relative-entropy conservation law (8) or (9) holds

for arbitrary states ρ̂ and σ̂ .

To show the theorem, we need the following lemma.
Lemma 2. Let {ÊX}x∈�X

be a PVM with a discrete complete
orthonormal condition (19) and let {ÊZ

z }z∈�Z
be a discrete

POVM. Suppose that

D
(
pX

ρ̂

∣∣∣∣pX
σ̂

) = D
(
pZ

ρ̂

∣∣∣∣pZ
σ̂

)
(24)

holds for any states ρ̂ and σ̂ , where pX
ρ̂ (x) = tr[ρ̂ÊX

x ] and

pZ
ρ̂ (z) = tr[ρ̂ÊZ

z ]. Then, for each z ∈ �Z there exist a scalar
q(z) � 0 and x̃(z) ∈ �X such that

ÊZ
z = q(z)ÊX

x̃(z). (25)

Proof of Lemma 2. Let Ûx be an arbitrary operator such that
Û

†
x Ûx = ÛxÛ

†
x = ÊX

x , i.e., Ûx is an arbitrary unitary operator
on a closed subspace ÊX

x H, where H is the system’s Hilbert
space. Define a CP and trace-preserving map F by

F(ρ̂) :=
∑
x∈�X

Ûxρ̂Û †
x .

Since ÊxÛx ′ = ÊxÛx ′Û
†
x ′Ûx ′ = ÊxÊx ′Ûx ′ = δx,x ′Ûx ′ , we have

pX
ρ̂ (x) = pX

F(ρ̂)(x) for any state ρ̂. Therefore, from the assump-
tion (24) we have

D
(
pZ

ρ̂

∣∣∣∣pZ
F(ρ̂)

) = D
(
pX

ρ̂

∣∣∣∣pX
F(ρ̂)

) = 0,

and hence we obtain

pZ
ρ̂ (z) = pZ

F(ρ̂)(z)

for any ρ̂ and any z ∈ �Z , which is in the Heisenberg picture
represented as

ÊZ
z = F†(ÊZ

z

) =
∑
x∈�X

Û †
x Ê

Z
z Ûx. (26)

By taking Ûx as ÊX
x , we have

ÊZ
z =

∑
x∈�X

ÊX
x ÊZ

z ÊX
x . (27)

From Eqs. (26) and (27), an operator ÊX
x ÊZ

z ÊX
x on ÊX

x H
commutes with an arbitrary unitary Ûx on ÊX

x H, and therefore
ÊX

x ÊZ
z ÊX

x is proportional to the projection ÊX
x . Thus, we can

rewrite Eq. (27) as

ÊZ
z =

∑
x∈�X

κ(z|x)ÊX
x ,

where κ(z|x) is a non-negative scalar that satisfies the
normalization condition

∑
z∈�Z

κ(z|x) = 1. Let us define a
POVM {ÊXZ

xz }(x,z)∈�X×�Z
by

ÊXZ
xz := κ(z|x)ÊX

x ,

whose marginal POVMs are given by ÊX
x and ÊZ

z , respectively.
Since the probability distribution for ÊXZ

xz is given by

pXZ
ρ̂ (x,z) := tr

[
ρ̂ÊXZ

xz

] = κ(z|x)pX
ρ̂ (x), (28)

X is a sufficient statistic for a statistical model
{pXZ

ρ̂ (x,z)}ρ̂∈S(H), where S(H) is the set of all the density
operators on H. Thus, from the sufficiency of X and the
assumption (24), we have

D
(
pXZ

ρ̂

∣∣∣∣pXZ
σ̂

) = D
(
pX

ρ̂

∣∣∣∣pX
σ̂

) = D
(
pZ

ρ̂

∣∣∣∣pZ
σ̂

)
.
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Since a statistic that does not decrease the relative entropy
is a sufficient statistic [14], Z is a sufficient statistic for
{pXZ

ρ̂ (x,z)}ρ̂∈S(H). Therefore, there is a non-negative scalar
r(x|z) such that

pXZ
ρ̂ (x,z) = r(x|z)pZ

ρ̂ (z),

or equivalently in the Heisenberg picture

κ(z|x)ÊX
x = r(x|z)ÊZ

z . (29)

To prove (25), we have only to consider the case of ÊZ
z �= 0.

For such z ∈ �Z , there exists x ∈ �X such that κ(z|x)ÊX
x �= 0.

Thus, from Eq. (29) we have ÊZ
z = κ(z|x)

r(x|z) Ê
X
x and the condition

(25) holds. �
Proof of Theorem 3. (i) ⇒ (ii) is evident from Theorem 2.

Conversely, (i) readily follows from (ii) and Lemma 2 by
identifying ÊZ

z with EY
y

†
(ÊX

x ). �

III. EXAMPLES OF RELATIVE-ENTROPY
CONSERVATION LAW

In this section, we apply the general theorem obtained in
the previous section to some typical quantum measurements,
namely, a quantum nondemolition measurement, a measure-
ment on two-level sytems, a photon-counting measurement, a
quantum-counter model, homodyne and heterodyne measure-
ments.

A. Quantum nondemolition measurement

We first consider a quantum nondemolition (QND) mea-
surement [17–19] of a system’s PVM |x〉〈x|. In the QND
measurement, the X distribution of the system is not disturbed
by the measurement backaction. This condition is mathemati-
cally expressed as

pX
EY (ρ̂)(x) = pX

ρ̂ (x) (30)

for all ρ̂, where

EY =
∫

μ0(dy)EY
y

is the completely positive (CP) and trace-preserving map
which describes the state change of the system in the
measurement of Y in which the measurement outcome is
completely discarded. The QND condition in Eq. (30) is also
expressed in the Heisenberg representation as

EY †
(|x〉〈x|) = |x〉〈x|. (31)

Let M̂yz be the Kraus operator [10] of the CP map EY
y such

that

EY
y (ρ̂) =

∑
z

M̂yzρ̂M̂†
yz.

