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Charge asymmetry in the differential cross section of high-energy
bremsstrahlung in the field of a heavy atom
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The distinction between the charged particle and antiparticle differential cross sections of high-energy
bremsstrahlung in the electric field of a heavy atom is investigated. The consideration is based on the quasiclassical
approximation to the wave functions in the external field. The charge asymmetry (the ratio of the antisymmetric
and symmetric parts of the differential cross section) arises due to the account for the first quasiclassical correction
to the differential cross section. All evaluations are performed with the exact account of the atomic field. We
consider in detail the charge asymmetry for electrons and muons. For electrons, the nuclear size effect is not
important while for muons this effect should be taken into account. For the longitudinal polarization of the initial
charged particle, the account for the first quasiclassical correction to the differential cross section leads to the
asymmetry in the cross section with respect to the replacement ϕ → −ϕ, where ϕ is the azimuth angle between
the photon momentum and the momentum of the final charged particle.
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I. INTRODUCTION

The theoretical investigation of high-energy brems-
strahlung and high-energy particle-antiparticle photoproduc-
tion in the electric field of a heavy nucleus or atom has a
long history because of the importance of these processes
for various applications; for the latter process see reviews in
Refs. [1,2]. These processes should be taken into account when
considering electromagnetic showers in detectors, they also
give the significant part of the radiative corrections in many
cases. Therefore, it is necessary to know the cross sections of
these processes with high accuracy. In the Born approximation,
the cross sections of both processes have been obtained for
arbitrary energies of particles and for arbitrary atomic form
factors [3,4] (see also Ref. [5]). The Coulomb corrections
to the cross section, which are the difference between the
exact in the parameter η = Zα cross section and the Born
cross section, are very important (here Z is the atomic charge
number, α = e2 ≈ 1/137 is the fine-structure constant, e is the
electron charge, � = c = 1). There are formal expressions for
the Coulomb corrections to the cross sections exact in η and
energies of particles [6]. However, the numerical computations
based on these expressions become more and more difficult
when energies are increasing, and, for instance, the numerical
results for e+e− photoproduction have been obtained so far
only for the photon energy ω < 12.5 MeV [7].

At high energies of initial particles, the final particle
momenta usually have small angles with respect to the
incident direction. In this case typical angular momenta, which
provide the main contribution to the cross section, are large
(l ∼ E/� � 1, where E is energy and � is the momentum
transfer). This is why the quasiclassical approximation, based
on the account of large angular momenta contributions,
becomes applicable. In this approximation, the wave functions
and the Green’s functions of the Dirac equation in the external
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field have very simple forms, which drastically simplify their
use in specific calculations. The wave functions, obtained in the
leading quasiclassical approximation for the Coulomb field,
are the famous Furry-Sommerfeld-Maue wave functions [8,9]
(see also Ref. [5]). The quasiclassical Green’s function have
been derived in Ref. [10] for the case of a pure Coulomb
field, in Ref. [11] for an arbitrary spherically symmetric field,
in Ref. [12] for a localized field which generally possesses no
spherical symmetry, and in Ref. [13] for combined strong laser
and atomic fields.

In the leading quasiclassical approximation, the cross
sections for pair photoproduction and bremsstrahlung have
been obtained in Refs. [14–18]. The first quasiclassical
corrections to the spectra of both processes, as well as to
the total cross section of pair photoproduction, have been
obtained in Refs. [19–22]. Recently, the first quasiclassical
correction to the fully differential cross section was obtained
in Ref. [23] for e+e− pair photoproduction and in Ref. [24] for
μ+μ− pair photoproduction. As a result, the charge asymmetry
in these processes (the asymmetry of the cross section with
respect to permutation of particle and antiparticle momenta)
was predicted. This asymmetry is absent in the cross section
calculated in the Born approximation and also in the cross
section exact in the parameter η but calculated in the leading
quasiclassical approximation. Thus, the charge asymmetry
appears solely due to the quasiclassical corrections to the
Coulomb corrections. The difference between the atomic
field and the Coulomb field of a nucleus results in the
modification of the cross sections (effect os screening). The
influence of screening on the Coulomb corrections to e+e−
pair photoproduction is small for the differential cross section
and for the total cross section [15]. However, screening is
important for the Born term. The quantitative investigation
of the effect of screening on the Coulomb corrections to the
photoproduction cross section is performed in Ref. [19].

The influence of screening on the bremsstrahlung cross
section in an atomic field is more complicated. It is shown in
Refs. [16,20] that the Coulomb corrections to the differential
cross section are very susceptible to screening. However, the
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Coulomb corrections to the cross section integrated over the
momentum of final charged particle (electron or muon) are
independent of screening in the leading approximation over
a small parameter 1/merscr , where rscr ∼ Z−1/3(meα)−1 is a
screening radius and me is the electron mass. The quantitative
investigation of the effect of screening on the Coulomb
corrections to the spectrum of bremsstrahlung is performed
in Ref. [20]. The differential cross section of bremsstrahlung,
calculated in the leading quasiclassical approximation, is the
same for e+ and e− (for μ+ and μ−). Therefore, to predict the
charge asymmetry (the difference between the bremsstrahlung
differential cross section for particles and antiparticles in the
atomic field), one should perform calculations in the next-to-
leading quasiclassical approximation. This is the main goal of
our paper. The result is obtained exactly in the parameter η.
Besides, for the case of muons the nuclear size effect is taken
into account.