Then, Eq. (31) becomes∫
μ0(dy)

∑
z

M̂†
yz|x〉〈x|M̂yz = |x〉〈x|. (32)

Taking the diagonal element of Eq. (32) over the state |x ′〉 with
x �= x ′, we have∫

μ0(dy)
∑

z

|〈x|M̂yz|x ′〉|2 = 0.

Therefore, the Kraus operator M̂yz is diagonal in the x basis
and, from Eq. (12), it can be written as

M̂yz =

⎧⎪⎨
⎪⎩

∑
x

eiθ(x;y,z)
√

p(y,z|x)|x〉〈x|,∫
dx eiθ(x;y,z)

√
p(y,z|x)|x〉〈x|,

(33)

where p(y,z|x) satisfies

p(y|x) =
∑

z

p(y,z|x).

We take the reference PVM |x〉〈x|, and from Eq. (33) we have

EY
y

†
(|x〉〈x|) =

∑
z

M̂†
yz|x〉〈x|M̂yz = p(y|x)|x〉〈x|, (34)

which ensures the condition (14) with

x̃(x; y) = x,

q(x; y) = p(x|y).

Thus, from Theorem 2 the relative-entropy conservation law
(8) holds. In this case, Ban’s condition (18) and Shannon-
entropy conservation law in Eq. (1) also hold [7].

The relative-entropy conservation law in Eq. (8) in the
QND measurement can be understood in a classical manner
as follows. Let us consider a change in the x-distribution
function from pX

ρ̂ (x) to pX
ρ̂y

(x). In the QND measurement,
by using Eq. (34), the distribution of X for the conditional
postmeasurement state becomes

pX
ρ̂y

(x) = p(y|x)pX
ρ̂ (x)

pY
ρ̂ (y)

. (35)

Note that the commutativity of |x〉〈x| and M̂yz is essential in
deriving Eq. (35). Then, Eq. (35) can be interpreted as Bayes’
rule for the conditional probability of X under measurement
outcome of Y . Since the QND measurement does not disturb
the system observable X, the change in the X distribution of
the system is only the modification of observer’s knowledge
so as to be consistent with the obtained measurement outcome
of Y based on Bayes’ rule in Eq. (35). Bayes’ rule is also valid
in a classical setup in which the information about the system
X is conveyed from the classical measurement outcome Y

without disturbing X. Since we can derive the relative-entropy
conservation law in Eq. (8) from Bayes’ rule in Eq. (35), we
can conclude that the relative-entropy conservation law in both
classical and QND measurements is derived from the same
Bayes’ rule, or the modification of the observer’s knowledge.

The rest of this section is devoted to examples of demolition
measurements in which the reference POVM observable X is
disturbed by the measurement backaction, yet the relative-
entropy conservation law still holds.
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B. Measurements on two-level systems

We consider a two-level system corresponding to a two-
dimensional Hilbert space spanned by complete orthonormal
kets |0〉 and |1〉. As the reference PVM of the system, we take

ÊX
x = |x〉〈x| (x = 0,1). (36)

We consider a measurement Y described by the following
instrument:

EY
y (ρ̂) = φ̂y〈y|ρ̂|y〉 (y = 0,1), (37)

where φ̂y is an arbitrary state. From Eq. (37) we can show that

ÊY
y = |y〉〈y|,

EY
y

†
(|x〉〈x|) = 〈x|φ̂y |x〉|y〉〈y|

or

p(y|x) = δx,y, (38)

q(x; y) = 〈x|φ̂y |x〉, (39)

x̃(x; y) = y. (40)

Then, the conditions for Theorem 2 are satisfied and the
relative-entropy conservation law

D
(
pY

ρ̂

∣∣∣∣pY
σ̂

) = DX(ρ̂||σ̂ ) − Eρ̂[DX(ρ̂y ||σ̂y)]

= DX(ρ̂||σ̂ )

holds. The second equality follows from ρ̂y = σ̂y . On the other
hand, from Eqs. (38)–(40), Ban’s condition (18) does not hold
if the postmeasurement state φ̂y does not coincide with one of
eigenstates |x〉〈x|.

Let us examine the Shannon-entropy conservation law (1).
To make the discussion concrete, we assume φ̂y = Î /2. Then,
the Shannon entropy of X and the mutual information between
X and Y are evaluated to be

Iρ̂(X : Y ) = Hρ̂(X) = −
∑
x=0,1

〈x|ρ̂|x〉 ln〈x|ρ̂|x〉,

Hρ̂y
(X) = Hφ̂y

(X) = ln 2.

Thus,

Hρ̂(X) − Hρ̂y
(X) = Iρ̂(X : Y ) − ln 2 �= Iρ̂(X : Y ).

Therefore, the Shannon-entropy conservation law (1) does not
hold. In this measurement model, the measured information
of Y is maximal and any information is not contained in
the postmeasurement state. This fact is properly reflected in
the fact DX(ρ̂y ||σ̂y) = 0 if we consider the relative entropy,
while the Shannon entropy is nonzero if the postmeasurement
state is an eigenstate. This is the reason why the Shannon-
entropy conservation law (1) does not hold.

C. Photon-counting measurement

The photon-counting measurement described in Refs. [2–4]
measures the photon number in a closed cavity in a destructive
manner and continuously in time. The measurement process in
an infinitesimal time interval dt is described by the following

measurement operators:

M̂0(dt) = Î −
(
iω + γ

2

)
n̂ dt, (41)

M̂1(dt) =
√

γ dtâ, (42)

where ω is the angular frequency of the observed cavity photon
mode, γ > 0 is the coupling constant of the photon field
with the detector, â is the annihilation operator of the photon
field, and n̂ := â†â is the photon-number operator. The event
corresponding to the measurement operator in Eq. (41) is called
the no-count process in which there is no photocount, while
the event corresponding to Eq. (42) is called the one-count
process in which a photocount is registered. In the one-count
process, the postmeasurement wave function is multiplied by
the annihilation operator â which decreases the number of
photons in the cavity by one. Thus, this measurement is not a
QND measurement.