The bremsstrahlung differential cross section from high-
energy charged particle in an atomic field, dσ ( p,q,k,η), can
be written as

dσ ( p,q,k,η) = dσs( p,q,k,η) + dσa( p,q,k,η),

dσs( p,q,k,η) = dσ ( p,q,k,η) + dσ ( p,q,k,−η)

2
,

dσa( p,q,k,η) = dσ ( p,q,k,η) − dσ ( p,q,k,−η)

2
, (1)

where k is the photon momentum, p and q are the initial and
final charged particle momenta, respectively. Evidently, the
bremsstrahlung differential cross section from high-energy
antiparticle can be obtained from dσ ( p,q,k,η) by the re-
placement η → −η, so that it is equal to dσs( p,q,k,η) −
dσa( p,q,k,η). In the leading quasiclassical approximation,
all dependence on η of the matrix element is contained in
the factor N0 [see Eq. (31)]. Since N0 → −N∗

0 at η → −η,
the cross section calculated in the leading quasiclassical
approximation, which is proportional to |N0|2, does not
reveal the charge asymmetry. Thus, the charge asymmetry
appears solely due to the first quasiclassical correction to
the matrix element. We show that the antisymmetric part of
the differential cross section, dσa( p,q,k,η), is independent of
screening in the kinematical region, which provides the main
contribution to the antisymmetric part of the spectrum.

The paper is organized as follows. In Sec. II we derive the
general expression for the quasiclassical matrix element of the
process. In Sec. III we find in the quasiclassical approximation
all structures of the Green’s function of the squared Dirac
equation for a charged particle in arbitrary localized potential
and the corresponding structures of the wave functions. We
obtain the leading terms and the first quasiclassical corrections
as well. Using these wave functions, we derive in Sec. IV
the matrix element of the process and the corresponding
differential cross section for arbitrary localized potential and
in the particular case of the pure Coulomb field. In Sec. V
we investigate in detail the charge asymmetry in high-energy
bremsstrahlung from electrons. In this case the nuclear size
effect is not important. In Sec. VI we investigate the charge
asymmetry in high-energy bremsstrahlung from muons, which
is sensitive to the deviation at small distances of the nuclear

atomic field from the pure Coulomb field. Finally, in Sec. VII
the main conclusions of the paper are presented.

II. GENERAL DISCUSSION

The differential cross section of bremsstrahlung in the
electric field of a heavy atom reads [5]

dσ = αωqεq

(2π )4
d
k d
q dω|M|2, (2)

where d
k and d
q are the solid angles corresponding to the
photon momentum k and the final charged particle momentum
q, ω = εp − εq is the photon energy, εp =

√
p2 + m2, εq =√

q2 + m2, and m is the particle mass. Below we assume that
εp � m and εq � m. The matrix element M reads

M =
∫

d r ū(−)
q (r) γ · e∗ u(+)

p (r) exp (−ik · r), (3)

where γ μ are the Dirac matrices, u
(+)
p (r) and u

(−)
q (r) are

the solutions of the Dirac equation in the external field, e
is the photon polarization vector. The superscripts (−) and
(+) remind us that the asymptotic forms of u

(−)
q (r) and

u
(+)
p (r) at large r contain, in addition to the plane wave, the

spherical convergent and divergent waves, respectively. The
wave functions u

(+)
p (r) and u

(−)
q (r) have the form [24]

ū(−)
q (r) = ūq[f0(r,q) − α · f 1(r,q) − � · f 2(r,q)],

u(+)
p (r) = [g0(r, p) − α · g1(r, p) − � · g2(r, p)]u p,

u p =
√

εp + m

2εp

(
φ

σ · p
εp + m

φ

)
,

uq =
√

εq + m

2εq

(
χ

σ · q
εq + m

χ

)
, (4)

where φ and χ are spinors, α = γ 0γ , � = γ 0γ 5γ , and σ are
the Pauli matrices. The following relations hold:

g0(r,q) = f0(r,−q), g1(r,q) = f 1(r,−q),

g2(r,q) = − f 2(r,−q). (5)

The wave functions in the atomic field can be found from the
Green’s function D(r2, r1|ε) of the squared Dirac equation in
this field using the relations [24]

exp ipr1

4πr1
u(+)

p (r2) = − lim
r1→∞ D(r2,r1|εp)u p, p = −pn1 ,

exp iqr2

4πr2
ū(−)

q (r1) = − lim
r2→∞ ūqD(r2,r1|εq), q = qn2,

(6)

where n1 = r1/r1, n2 = r2/r2, and

D(r2, r1|ε) = 〈r2| 1

P̂2 − m2 + i0
|r1〉

= 〈r2|{[ε − V (r)]2 + ∇2 − m2

+ iα · ∇V (r) + i0}−1|r1〉. (7)
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Here P̂ = γ μPμ,Pμ = [ε − V (r),i∇], and V (r) is the atomic
potential. It follows from Eq. (7) that the Green’s function
D(r2, r1|ε) can be written as

D(r2, r1|ε) = d0(r2,r1) + α · d1(r2,r1) + � · d2(r2,r1).

(8)

It is convenient to calculate the matrix element for definite
helicities of the particles. Let μp, μq , and λ be the signs of
the helicities of initial charged particle, final charged particle,
and photon, respectively. We fix the coordinate system so that
ν = k/ω is directed along z-axis and q lies in the xz plane
with qx > 0. Denoting helicities by the subscripts, we have

φμp
= 1 + μpσ · np

4 cos(θp/2)

(
1 + μp

1 − μp

)

≈ 1

4

(
1 + θ2

p

8

)
(1 + μpσ · np)

(
1 + μp

1 − μp

)
,

χμq
= 1 + μqσ · nq

4 cos(θq/2)

(
1 + μq

1 − μq

)

≈ 1

4

(
1 + θ2

q

8

)
(1 + μqσ · nq)