From the measurement operators for an infinitesimal time
interval in Eqs. (41) and (42), we can derive an effective
measurement operator for a finite-time interval [0,t) as follows
[cf. Eq. (29) in Ref. [3]]:

M̂m(t) =
√

(1 − e−γ t )m

m!
e−(iω+ γ

2 )t n̂âm, (43)

where m is the number of photocounts in the time interval
[0,t), which corresponds to the measurement outcome y in
Sec. II. The POVM for the measurement operator in Eq. (43)
can be written as

M̂†
m(t)M̂m(t) = p(m|n̂; t), (44)

where

p(m|n; t) =
(

n

m

)
(1 − e−γ t )me−γ t(n−m). (45)

Equation (44) shows that the measurement outcome m conveys
the information about the cavity photon number n̂. Especially
in the infinite-time limit t → ∞, the conditional probability
in Eq. (45) becomes δm,n, indicating that the number of counts
m conveys the complete information about the photon-number
distribution of the system. Then, we take the reference PVM
as the projection operator into the number state |n〉〈n|, with
n̂|n〉 = n|n〉 and the orthonormal condition 〈n|n′〉 = δn,n′ .
From the measurement operator in Eq. (43), we obtain

M̂†
m(t)|n〉〈n|M̂m(t) = q(n; m; t)|ñ(n; m)〉〈ñ(n; m)|, (46)

ñ(n; m) = n + m, (47)

q(n; m; t) = p(m|m + n; t). (48)

Equation (47) can be interpreted as the photon number of the
premeasurement state when the number of photocounts is m

and the photon number remaining in the postmeasurement state
is n. From Eqs. (46)–(48), the condition (14) for Theorem 2,
together with Ban’s condition (18), is satisfied and we have the
relative-entropy conservation relation for the photon-counting
measurement as

D(pρ̂(·; t)||pσ̂ (·; t)) = Ddiag(ρ̂||σ̂ ) − E[Ddiag(ρ̂m(t)||σ̂m(t))],
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where pρ̂(m; t) = tr[ρ̂M̂
†
m(t)M̂m(t)] is the probability distri-

bution of the number of photocounts m. We remark that the
Shannon-entropy conservation law in Eq. (1) also holds in this
measurement [5].

D. Quantum-counter model

A quantum-counter model [20,21] is a continuous-in-time
measurement on a single-mode photon field in which no-count
and one-count measurement operators for an infinitesimal time
interval dt are given by

M̂0(dt) = Î − γ

2
ââ†dt, M̂1(dt) =

√
γ dtâ†,

respectively. The effective measurement operator for a finite-
time interval [0,t] is known to be dependent only on the total
number m of counting events in the time interval and given
by [21]

M̂qc
m (t) =

√
(eγ t − 1)m

m!
e−γ tââ†/2(â†)m. (49)

The POVM for this measurement is then

Êqc
m (t) = M̂qc

m
†(t)M̂qc

m (t) = (eγ t − 1)m

m!
âme−γ tââ†

(â†)m

= pqc(m|n̂; t),

where

pqc(m|n; t) =
(

n + m

m

)
(eγ t − 1)me−γ t(n+m+1).

In this measurement model, we can show two kinds
of relative-entropy conservation laws corresponding to two
different system observables. As the first observable, we take
the PVM |n〉〈n|. Then, from Eq. (49), we have

M̂qc
m

†(t)|n〉〈n|M̂qc
m (t) = pqc(m|ñ(n; m); t)|ñ(n; m)〉〈ñ(n; m)|,

(50)

ñ(n; m) = n − m (51)

and the conditions for Theorem 2, together with Ban’s con-
dition (18), hold. Therefore the relative-entropy conservation
law

D
(
p

qc
ρ̂ (·; t)∣∣∣∣pqc

σ̂ (·; t)) = D
(
pN

ρ̂ ||pN
σ̂

) − Eρ̂

[
D

(
pN

ρ̂m(t)||pN
σ̂m(t)

)]
(52)

holds, where

p
qc
ρ̂ (m; t) = tr

[
ρ̂Êqc

m (t)
] =

∞∑
n=0

pqc(m|n; t)〈n|ρ̂|n〉,

pN
ρ̂ (n) = 〈n|ρ̂|n〉,

with ρ̂m(t) being the postmeasurement state when the mea-
surement outcome is m.

The second system’s POVM is given by

ÊX
x dx = pX(x|n̂)dx, pX(x|n) = e−xxn

n!
, (53)

where x is a real positive variable. The probability distribution
of X

pX
ρ̂ (x)dx = tr

[
ρ̂ÊX

x

]
dx

is known to be the distribution of limt→∞ m/eγ t , correspond-
ing to the total information obtained during the infinite-time
interval [21]. Equation (53) implies that X is obtained by
coarse graining n̂. It can be shown [21] that the distribution
pX

ρ̂ (x) determines the photon-number distribution by

〈n|ρ̂|n〉 = dn

dxn

[
expX

ρ̂ (x)
]∣∣∣∣

x=0

.

However, this just implies that the Markov mapping

pX
ρ̂ (x) =

∞∑
n=0

pX(x|n)pN
ρ̂ (n)

is injective and we cannot conclude that the information
contained in X and n̂ are the same as the following discussion
shows.

From Eqs. (49) and (53) we obtain

M̂qc
m

†(t)pX(x|n̂)M̂qc
m (t) = q(x; m)pX(x̃(x; m)|n̂), (54)

q(x; m) = e−γ tpqc(m|x̃(x; m)), (55)

pqc(m|x) = [(eγ t − 1)x]m

m!
exp[−(eγ t − 1)x],

(56)
x̃(x; m) = e−γ tx.

Here, pqc(m|x) satisfies
∑∞

m=0 pqc(m|x) = 1. Furthermore,
for an arbitrary function F (x),∫ ∞

0
dx q(x; m)F (x̃(x; m))

=
∫ ∞

0
d(e−γ tx)pqc(m|e−γ tx)F (e−γ tx)

=
∫ ∞

0
dx pqc(m|x)F (x). (57)

The POVM for the measurement outcome m can be written as

M̂qc
m

†(t)M̂qc
m (t) =

∫ ∞

0
dx M̂qc

m
†(t)pX(x|n̂)M̂qc

m (t)

=
∫ ∞

0
dx q(x; m)pX(x̃(x; m)|n̂)

=
∫ ∞

0
dx pqc(m|x)pX(x|n̂). (58)

From Eqs. (54), (57), and (58) and Theorem 1, the relative-
entropy conservation law

D
(
p

qc
ρ̂ (·; t)∣∣∣∣pqc

σ̂ (·; t)) = D
(
pX

ρ̂

∣∣∣∣pX
σ̂

) − Eρ̂

[
D

(
pX

ρ̂m(t)||pX
σ̂m(t)

)]
(59)

holds.
Let us consider the asymptotic behaviors of relative

entropies in the limit t → ∞. Since m/eγ t converges to X

in distribution, we have

D
(
p

qc
ρ̂ (·; t)∣∣∣∣pqc

σ̂ (·; t)) t→∞−−−→ D
(
pX

ρ̂

∣∣∣∣pX
σ̂

)
. (60)
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From Eqs. (52), (59) and (60) we obtain

Eρ̂

[
D

(
pN

ρ̂m(t)

∣∣∣∣pN
σ̂m(t)

)] t→∞−−−→ D
(
pN

ρ̂

∣∣∣∣pN
σ̂

) − D
(
pX

ρ̂

∣∣∣∣pX
σ̂

)
,

(61)

Eρ̂

[
D

(
pX

ρ̂m(t)

∣∣∣∣pX
σ̂m(t)

)] t→∞−−−→ 0. (62)

From the chain rule of relative entropy [16], the right-hand
side of Eq. (61) is evaluated to be∫ ∞

0
dx pX

ρ̂ (x)D
(
pN

ρ̂ (·|x)
∣∣∣∣pN

σ̂ (·|x)
)

� 0, (63)

where

pN
ρ̂ (n|x) = pX(x|n)pN

ρ̂ (n)

pX
ρ̂ (x)

(64)

is the photon-number distribution conditioned by X. The
equality in (63) holds if and only if the photon-number
distributions of ρ̂ and σ̂ coincide. This can be shown as follows.

If the equality in Eq. (63) holds, we have
D(pN

ρ̂ (·|x)||pN
σ̂ (·|x)) = 0 for almost all x � 0. Thus,

∀ n � 0, pN
ρ̂ (n|x) = pN

σ̂ (n|x) (65)

for almost all x > 0, and therefore we can take at least one
x > 0 satisfying Eq. (65). From Eqs. (64) and (65), we have

∀ n � 0,
〈n|ρ̂|n〉
pX

ρ̂ (x)
= 〈n|σ̂ |n〉

pX
σ̂ (x)

. (66)

Taking the summation of Eq. (66) over n, we have

pX
ρ̂ (x) = pX

σ̂ (x). (67)

From Eqs. (66) and (67), we finally obtain 〈n|ρ̂|n〉 =
〈n|σ̂ |n〉(∀ n � 0).

Since the right-hand side of Eq. (61) is the difference
between the information contents of n̂ and X, the above dis-
cussion shows that the measurement outcome m carries strictly
smaller information than that contained in the photon-number
distribution. Equation (61) also shows that the difference
of these information contents is obtained by a projection
measurement on the postmeasurement state.

From Eq. (55), Ban’s condition (18) does not hold for X.
The difference between the Shannon entropies of premeasure-
ment and postmeasurement states is given by

Hρ̂(X) − Eρ̂

[
Hρ̂m(t)(X)

]
= Hρ̂(X) +

∞∑
m=0

p
qc
ρ̂ (m)

∫ ∞

0
dx pX

ρ̂m(t)(x) ln pX
ρ̂m(t)(x)

= Hρ̂(X) +
∞∑

m=0

∫ ∞

0
dx e−γ tpqc(m|e−γ tx)pX

ρ̂ (e−γ tx)

× ln

[
e−γ tpqc(m|e−γ tx)pX

ρ̂ (e−γ tx)

p
qc
ρ̂ (m)

]

= −γ t + Iρ̂(X : qc) �= Iρ̂(X : qc), (68)

and the Shannon-entropy conservation law (1) does not hold.
The term −γ t in Eq. (68) comes from the Jacobian of the

variable transformation x → x̃(x; y) = e−γ tx and the strong
dependence of the Shannon entropy for a continuous variable
on the reference measure dx. On the other hand, if we take the
relative entropy, such dependence on the reference measure is
absent and we can analyze both of information conservations
of n̂ and X in a consistent manner.

E. Balanced homodyne measurement

The balanced homodyne measurement [22–24] measures
one of the quadrature amplitudes of a photon field â in
a destructive manner such that the system photon field
relaxes into a vacuum state |0〉. This measurement process is
implemented by mixing the signal photon field with a classical
local-oscillator field into two output modes via a 50%-50%
beam splitter and taking the difference of the photocurrents of
the two output signals. For later convenience, we define the
following quadrature amplitude operators:

X̂1 := â + â†
√

2
, X̂2 := â − â†

√
2i

.

The measurement operator in the interaction picture for an
infinitesimal time interval dt is given by

M̂(dξ (t); dt) = Î − γ

2
n̂ dt + √

γ â dξ (t), (69)

where γ is the strength of the coupling with the detector,
dξ (t) is a real stochastic variable corresponding to the output
homodyne current which satisfies the Itô rule

[dξ (t)]2 = dt. (70)

The reference measure μ0[ξ (. . .)] for the measurement out-
come is the Wiener measure in which infinitesimal increments
{dξ (s)}s∈[0,t) are independent Gaussian stochastic variables
with mean 0 and variance dt . From the measurement operator
in Eq. (69), the ensemble average of the outcome dξ (t) for the
system’s state ρ̂(t) at time t is given by

E[dξ (t)|ρ̂(t)] =
√

2γ 〈X̂1〉ρ̂(t), (71)

where 〈Â〉ρ̂ := tr[ρ̂Â]. Equation (71) indicates that dξ (t)
measures the quadrature amplitude of the system. The general
properties of the continuous quantum measurement with such
diffusive terms are investigated in Refs. [25,26].