(
1 + μq

1 − μq

)
,

eλ = 1√
2

(ex + iλey), (9)

where θp and θq are the polar angles of the vectors p and
q, respectively. The unit vectors ex and ey are directed
along q⊥ and k × q, respectively, where the notation X⊥ =
X − (X · ν)ν for any vector X is used. We also introduce
the vectors θp = p⊥/p, θq = q⊥/q, and the matrix F =
u p μp

ūq μq
, which can be written as

F = 1

8

(
aμpμq

+ � · bμpμq

)
[γ 0(1 + PQ) + γ 0γ 5(P + Q)

+ (1 − PQ) − γ 5(P − Q)],

P = μpp

εp + m
, Q = μqq

εq + m
, (10)

where aμpμq
and bμpμq

are defined from

φμp
χ †

μq
= 1

2

(
aμpμq

+ σ · bμpμq

)
. (11)

We obtain from Eq. (9)

aμμ = 1 − θ2
pq

8
− iμ

4
ν · [θp × θq],

aμμ̄ = μ√
2

eμ · θpq,

bμμ =
{
μ

[
1 − 1

8
(θp + θq)2

]
+ i

4
ν · [θp × θq]

}
ν

+ μ

2
(θp + θq) + i

2
[θpq × ν],

bμμ̄ =
√

2eμ − 1√
2

(eμ,θp + θq)ν, eμ = 1√
2

(ex + iμey),

(12)

where θpq = θp − θq and μ̄ = −μ. The matrix element M ,
Eq. (3), can be written as follows

M =
∫

d r e−ik·r Tr{(f0 − α · f 1 − � · f 2)γ

· e∗
λ(g0 − α · g1 − � · g2)F}. (13)

Note that only the terms with (P + Q) and (1 + PQ) in F ,
Eq. (10), contribute to the matrix element (13) because it
contains the odd number of the γ matrices.

In the quasiclassical approximation the relative magnitude
of the functions f0, f 1,2, g0, and g1,2 is different, so that

f0 ∼ lcf1 ∼ l2
c f2, g0 ∼ lcg1 ∼ l2

c g2, d0 ∼ lcd1 ∼ l2
c d2,

(14)

where lc ∼ ε/� � 1 is the characteristic value of the angular
momentum in the process, � = q + k − p is the momentum
transfer. To find the distinction between the differential cross
section of bremsstrahlung from particles and antiparticles,
it is necessary to take into account the first quasiclassical
corrections to the functions f0, g0, f 1, and g1, while the
functions f 2 and g2 can be taken in the leading quasiclassical
approximation. Let us introduce the quantities

(A00, A01, A10, A02, A20)

=
∫

d r exp (−ik · r)(f0g0, f0 g1, f 1g0, f0 g2, f 2g0).

(15)

In terms of these quantities, the matrix element M has the form

M = δμpμq

[
δλμp

(e∗
λ, − θqA00 − 2A10 + 2μp A20)

+ δλμ̄p
(e∗

λ, − θpA00 + 2A01 + 2μp A02)
]

− mμp(p − q)√
2 pq

δμqμ̄p
δλμp

A00. (16)

Below we calculate all quantities in (16) for arbitrary atomic
potential V (r), which includes the effect of screening and the
nuclear size effect as well.

III. GREEN’S FUNCTIONS AND WAVE FUNCTIONS

Let us consider the case of arbitrary central localized
potential V (r). We expand the Green’s function D(r2, r1|ε),
Eq. (7), up to the second order with respect to the correction
α · ∇V (r):

D(r2, r1|ε) = 〈r2| 1

H − 1

H iα · ∇V (r)
1

H

+ 1

H iα · ∇V (r)
1

H iα · ∇V (r)
1

H |r1〉,

H = ε2 − m2 − 2εϕ(r) + ∇2 + i0,

ϕ(r) = V (r) − V 2(r)

2ε
. (17)

The function D(0)(r2, r1|ε) = 〈r2|H−1|r1〉 is the Green’s
function of the Klein-Gordon equation. This function was
found in the quasiclassical approximation with the first
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correction taken into account [12]:

D(0)(r2,r1| ε) = ieiκr

4π2r

∫
d Q exp

[
iQ2 − ir

∫ 1

0
dxV (Rx)

]{
1 + ir3

2κ

∫ 1

0
dx

∫ x

0
dy(x − y)∇⊥V (Rx) · ∇⊥V (Ry)

}
,

r = r2 − r1, Rx = r1 + xr + Q

√
2r1r2

κr
, κ =

√
ε2 − m2, (18)

where Q is a two-dimensional vector perpendicular to r and ∇⊥ is the component of the gradient perpendicular to r . Within the
same accuracy, D(0)(r2, r1|ε) coincides with the contribution d(r2, r1) to the Green’s function D(r2, r1|ε), Eq. (8).

Using this formula and Eqs. (4), (6), and (8), we obtain the function f0(r,q),

f0(r,q) = − i

π
e−iq·r

∫
d Q exp

[
iQ2 − i

∫ ∞

0
dxV (rx)

]{
1 + i

2εq

∫ ∞

0
dx

∫ x

0
dy(x − y)∇⊥V (rx) · ∇⊥V (ry)

}
,

rx = r + xnq + Q

√
2r

εq

, Q · nq = 0, (19)

where ∇⊥ is the component of the gradient perpendicular to
nq = q/q. Then we use the relation

i∇V (r) = 1

2ε
[ p,H] + i

2ε
∇V 2(r), (20)

and write the linear in ∇V (r) term in Eq. (17) as α · d1(r2,r1),
where

d1(r2,r1) = − i

2ε
(∇1 + ∇2)D(0)(r2,r1| ε) + δd1(r2,r1),

δd1(r2,r1) = −〈r2| 1

H
i

2ε
∇V 2(r)