The time evolution of the system prepared in a pure state
|ψ0〉 at t = 0 is given by the following stochastic Schrödinger
equation:

|ψ(t + dt)〉 = M̂(dξ (t); dt)|ψ(t)〉.
The solution is given by [23]

|ψ(t)〉 = M̂y(t)(t)|ψ0〉, (72)

where

M̂y(t)(t) = e− γ t

2 n̂ exp
[
y(t)â − 1

2 (1 − e−γ t )â2
]
, (73)

y(t) = √
γ

∫ t

0
e− γ s

2 dξ (s). (74)

Note that the â2 term should be included in the exponent on
the right-hand side of Eq. (73) to be consistent with the Itô
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rule given in Eq. (70). We also mention that the measurement
operator in Eq. (73) does not commute with the quadrature
amplitude operator X̂1 and therefore this measurement disturbs
X̂1. In the infinite-time limit t → ∞, the stochastic wave
function in Eq. (72) approaches the vacuum state |0〉 regardless
of the initial state, which also indicates the destructive nature
of the measurement.

As the reference PVM, we take the spectral measure
|x〉11〈x| of the quadrature amplitude operator X̂1, where |x〉1

satisfies

X̂1|x〉1 = x|x〉1, 1〈x|x ′〉1 = δ(x − x ′).

Then, the operator M̂
†
y(t)(t)|x〉11〈x|M̂y(t)(t) and the POVM

for the measurement outcome y(t) are evaluated to be (see
Appendix B for derivation)

M̂
†
y(t)(t)|x〉11〈x|M̂y(t)(t)

= q(x; y(t); t) |x̃(x; y(t); t)〉1 1〈x̃(x; y(t); t)|, (75)

q(x; y(t); t) = e−γ t/2p(y|x̃(x; y(t))), (76)

p(y|x) = 1√
2πe−γ t (1 − e−γ t )

× exp

[
− [y − √

2(1 − e−γ t )x]2

2e−γ t (1 − e−γ t )

]
, (77)

x̃(x; y(t); t) = e− γ t

2 x + y(t)√
2

, (78)

μ0(dy)M̂†
y(t)M̂y(t) = dy p(y|X̂1), (79)

where the arguments of x̃(x; y) in Eq. (78) are the the
measurement outcome [y(t)/

√
2 on the right-hand side] and

the remaining signal of the system (e− γ t

2 x on the right-hand
side), in which the exponential decay factor describes the
system’s relaxation to the vacuum state and the loss of the
initial information contained in the system. The POVM in
Eq. (79) shows that the measurement outcome y(t) contains
unsharp information about the quadrature amplitude X̂1 and
that in the infinite-time limit t → ∞ the measurement reduces
to the sharp measurement of

√
2X̂1.

Equation (75) indicates that the condition (14) for
Theorem 2 is satisfied, and we obtain the relative-entropy
conservation law

D
(
pY

ρ̂ (·; t)∣∣∣∣pY
σ̂ (·; t)) = DX1 (ρ̂||σ̂ )

−Eρ̂

[
DX1 (ρ̂y(t)(t)||σ̂y(t)(t))

]
,

where

pY
ρ̂ (y; t)dy = tr[ρ̂M̂y(t)†M̂y(t)]μ0(dy)

is the probability distribution function of the measurement
outcome y(t) which is computed from the POVM in Eq.
(79), ρ̂y(t)(t) and σ̂y(t)(t) are the conditional density operators
for given measurement outcome y(t), and DX1 (ρ̂||σ̂ ) is the
diagonal relative entropy of the quadrature amplitude operator
X̂1.

On the other hand, from Eq. (76) Ban’s condition (18) does
not hold. The difference between the Shannon entropies is

evaluated to be

Hρ̂(X) − Eρ̂

[
Hρ̂y

(X)
]

= Hρ̂(X) +
∫

dx dy e−γ t/2p(y|x̃(x; y))pX
ρ̂ (x̃(x; y))

× ln

[
e−γ t/2p(y|x̃(x; y))pX

ρ̂ (x̃(x; y))

pY
ρ̂ (y)

]

= −γ t

2
+ Iρ̂(X : Y ) �= Iρ̂(X : Y ), (80)

and Shannon-entropy conservation law does not hold. The
term −γ t/2 in Eq. (80) again arises from the nonunit Jacobian
of the transformation x → x̃(x; y) as in Eq. (68).

F. Heterodyne measurement

The heterodyne measurement simultaneously measures the
two noncommuting quadrature amplitudes X̂1 and X̂2 in a
destructive manner as in the homodyne measurement. One
way of implementation is to take a large detuning of the local
oscillator in the balanced homodyne setup. Then, the cosine
and sine components of the homodyne current give the two
quadrature amplitudes [24].

The measurement operator for the heterodyne measurement
in an infinitesimal time interval dt is given by

M̂(dζ (t); dt) = Î − γ

2
n̂ dt + √

γ â dζ (t), (81)

where dζ (t) is a complex variable obeying the complex Itô
rules

[dζ (t)]2 = [dζ ∗(t)]2 = 0, dζ (t)dζ ∗(t) = dt. (82)

As in the homodyne measurement, we consider the time
evolution in the interaction picture. The reference measure μ0

for the measurement outcome ζ (. . .) is the complex Wiener
measure in which real and imaginary parts of dζ (. . .) are
statistically independent Gaussian variables with zero mean
and second-order moments consistent with the complex Itô
rules in Eq. (82).

The stochastic evolution of the wave function is described
by the following stochastic Schrödinger equation:

|ψ(t + dt)〉 = M̂(dt ; dζ (t))|ψ(t)〉. (83)

The solution of Eq. (83) for the initial condition |ψ0〉 at t = 0
is given by [23]

|ψ̃(t)〉 = M̂y(t)(t)|ψ0〉,
where

M̂y(t)(t) = e− γ t

2 n̂ey(t)â , (84)

y(t) = √
γ

∫ t

0
e− γ s

2 dζ (s). (85)

Here, the measurement operator in Eq. (84) does not involve
the â2 term unlike the case of the homodyne measurement in
Eq. (73) because [dζ (t)]2 vanishes in this case.
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Let us evaluate the POVM for the measurement outcome
y(t) in Eq. (85). From Eq. (84), we have

M̂
†
y(t)(t)M̂y(t)(t) = A {exp[γ t − (eγ t − 1)ââ†

+ eγ t [y(t)â + y∗(t)â†] − eγ t |y(t)|2]},
(86)

where A {f (â,â†)} denotes the antinormal ordering in which
the annihilation operators are placed to the left of the creation
operators. To obtain the proper POVM for the measurement
outcome y(t), we have to multiply the operator M̂

†
y(t)(t)M̂y(t)(t)

by the measure μ0[dy(t)] which is the measure for the
reference complex Wiener measure. In the complex Wiener
measure, the variable y(t) in Eq. (85) is a Gaussian variable
with zero mean and the second-order moments

E0[y2(t)] = 0, E0[|y(t)|2] = 1 − e−γ t .

Thus, the reference measure μ0[dy(t)] is given by

μ0[dy(t)] = e
− |y(t)|2

1−e−γ t

π (1 − e−γ t )
d2y(t), (87)

where d2y = d(Rey)d(Imy). From Eqs. (86) and (87), the
POVM for y(t) is given by

d2y(t)A {p(y(t)|â,â†; t)},
where

p(y(t)|α,α∗; t) =
exp

[−|y(t)−(1−e−γ t )α∗|2

e−γ t (1−e−γ t )

]
πe−γ t (1 − e−γ t )

. (88)

The probability distribution of the outcome y(t) when the
system is prepared in ρ̂0 at t = 0 is given by

pY
ρ̂0

(y; t) =
∫

d2α p(y(t)|α,α∗; t)Qρ̂0 (α,α∗), (89)

where Qρ̂(α,α∗) := 〈α|ρ̂|α〉/π is the Q function [27,28], and
|α〉 is a coherent state [29] defined by

|α〉 = eαâ†−α∗â|0〉 = e− |α|2
2

∞∑
n=0

αn

√
n!

|n〉.

From Eq. (88), in the infinite-time limit t → ∞, the probability
distribution of outcomes in Eq. (89) reduces to Qρ̂0 (y∗,y).
Thus, the heterodyne measurement actually measures the
noncommuting quadrature amplitudes simultaneously in the
sense that the probability distribution of outcomes is the Q

function of the initial state [30].
As a reference POVM, we take

d2αÊα = d2α

π
|α〉〈α| (90)

which generates the Q function of the density operator. From
Eqs. (84) and (90) we have

μ0(dy)M̂†
y(t)ÊαM̂y(t) = d2y(t)q(α,α∗; y)Êα̃(α,y), (91)

where

α̃(α,y) = e− γ t

2 α + y∗, (92)

q(α,α∗; y) = e−γ tp(y|α̃(α; y),α̃∗(α; y)). (93)

Note that the inferred quadrature amplitude in Eq. (92) allows
a similar interpretation given in the homodyne analysis.

Equation (91) ensures the condition in Eq. (14). From
Eqs. (88), (92), and (93), for an arbitrary smooth function
F (α,α∗), we have∫

d2α q(α,α∗; y)F (α̃(α; y),α̃∗(α; y))

=
∫

d2α̃
(
e

γ t

2
)2

q
(
e

γ t

2 (α̃ + y∗),e
γ t

2 (α̃∗ + y); y
)
F (α̃,α̃∗)

=
∫

d2αp(y|α,α∗; t)F (α,α∗).

Thus, the condition (15) for Theorem 1 is satisfied and the
relative-entropy conservation law

D
(
P Y

ρ̂0
(·; t)∣∣∣∣P Y

σ̂0
(·; t)) = DQ(ρ̂0||σ̂0) − Eρ̂0 [DQ(ρ̂y(t)||σ̂y(t))]

holds, where ρ̂y(t) and σ̂y(t) are the conditional density
operators for a given measurement outcome y(t) and DQ(ρ̂||σ̂ )
is the Q-function relative entropy defined as

DQ(ρ̂||σ̂ ) =
∫

d2α Qρ̂(α,α∗) ln

[
Qρ̂(α,α∗)

Qσ̂ (α,α∗)

]
. (94)

Since the Q function has the complete quantum information
about the quantum state, the Q-function relative entropy in
Eq. (94) vanishes if and only if ρ̂ = σ̂ , which is not the case
in the diagonal relative entropies in the preceding examples.
Still, the Q-function relative entropy is bounded from above
by the quantum relative entropy S(ρ̂||σ̂ ) := tr[ρ̂(ln ρ̂ − ln σ̂ )],
for the relative entropy of probability distributions on the
measurement outcome of a POVM is always smaller than the
quantum relative entropy [31].

Equation (93) implies the violation of Ban’s condition (18).
The difference of the Shannon entropies is given by

Hρ̂(Q) − Eρ̂

[
Hρ̂y

(Q)
]

= Hρ̂(Q) +
∫

d2α d2y e−γ tp(y|α̃(α; y))Qρ̂(α̃(α; y))

× ln

[
e−γ tp(y|α̃(α; y))Qρ̂(α̃(α; y))

pY
ρ̂ (y)

]

= −γ t + Iρ̂(Q : Y ) �= Iρ̂(Q : Y ) (95)

and the Shannon-entropy conservation does not hold. Again,
the the term −γ t in Eq. (95) originates from the nonunite
Jacobian of the transformation x → x̃(x; y).