1

H |r1〉. (21)

If we replace V (r) by V (r) + δV (r) in the operator H, where
δV (r) = −iα · ∇V 2(r)/(2ε)2, then we obtain from Eq. (18)

δd1(r2,r1) = − ieiκr

16π2ε2

∫
d Q exp

[
iQ2 − ir

∫ 1

0
dxV (Rx)

]

×
∫ 1

0
dx ∇V 2(Rx), (22)

where Rx is given in (18). Using Eqs. (4), (6), and (8), we find
the function f 1(r,q),

f 1(r,q) = 1

2ε
(i∇ − q)f0(r,q) + δ f 1(r,q),

δ f 1(r,q) = − i

4πε2
e−iq·r

∫
d Q exp

[
iQ2 − i

∫ ∞

0
dxV (rx)

]

×
∫ ∞

0
dx∇V 2(rx), (23)

where rx is given in Eq. (19).
To transform the third term in (17), we replace i∇V (r) by

1
2ε

[ p,H]. Then it follows from Eqs. (4), (6), and (8) that the
function d2(r2,r1) is

d2(r2,r1) = − i

(2ε)2
[∇2 × ∇1]D(0)(r2,r1| ε) + δd2(r2,r1),

δd2(r2,r1) = l21 〈r2| 1

H
V ′(r)

2εr

1

H |r1〉, (24)

where l21 = −(i/2)(r2 × ∇2 − r1 × ∇1) and V ′(r) =
∂V (r)/∂r . In (24) we use the relation [l,H] = 0. If we

replace V (r) by V (r) + δV (r) in the operator H, where
δV (r) = r−1V ′(r)/(2ε)2, then we obtain from Eq. (18)

δd2(r2,r1) = l21
eiκr

16π2ε2

∫
d Q

× exp

[
iQ2 − ir

∫ 1

0
dxV (Rx)

]

×
∫ 1

0
dx

V ′(Rx)

Rx

. (25)

Substituting this expression in (24), we finally find d2(r2,r1),

d2(r2,r1) = − reiκr

16π2ε2

∫
d Q exp

[
iQ2 − ir

∫ 1

0
dxV (Rx)

]

×
∫ 1

0
dx

∫ x

0
dy [∇V (Rx) × ∇V (Ry)]. (26)

The corresponding function f 2(r,q) is

f 2(r,q) = −e−iq·r

4πε2

∫
d Q exp

[
iQ2 − i

∫ ∞

0
dxV (rx)

]

×
∫ ∞

0
dx

∫ x

0
dy [∇V (rx) × ∇V (ry)]. (27)

For the Coulomb field Vc(r) = −η/r , we find from (19),
(23), and (27)

f0(r,q) = FA + (1 + nq · n)FC,

f 1(r,q) = (nq + n)ηFB,

f 2(r,q) = −i� · [nq × n]FC, (28)
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where

FA(r, q, η) = exp

(
πη

2
− iq · r

)
[�(1 − iη)F (iη,1, iz) + πη2ei π

4

2
√

2qr
�(1/2 − iη)F (1/2 + iη,1, iz)],

FB(r, q, η)=− i

2
exp

(
πη

2
−iq · r

)
[�(1−iη)F (1+iη, 2, iz) + πη2ei π

4

2
√

2qr
�(1/2 − iη)F (3/2 + iη, 2, iz)],

FC(r, q, η) = − exp

(
πη

2
− iq · r

)
πη2ei π

4

8
√

2qr
�(1/2 − iη)F (3/2 + iη,2, iz),

z = (1 + n · nq)qr, n = r
r
. (29)

Here �(x) is the Euler � function and F (α,β,x) is the confluent hypergeometric function. The results (28) and (29) are in
agreement with that obtained in [23].

IV. CALCULATION OF THE MATRIX ELEMENT

The calculation of the quantities A00, A01, A10, A02, and A20 (15) is performed in the same way as in Ref. [20]. We present
details of this very tricky calculation in the Appendix. We obtain

A00 = 1

ωm4

∫
d r exp[−i� · r − iχ (ρ)]

[
i2εpεqξpξq( p⊥ + q⊥) + m2(εpξp − εqξq)

∫ ∞

0
dx x ∇⊥V (r − xν)

]
· ∇⊥V (r),

A01 = εqξq

ωm2

∫
d r exp[−i� · r − iχ (ρ)]

[
i∇⊥V (r) + �

2εp

∫ ∞

0
dx x ∇⊥V (r − xν) · ∇⊥V (r) + i

2εp

∇⊥V 2(r)

]
,

A02 = − εqξq

2ωεpm2

∫
d r exp[−i� · r − iχ (ρ)]

∫ ∞

0
dx [∇V (r − xν) × ∇V (r)],

A10 = −A01(εq ↔ εp, ξq ↔ ξp), A20 = −A02(εq ↔ εp, ξq ↔ ξp),

χ (ρ) =
∫ ∞

−∞
V (z,ρ)dz, ξp = m2

m2 + p2
⊥

, ξq = m2

m2 + q2
⊥

. (30)

Substituting Eq. (30) in Eq. (16), we find the matrix element M ,

M = −δμpμq

(
εpδλμp

+ εqδλμ̄p

)
[N0(e∗

λ,ξp p⊥ − ξqq⊥) + N1(e∗
λ,εpξp p⊥ − εqξqq⊥)]

− 1√
2
mμpδμpμ̄q

δλμp
(εp − εq)[N0(ξp − ξq) + N1(εpξp − εqξq)],

N0 = 2i

ωm2�2
⊥

∫
d r exp [−i� · r − iχ (ρ)] �⊥ · ∇⊥V (r),

N1 = 1

ωm2εpεq

∫
d r exp [−i� · r − iχ (ρ)]

∫ ∞

0
dx x ∇⊥V (r − xν) · ∇⊥V (r). (31)

Note that in Eq. (16) the contributions of A02 and A20 cancel out the contributions of the terms with ∇⊥V 2(r) in A01 and A10

(30). The amplitude M is exact in the potential V (r). It contains the leading quasiclassical contribution and the first quasiclassical
correction as well. For high-energy bremsstrahlung from electrons in the field of a heavy atom, it is necessary to take into account
the effect of screening. For high-energy bremsstrahlung from muons it is necessary to take also into account the finite nuclear
radius R (nuclear size effect), because the muon Compton wavelength, λμ = 1/mμ = 1.87 fm, is smaller than R, R = 7.3 fm
for gold and R = 7.2 fm for lead, mμ is the muon mass.