IV. SUMMARY

In this paper, we have examined the information flow in
a general quantum measurement process Y concerning the
relative entropy of the two quantum states with respect to a
system’s POVM X of the system. By assuming the classicality
condition on X and Y , we have proved the relative-entropy
conservation law when X is a general POVM (Theorem 1)
and when X is a PVM (Theorem 2). The classicality condition
can be interpreted as the existence of a sufficient statistic in
a joint successive measurement of Y followed by X such that
the distribution of the statistic coincides with that of X for
the premeasurement state. This condition may be interpreted
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as a classicality condition because there exists a classical
statistical model which generates all the relevant probability
distributions of X and Y . We have also investigated the case
in which the labels of the PVM X and the measurement
outcome of Y are both discrete and we have shown the
equivalence between the classicality condition in Theorem 2
and the relative-entropy conservation law for arbitrary states
(Theorem 3). We have applied the general theorems to some
typical quantum measurements. In the QND measurement,
the relative-entropy conservation law can be understood as a
result of the classical Bayes’ rule which is a mathematical
expression of the modification of our knowledge based on
the outcome of the measurement. In the destructive sharp
measurement of two-level systems, Ban’s condition together
with the Shannon-entropy conservation law does not hold,
while our relative-entropy conservation law does. The next
examples, namely, photon counting, quantum counter, bal-
anced homodyne and heterodyne measurements, are non-
QND measurements on a single-mode photon field and the
measurement outcomes convey information about the photon
number, part of the photon number, one and both quadrature
amplitude(s), respectively. In spite of the destructive nature
of the measurements, the classicality condition is still satisfied
and we have shown that the relative-entropy conservation laws
hold for these measurements. In the quantum-counter model,
we can take two kinds of POVMs of the system satisfying
the two relative-entropy conservation laws. In the heterodyne
measurement X is the POVM which generates the Q function
and is not an ordinary PVM, reflecting the fact that the
noncommuting observables are measured simultaneously. In
the examples of quantum counter, homodyne and heterodyne
measurements, the Shannon-entropy conservation laws do
not hold due to the nonunit Jacobian of the transformation
x → x̃(x; y). These examples of nonconserving Shannon
entropies suggest that our approach to the information transfer
of the system observable is applicable to a wider range of
measurement models than that based on the Shannon entropy.
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APPENDIX A: EQUIVALENT CONDITIONS FOR (18)
WHEN X AND Y ARE DISCRETE

In this appendix, we characterize the condition (18) required
by Ban when the reference POVM X is a discrete PVM and
the measurement Y is also discrete. In this case, the condition
(18) is equivalent to the condition that if a premeasurement
state is an eigenstate of X, then the postmeasurement state is
another eigenstate of X as shown in the following theorem.

Theorem 4. Let EY
y be a CP instrument with discrete

measurement outcome y and ÊX
x = |x〉〈x| satisfying the

assumption (14) of Theorem 2. Then, the following conditions
are equivalent:

(1) Ban’s condition (18) holds, i.e., q(x; y) =
p(y|x̃(x; y)).

(2) For all x and y such that p(y|x) �= 0,

∑
x ′

δx,x̃(x ′;y) = 1. (A1)

(3) For all x and y such that p(y|x) �= 0, there exists a
unique x ′ such that x = x̃(x ′; y).

(4) The postmeasurement state is an eigenstate of X if the
premeasurement state is an eigenstate. Namely, for all x and
y, there exist functions x̄(x; y) and r(x; y) � 0 such that

EY
y (|x〉〈x|) = r(x; y)|x̄(x; y)〉〈x̄(x; y)|. (A2)

Before proving this theorem, we make a comment on the
arbitrariness of the definition of x̃(x; y) when q(x; y) = 0.
In this case, x̃(x; y) may take any value and we define it as ∅,
which is out of the range of label space of X. We also define
p(y|∅) = 0 for any y.

Proof. 1 ⇒ 2: We first note that p(y|x) in this case is
given by Eq. (22). By substituting q(x ′; y) = p(y|x̃(x ′; y)) into
Eq. (22), we obtain

p(y|x) =
∑
x ′

δx,x̃(x ′;y)p(y|x̃(x ′; y)) =
(∑

x ′
δx,x̃(x ′;y)

)
p(y|x).

Therefore, Eq. (A1) holds whenever p(y|x) �= 0.

The condition 3 immediately follows from 2 by noting the
definition of the Kronecker’s delta.

3 ⇒ 4: From Eq. (2),

p(y|x) = tr
[|x〉〈x|EY

y

†
(Î )

] = tr
[
EY

y (|x〉〈x|)]. (A3)

If p(y|x) = 0, from Eq. (A3) and the positivity of EY
y (|x〉〈x|),

EY
y (|x〉〈x|) = 0 and the condition 4 hold. Let us consider the

case in which p(y|x) �= 0. Since EY
y

†
is a CP map, it has the

following Kraus representation [10]:

EY
y

†
(Â) =

∑
z

M̂†
yzÂM̂yz. (A4)

From Eq. (14), we have

∑
z

M̂†
yz|x〉〈x|M̂yz = q(x; y)|x̃(x; y)〉〈x̃(x; y)|.