From (31) we have:

∑
λ μq

|M|2 = S0 + S1 + S2, S0 = m2|N0|2
2

[
�2

m2

(
ε2
p + ε2

q

)
ξpξq − 2εpεq(ξp − ξq)2

]
,

S1 = m2ReN0N
∗
1

2

{
�2

m2

(
ε2
p + ε2

q

)
(εp + εq)ξpξq + [(

ε2
p + ε2

q

)
(εp − εq) − 4εpεq(εpξp − εqξq)

]
(ξp − ξq)

}
,

S2 = −μpImN0N
∗
1 ω2(εp + εq)ξpξq [ p⊥ × q⊥] · ν. (32)

The quantity S0 is the even function of η, it contributes to the symmetric term dσs( p,q,k,η) of the cross section (1). The quantity
S1 is the odd function of η, it contributes to the antisymmetric term dσa( p,q,k,η) of the cross section (1). The quantity S2 is the
even function of η, it contributes to the symmetric term dσs( p,q,k,η) of the cross section (1) which vanishes after averaging over
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the helicity μp of the initial electron. Note that the contribution of S2 to the cross section is responsible for the effect of asymmetry
with respect to the replacement ϕi → −ϕi , where ϕi are the azimuth angles of the final particles in the frame where the z axis
is directed along p. Such asymmetry is absent in the cross section calculated in the leading quasiclassical approximation. We
emphasize that the contributions S1 and S2 are nonzero due to accounting for the next-to-leading quasiclassical terms.

The coefficients N0 and N1 depend on the momenta p, q, and k via the momentum transfer �. Therefore, it is easy to find
from (2) and (32) the cross section dσ/dωd�⊥. A simple integration gives

dσs

dωd�⊥
= αωεqm

4

(2π )3εp

|N0|2�(ζ ),
dσa

dωd�⊥
= αωεq(εp + εq)m4

(2π )3εp

ReN0N
∗
1 �,

� = ln(ζ +
√

1 + ζ 2)

ζ
√

1 + ζ 2

(
ζ 2

ε2
p + ε2

q

εpεq

+ 1

)
− 1, ζ = �⊥

2m
. (33)

The function � has the following asymptotic forms:

� =
(

ε2
p + ε2

q

εpεq

− 2

3

)
ζ 2 at ζ � 1, � = ε2

p + ε2
q

εpεq

ln(2ζ ) − 1 at ζ � 1. (34)

V. CHARGE ASYMMETRY IN HIGH-ENERGY
BREMSSTRAHLUNG FROM ELECTRONS

As is known, the main contribution to the Coulomb cor-
rections to the symmetric part of the differential cross section
of bremsstrahlung is given by the region � ∼ max(r−1

scr ,�min)
[16,20], where �min = p − q − ω ≈ m2ω/2εqεp. However,
the main contribution to the charge asymmetry is given by
the region � � max(r−1

scr ,�min). In this region we can neglect
the effect of screening, replace V (r) by the Coulomb potential
Vc(r) = −η/r , and neglect also �‖ in comparison with �⊥. A
simple calculation gives for the coefficient N0 and N1 in (31):

N0 = 8πη(L�)2iη

ωm2�2

�(1 − iη)

�(1 + iη)
,

N1 = 2π2η2(L�)2iη

ωm2εpεq�

�(1/2 − iη)

�(1/2 + iη)
, (35)

where L ∼ min(εp/m2, rscr ). Note that the factor (L�)2iη is
irrelevant because it disappears in |M|2. Then we obtain for
the coefficients in S0, S1, and S2 (32):

|N0|2 =
(

8πη

ωm2�2

)2

, ReN0N
∗
1 = πReg(η)�

4εpεq

|N0|2,

ImN0N
∗
1 = π Img(η)�

4εpεq

|N0|2,

g(η) = η
�(1 − iη)�(1/2 + iη)

�(1 + iη)�(1/2 − iη)
. (36)

As it should, in the region � ∼ m there are no Coulomb correc-
tions to dσs( p,q,k,η) calculated in the leading quasiclassical
approximation. The Coulomb corrections to dσa( p,q,k,η) (the
term S1) and dσs( p,q,k,η) (the term S2) are accumulated in
the functions Reg(η) and Img(η), respectively. These functions
are shown in Fig. 1. At η � 1 we have Reg(η) ≈ η and
Img(η) ≈ −(4 ln 2)η2. It is seen from Fig. 1 that the functions
Reg(η) and Img(η) differ significantly from their small-η
asymptotic forms already at very small η.

At ω � εp, the ratio of the antisymmetric part of the cross
section to the symmetric one,

S1

S0
= π�Reg(η)

2εp

, (37)

increases with �/εp and can be more than ten percent. The
ration S2/S0 is small at ω � εp because it is suppressed by
the factor (ω/εp)2.