Therefore, we can put

M̂†
yz|x〉 = a(x; y,z)|x̃(x; y)〉, (A5)

where ∑
z

|a(x; y,z)|2 = q(x; y). (A6)
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From Eqs. (A4) and (A5) we obtain

EY
y

†
(|x ′′〉〈x ′|) =

∑
z

M̂†
yz|x ′′〉〈x ′|M̂yz

=
[∑

z

a(x ′′; y,z)a∗(x ′; y,z)

]

× |x̃(x ′′; y)〉〈x̃(x ′; y)|. (A7)

The matrix element of EY
y (|x〉〈x|) is evaluated as

〈x ′|EY
y (|x〉〈x|)|x ′′〉 = tr

[
EY

y (|x〉〈x|)|x ′′〉〈x ′|]
= tr

[|x〉〈x|EY
y

†
(|x ′′〉〈x ′|)]

=
[∑

z

a(x ′′; y,z)a∗(x ′; y,z)

]

× δx,x̃(x ′′;y)δx,x̃(x ′;y), (A8)

where we used Eq. (A7) in the last equality. From the
condition 3, there exists a unique x ′ such that x = x̃(x ′; y)
and we write this x ′ as x̄(x; y). Then, Eq. (A8) becomes[∑

z

|a(x ′; y,z)|2
]

δx ′,x̄(x;y)δx ′′,x̄(x;y)

= q(x ′; y)δx ′,x̄(x;y)δx ′′,x̄(x;y), (A9)

where we used Eq. (A6). Equation (A9) implies

EY
y (|x〉〈x|) = q(x̄(x; y); y)|x̄(x; y)〉〈x̄(x; y)|,

which is nothing but the condition 4.
4 ⇒ 1 : From

ÊY
y = EY

y

†
(Î ) =

∑
x

p(y|x)|x〉〈x|

and Eq. (A2), we have

p(y|x) = tr
[|x〉〈x|EY

y

†
(Î )

] = tr
[
EY

y (|x〉〈x|)]x = r(x; y).
(A10)

From Eqs. (14), (A2), and (A10), we obtain

q(x; y) = tr
[|x̃(x; y)〉〈x̃(x; y)|EY

y

†
(|x〉〈x|)]

= tr
[
EY

y [|x̃(x; y)〉〈x̃(x; y)|]|x〉〈x|]
= p(y|x̃(x; y))δx,x̄(x̃(x;y);y). (A11)

When q(x; y) �= 0, Eq. (A11) implies q(x; y) = p(y|x̃(x; y)).
If q(x; y) = 0, x̃(x; y) = ∅ and p(y|∅) = q(x; y) = 0 from
the remark above the present proof. Thus, the condition (18)
holds. �

We briefly remark on the case when the PVM |x〉〈x| is
continuous with the complete orthonormal condition (20).
Under the same assumptions of Theorem 4, we can show that
Ban’s condition (18) implies∫

dx ′δ[x − x̃(x ′; y)] = 1 (A12)

for any x and y such that p(y|x) �= 0. The proof of Eq. (A12) is
formally as the same as that of 1 ⇒ 2 in Theorem 4. However,
the formal correspondence between continuous and discrete X

fails when we consider the other part of the proof of Theorem 4.
For example, we cannot conclude from Eq. (A12) the existence
and uniqueness of x ′ such that x̃(x ′; y) = x. For simplicity, let
us assume the uniqueness of x ′ holds. Still, the condition (A12)
is very restrictive since it implies∣∣∣∣∂x̃(x ′; y)

∂x ′

∣∣∣∣ = 1,

i.e., the Jacobian of the transformation x → x̃(x; y) should be
1. This reflects the strong dependence of the Shannon entropy
on the reference measure, which is not the case in the relative
entropy.

APPENDIX B: DERIVATIONS OF EQS. (75) AND (79)

To evaluate the operator M̂
†
y(t)(t)|x〉11〈x|M̂y(t)(t), we utilize

the technique of normal ordering. We first note that the
normally ordered expression : O(â,â†) : of an operator Ô,
in which the annihilation operators are placed to the right of
the creation operators, is given by a coherent-state expectation
as

O(α,α∗) = 〈α|Ô|α〉.
Since the coherent state |α〉 in the |x〉1 representation is given
by

1〈x|α〉 = π−1/4 exp
[− 1

2 (x −
√

2α)2 − 1
2 (α2 + |α|2)

]
,

we have

〈α|x〉11〈x|α〉 = π−1/2 exp

[
−

(
x − α + α∗

√
2

)2
]

,

which implies the following normally ordered expression:

|x〉11〈x| = π−1/2 : exp

[
−

(
x − â + â†

√
2

)2
]

: . (B1)

By using Eq. (B1) and the formula

e−λn̂|α〉 = e− |α|2
2 (1−e−2λ)|e−λα〉,

which is valid for real λ, the expectation of the operator
M̂

†
y(t)|x〉11〈x|M̂y(t) over the coherent state |α〉 is evaluated

to be

〈α|M̂†
y(t)(t)|x〉11〈x|M̂y(t)(t)|α〉

= π−1/2 exp

{
−

[
e− γ t

2 x + y(t)√
2

− α + α∗
√

2

]2

+
[
e− γ t

2 x + y(t)√
2

]2

− x2

}
. (B2)

Substituting Eq. (B1) in Eq. (B2), we obtain Eq. (75). By
integrating Eq. (75) with respect to x and noting a relation

f (X̂1) =
∫

dx f (x)|x〉11〈x|,
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which is valid for an arbitrary function f (x), we obtain

M̂y(t)†M̂y(t) = exp

[
γ t

2
+ X̂2

1 − eγ t

(
X̂1 − y√

2

)2
]

.

(B3)

To evaluate the proper POVM for the outcome y, we need
to multiply M̂

†
y(t)M̂y(t) by μ0[dy(t)], where μ0[dy(t)] is

the probability measure of y(t), provided that ξ (. . .) obeys
a Wiener distribution. Here, y(t) in Eq. (74) under a Wiener

measure μ0 is a Gaussian stochastic variable with the first and
second moments

E0[y(t)] = 0,

E0[y2(t)] = γ

∫ t

0
e−γ sds = 1 − e−γ t ,

where E0[. . .] denotes the expectation with respect to the
Wiener measure. Thus, μ0[dy(t)] is given by

dy√
2π (1 − e−γ t )

exp

[
− y2

2(1 − e−γ t )

]
. (B4)

Multiplying Eq. (B3) by Eq. (B4), we obtain Eq. (79).
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