If | p⊥| � m and |q⊥| � m, then

S1

S0
= πReg(η)

2�
� · θqp,

S2

S0
= μp

πω(εp + εq)Img(η)

2
(
ε2
p + ε2

q

)
�

[� × θqp] · ν, (38)

where θqp = p⊥/p − q⊥/q. Thus, the azimuth asymmetry
increases with ω and may be important.

Let us discuss the cross section dσ/dωd�⊥ at � �
max(r−1

scr ,�min), Eq. (33):

dσs

dωd�⊥
= 8αη2εq

πωεp�4
⊥

�,

dσa

dωd�⊥
= πReg(η)(εp + εq)�

4εpεq

dσs

dωd�⊥
. (39)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

Η

g
Η

FIG. 1. The functions Reg(η) (solid curve) and −Img(η) (dashed
curve), Eq. (36).
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0 1 2 3 4 5
0

1

2

3

4

5

Ζ

A

FIG. 2. Dependence of A = σ−1
0 dσa/dωd�⊥ on ζ = �⊥/

2m, Eq. (39), for a few values of t = εq/εp; σ0 =
αη2Reg(η)/(2m2ωεp�⊥): t = 0.25 (solid curve), t = 0.5 (dashed
curve), and t = 0.75 (dotted curve).

In Fig. 2 we show the dependence of A = σ−1
0 dσa/dωd�⊥

on ζ = �⊥/2m for a few values of t = εq/εp; σ0 =
αη2Reg(η)/(2m2ωεp�⊥). This figure confirms our statement
that the main contribution to the antisymmetric part of the
cross section is given by the region � ∼ m.

Performing integration over �⊥ in (33), we obtain the
antisymmetric correction to the spectrum

dσa

dω
= απ3η2Reg(η)

4mωε2
p

[
2
ε2
p + ε2

q

εpεq

− 1

]
(εp + εq). (40)

This result coincides with the corresponding result of
Refs. [19,20].

In Fig. 3 we show the dependence of A1 = σ−1
1 dσa/dωdk⊥

on ζ1 = k⊥/m for a few values of t = εq/εp; σ1 =
αη2Reg(η)/(2m3ωεp). Here k⊥ is the component of k per-
pendicular to the vector p, k⊥ = −ω p⊥/p. The result is
obtained by numerical integration of the differential cross
section dσa( p,q,k,η) over dq⊥.

0 1 2 3 4
0

5

10

15

Ζ1

A 1

FIG. 3. Dependence of A1 = σ−1
1 dσa/dωdk⊥ on ζ1 = k⊥/m, for

a few values of t = εq/εp; σ1 = αη2Reg(η)/(2m3ωεp): t = 0.25
(solid curve), t = 0.5 (dashed curve), and t = 0.75 (dotted curve).

As is known (see, e.g., Ref. [5]), the cross section
dσbrem(ω,εp,k⊥)/dωdk⊥ of bremsstrahlung (εp is the initial
electron energy) can be obtained from the cross section
dσphoto(ω,εp,p⊥)/dεpd p⊥ of photoproduction (εp is the
positron energy) by the relation

dσbrem(ω,εp,k⊥)

dωdk⊥
= ε2

pdσphoto(−ω, − εp,p⊥)

ω2dεpd p⊥
, (41)

where p⊥ = pk⊥/ω. The antisymmetric part of dσphoto

(ω,εp,p⊥)/dεpd p⊥ was obtained in Ref. [23]. Using Fig. 2 in
that paper and Eq. (41), we find that our result shown in Fig. 3
is in agreement with the corresponding result in Ref. [23].

VI. CHARGE ASYMMETRY IN HIGH-ENERGY
BREMSSTRAHLUNG FROM MUONS

The charge asymmetry in the differential cross section of
high-energy μ+μ− photoproduction in the electric field of
a heavy atom was investigated in detail in Ref. [24]. The
deviation of the nuclear electric field from the Coulomb field
at small distances due to the finite nuclear radius R (nuclear
size effect) is crucially important for the charge asymmetry.
Though the Coulomb corrections to the total cross section are
negligibly small, it was shown in Ref. [24] that the charge
asymmetry is not negligible for selected final states of μ+
and μ−. In this section we study the charge asymmetry in the
differential cross section of high-energy bremsstrahlung from
muons in the field of a heavy atom.

We write the Fourier transformation VF (�2) of the potential
V (r) as

VF (�2) = −4πηF (�2)

�2
, (42)

where F (�2) is the form factor, which differs essentially from
unity at � � 1/R and Q � 1/rscr . Let us first discuss the
Coulomb corrections to the symmetric part of the cross section
calculated in the leading quasiclassical approximation. In this
case the cross section dσs depends on the parameters of the
field via the factor N0 (31). In the Born approximation

N0B = 2i

ωm2�2

∫
d r exp(−i� · r)� · ∇⊥V (r)

= −2VF (�2)

ωm2
. (43)

We define the Coulomb corrections N0 to the quantity |N0|2
as

N0 = |N0|2 − |N0B |2. (44)

The quantity N0 vanishes at r−1
scr � � � R−1 and has two

peaks: at � ∼ r−1
scr and at � ∼ R−1. The contributions of these

peaks to the integral
∫

�2N0d�⊥ are [20]∫
�2N0d�⊥ = ∓128π3η2f (η)

ω2m4
,

f (η) = Reψ(1 + iη) − ψ(1), (45)

where ψ(x) = d ln �(x)/dx, the negative contribution corre-
sponds to the peak at � ∼ r−1

scr , and the positive contribution
corresponds to the peak at � ∼ R−1. These two contributions
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FIG. 4. Dependence of G0 = |N0|2/|N0B |2 − 1 on β = �/� at
β � 1/(rscr�) and a few values of η; η = 0.34 (Ag, solid curve),
η = 0.6 (Pb, dashed curve), and η = 0.67 (U, dotted curve).

are the universal functions of η independent of the form of the
potential in the regions r ∼ rscr and r ∼ R, while the function
N0 is very sensitive to the form of the potential in these regions
[16,20]. Since m � R−1 for electrons, only the region r ∼ rscr

gives the Coulomb corrections to dσs/dω [16],

dσC

dω
= −4αη2f (η)

m2ω

(
t2 − 2

3
t + 1

)
, t = εq

εp

. (46)

For muons mμ � R−1, so that the sum of the contributions
from both peaks, � � 1/R and Q � 1/rscr , gives the total
Coulomb corrections to dσs/dω. As a result, the total Coulomb
corrections vanish, see Eq. (45). However, the Coulomb
corrections to the differential cross section at � ∼ R−1 are
large. To illustrate this statement, we consider the form factor
F (�2) in the form

F (�2) = �2

�2 + �2
, (47)

where � ∼ 60 MeV for heavy nuclei. This form is valid for
� � r−1

scr , where the factor N0 is given by

N0 = 8πη

ωm2�2

∫ ∞

0
dρ J1(ρ)

[
1 − ρ

β
K1

(
ρ

β

)]

× exp

{
−2iη

[
ln

ρ

2
+ K0

(
ρ

β

)]}
,

N0B = 8πη

ωm2�2(1 + β2)
, β = �

�
. (48)

Here Jn(x) is the Bessel function and Kn(x) is the modified
Bessel function of the second kind. In Fig. 4 we show the
dependence of G0 = |N0|2/|N0B |2 − 1 on β = �/� for a few
values of η.

Note that very narrow peak at � ∼ r−1
scr [δβ ∼ 1/(rscr�) �

1] is not shown in this figure. The dependence of the peak on
the shape of the atomic potential at � ∼ r−1

scr was investigated
in detail in Ref. [20]. It is seen from Fig. 4 that the Coulomb
corrections to |N0|2 are significant in the region �/� ∼ 1.

0 1 2 3 4 5 6
1.5

1.0

0.5

0.0

0.5

1.0

1.5

Β

G
1

FIG. 5. Dependence of G1 = �−1
R ReN0N

∗
1 /|N0|2 on β = �/�

(52), for a few values of η; η = 0.34 (Ag, solid curve), η = 0.6 (Pb,
dashed curve), and η = 0.67 (U, dotted curve).

Let us consider the factor N1 (31). In the lowest in η

approximation it reads

N1B = J (�)

ωm2εpεq

,

J (�) =
∫

ds
(2π )3

[VF (Q+)VF (Q−)

+ (�2 − 4s2
‖ )VF (Q+)V ′

F (Q−)],

Q± = (s ± �/2)2, s‖ = s · �/�, (49)

where V ′
F (Q) = ∂VF (Q)/∂Q, see Ref. [24]. For the form

factor (47), the explicit form of J (�) is given in Ref. [24]:

J (�) = 2π2η2

�
F(β), β = �

�
,

F(β) = 1 + 2

π
arcsin

β√
β2 + 4

− 4

π
arcsin

β√
β2 + 1

− 12β

π (β2 + 4)(β2 + 1)
. (50)

The exact in η factor N1 at � � r−1
scr is given by

N1 = 2π2η2

ωm2εpεq�

∫ ∞

0

∫ ∞

0
dxdρ F(βx/ρ) J0(ρ)J0(x)

× exp

{
−2iη

[
ln

ρ

2
+ K0

(
ρ

β

) ]}
. (51)

To demonstrate the influence of the nuclear size effect on the
ratios S1/S0 and S2/S0 (32), we plot in Figs. 5 and 6 the
quantities G1 and G2,

G1 = ReN0N
∗
1

|N0|2�R

, �R = πReg(η)�

4εpεq

,

G2 = ImN0N
∗
1

|N0|2�I

, �I = π Img(η)�

4εpεq

, (52)

as a function of β = �/�. For a pure Coulomb field G1 =
G2 = 1 (36).

It is seen that the quantities G1 and G2 decrease rapidly
with increasing β at β � 1.
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FIG. 6. Dependence of G2 = �−1
I ImN0N

∗
1 /|N0|2 on β = �/�

(52), for a few values of η; η = 0.34 (Ag, solid curve), η = 0.6 (Pb,
dashed curve), and η = 0.67 (U, dotted curve).

VII. CONCLUSION

We have investigated in detail the charge asymmetry in the
process of high-energy bremsstrahlung in the field of a heavy
atom. The charge asymmetry arises due to the account for the
first quasiclassical correction to the differential cross section
of the process. The results are exact in the parameters of the
atomic field and are valid even for η ∼ 1, they take into account
the effect of screening and the nuclear size effect. The latter is

important for high-energy bremsstrahlung from muons where
the charge asymmetry is very sensitive to the shape of the
nuclear form factor. It is shown that the Coulomb corrections
essentially modify the charge asymmetry as compared with
the leading in η result already for the relatively small η. In
the experimental region of interest, where εp � p⊥ � m and
εq � q⊥ � m but � � 1/R, the asymmetry can be as large
as a few tens of percent. For the longitudinal polarization of
the initial charged particle, due to the account for the first
quasiclassical correction, the differential cross section reveals
the asymmetry with respect to the replacement ϕ → −ϕ,
where ϕ is the azimuth angle between the photon momentum k
and the momentum q of the final charged particle in the frame
where the z axis is directed along p. Due to account for the first
quasiclassical correction, our results for the differential cross
section of high-energy bremsstrahlung have essentially higher
precision than the famous results in Ref. [16] and should be
taken into account in precision experiments and at data analysis
in detectors.
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APPENDIX

In this Appendix, following the method of Ref. [20], we derive the expression (30) for the quantity A00,

A00 =
∫

d r exp (−ik · r)f0g0, (A1)

where the function f0(r,q) is given in (19) and g0(r, p) = f0(r,− p). Other quantities in (30) are calculated in the same way. We
split the integration region into two, z > 0 and z < 0, and denote the corresponding contributions to A00 as A+

00 and A−
00. For

z > 0, the function f0 has a simple eikonal form

f0(r,q) = e−iq·r exp

[
−i

∫ ∞

0
dxV (r + xnq)

]
, (A2)

so that

A+
00 =

∫
z>0

d r
∫

d Q
iπ

exp

{
iQ2 − i� · r − i

∫ ∞

0
dx[V (rx) + V (r + xnq)]

}

×
[

1 + i

2εp

∫ ∞

0
dx

∫ x

0
dy(x − y)∇⊥V (rx) · ∇⊥V (ry)

]
, (A3)

where rx = r − xn p + Q
√

2r/p. Within our accuracy we can replace the quantity V (r + xnq) in (A3) by V (r + xnq +
Q

√
2r/p), shift ρ → ρ − Q

√
2r/p, and take the integral over Q. We obtain

A+
00 =

∫
z>0

d r exp

{
−i

z

2p
�2

⊥ − i� · r − i

∫ ∞

0
dx[V (r − xn p) + V (r + xnq)]

}

×
[

1 + i

2εp

∫ ∞

0
dx

∫ x

0
dy(x − y)∇⊥V (r − xn p) · ∇⊥V (r − yn p)

]
. (A4)
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In the same way, we obtain

A−
00 =

∫
z<0

d r exp

{
i

z

2q
�2

⊥ − i� · r − i

∫ ∞

0
dx[V (r − xn p) + V (r + xnq)]

}

×
[

1 + i

2εq

∫ ∞

0
dx

∫ x

0
dy(x − y)∇⊥V (r + xnq) · ∇⊥V (r + ynq)

]
. (A5)

There are two overlapping regions of the momentum transfer �:

I. � � mω

εp

II. � � �min = m2ω

2εpεq

. (A6)

In the first region, one can neglect the term proportional to �2
⊥ in the exponents in (A4) and (A5). Then the sum A00 = A+

00 + A−
00

reads

A00 =
∫

d r exp

{
−i� · r − i

∫ ∞

0
dx[V (r − xn p) + V (r + xnq)

}

×
[

1 + i

2εp

∫ ∞

0
dx

∫ x

0
dy(x − y)∇⊥V (r − xn p) · ∇⊥V (r − yn p)

+ i

2εq

∫ ∞

0
dx

∫ x

0
dy(x − y)∇⊥V (r + xnq) · ∇⊥V (r + ynq)

]
. (A7)

In the prefactor we make the replacement n p,nq → ν, and in the exponent we take into account the linear term of expansion in
n p − ν and nq − ν of the integral. Besides, in the arguments of the functions V (r + yν) and V (r − yν) we make the substitutions
z → z − y and z → z + y, respectively. After that we take the integral over y and obtain the contribution of the first region

A00 =
∫

d r exp[−i� · r − iχ (ρ)]∇⊥V (r) ·
[
i
θqp

�2
z

− ω

2�zεpεq

∫ ∞

0
dxx∇⊥V (r − xν)

]
,

χ (ρ) =
∫ ∞

−∞
V (z,ρ)dz, (A8)

where �z = ν · � and θqp = q⊥/q − p⊥/p.
Now we pass to the calculation of A00 in the second region (A6). In Eq. (A4) for A+

00, we make the replacement nq → np

and z�2
⊥/2p → (nq · n)�2

⊥/2p. The polar angle of n is small, and we can integrate in (A4) over the region nq · n > 0. After
the integration over z, we obtain

A+
00 = 1

� · np + �2
⊥/2p

∫
dρ exp[−i�⊥ · ρ − iχ (ρ)]

[
−i +

∫ ∞

−∞
dz

∫ ∞

0
dxx∇⊥V (r) · ∇⊥V (r − xnp)

]
. (A9)

The calculation of A−
00 is performed quite similarly. As a result we have

A−
00 = 1

−� · nq + �2
⊥/2q

∫
dρ exp[−i�⊥ · ρ − iχ (ρ)]

[
−i +

∫ ∞

−∞
dz

∫ ∞

0
dxx∇⊥V (r) · ∇⊥V (r − xnq)

]
. (A10)

Taking into account that

� · np + �2
⊥/2p = − m2ω

2εpεqξq

, − � · nq + �2
⊥/2q = m2ω

2εpεqξp

, ξp = m2

m2 + p2
⊥

, ξq = m2

m2 + q2
⊥

,

we obtain for A00 = A+
00 + A−

00 in the second region

A00 = 1

m4ω

∫
dρ exp[−i�⊥ · ρ − iχ (ρ)]

×
[

2iεpεqξpξq( p⊥ + q⊥) · ∇⊥χ (ρ) + m2(εpξp − εqξq)
∫ ∞

−∞
dz

∫ ∞

0
dxx∇⊥V (r − xν) · ∇⊥V (r)

]
. (A11)

Now we can compare (A11) and (A8) and write the expression for A00, which is valid in all region of �. We finally arrive at the
following result:

A00 = 1

m4ω

∫
d r exp[−i� · r − iχ (ρ)]

[
2iεpεqξpξq( p⊥ + q⊥) + m2(εpξp − εqξq)

∫ ∞

0
dxx∇⊥V (r − xν)

]
· ∇⊥V (r).

(A12)
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