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Engineering of a quantum state by time-dependent decoherence-free subspaces
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We apply the time-dependent decoherence-free subspace theory to a Markovian open quantum system in order
to present a proposal for a quantum-state engineering program. By quantifying the purity of the quantum state,
we verify that the quantum-state engineering process designed via our method is completely unitary within any
total engineering time. Even though the controls on the open quantum system are not perfect, the asymptotic
purity is still robust. Owing to its ability to completely resist decoherence and the lack of restraint in terms of the
total engineering time, our proposal is suitable for multitask quantum-state engineering program. Therefore, this
proposal is not only useful for achieving the quantum-state engineering program experimentally, it also helps us
build both a quantum simulation and quantum information equipment in reality.
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I. INTRODUCTION

Controlled manipulation by atoms and molecules using
external controls, known as quantum-state engineering
(QSE), has become an active field of modern research,
which is a fundamental step in quantum computation [1] and
quantum measurement tasks [2]. The adiabatic theorem of
quantum mechanics provides a reliable method of controlling
the quantum state of an isolated system [3,4]. Indeed, for
the scheme of QSE, there are two unique advantages for the
adiabatic method. First, the adiabatic method of QSE is robust
when there is fluctuation in the coherent control fields. Second,
since the parameters in the Hamiltonian vary adiabatically,
the engineering timing does not need to be strictly controlled
in order to be manipulated precisely. If the QSE process is
accomplished, the quantum state will be steadied on the target
state. Because of the advantages mentioned above, the adia-
batic method has been chosen as an important part of the QSE
program and experimentally realized through a number
of techniques, such as nuclear magnetic resonance [5,6],
superconducting qubits [7], trapped ions [8], and optical
lattices [9].

When the quantum system is coupled to its surroundings,
the adiabatic QSE process will experience considerable loss of
fidelity, which limits the application of the adiabatic method.
Actually, for open quantum systems, there is competition
between the time required for adiabaticity and the decoherence
time scales [10,11]. Therefore, identifying a protocol that is
both fast and fault tolerant is an important research direction for
quantum information processing and quantum control. Many
enlightening proposals have also been put forward and evalu-
ated for nonadiabatically engineered quantum states, such as
inverse engineering control [12], optimal control [13], the fast
quench dynamics method [14], and a method of combining
incoherent and coherent controls [15,16]. The fundamental
idea of these methods is to decrease the time needed to
manipulate the quantum state so as to reduce the effect of
decoherence on fidelity. Obviously, this is not enough to realize
quantum information processes for real applications. On the
one hand, the quantum state will lose its quantum character (the
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coherence between two quantum states or the entanglement
between two quantum systems and decay into the steady
state over time or through repeated operation on this quantum
system. Thus it limits the QSE scheme in terms of achieving
a multitask QSE program. On the other hand, the success of
ultrafast QSE is determined by the fact that control of the quan-
tum system must be ultraprecise and ultrafast, which strongly
depends on the development of experimental technology.

In this paper, we propose a method to engineer the quantum
state of an open system. With this innovative method, there is
no limit to the total engineering time nor any loss of fidelity.
Our QSE method was designed based on the time-dependent
decoherence-free subspace (TDFS) scheme [15,17] in which
the basic vectors are time dependent. In other words, such a
DFS evolves smoothly in the total Hilbert space of the open
quantum system by reservoir engineering technology [18,19].
If we manipulate the quantum system state properly, the
quantum state will strictly follow the evolution of the TDFS, so
as to protect it from the effect of decoherence. In comparison
with existing works on QSE, our method is very effective
and promising. Because the DFS scheme can act against
decoherence completely, the quantum state in the DFS scheme
does not lose any quantum character. More importantly, when
the quantum state involves following the evolution of the TDFS
strictly, the QSE process is unitary, as if the environment does
not exist. Therefore, no matter how much time is spent on
the QSE process, the target state will be reached with no
loss of fidelity. Owing to the distinguishing features of our
method, it offers a reliable path to implementing a multitask
QSE process on identical open quantum systems one after
another. Moreover, the robust QSE program can also be
realized in a time-independent DFS. A DSF of at least two
dimensions is required for the simplest QSE task, which means
that we have to control several quantum systems at the same
time. For our method, since the basic vectors of the TDFS
are time dependent, a one-dimensional TDFS is sufficient to
accomplish all QSE tasks in principle.

To illustrate the practical application of our method, a QSE
program of a two-level open quantum system was designed
according to the TDFS scheme. As shown in the results, the
QSE process was completely unitary even over a long period
of time. An analytical expression of the coherent control field
was derived, by which we could check the QSE process in
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detail. As presented in the analytic expression, there was a
singular point in the coherent control field that could not
be reached in actual experiments. Therefore, we introduced
some adjustments to the coherent control field, and the results
remained satisfactory. The QSE process is always robust, even
over the long term. Thus we can affirmatively conclude that
our method is powerful and reliable in both its theoretical
preciseness and its experimental feasibility.

This paper is structured as follows. In Sec. II, we briefly
review the TDFS scheme and discuss how to engineer a
quantum state within such a TDFS. In Sec. III, we manipulate
a two-level open system to the target state by means of the
TDFS QSE method. Both population engineering and phase
engineering are discussed step by step. An adjustment to the
nonphysical coherent control field is considered in Sec. IV
in order to show that even when the coherent control field
is defective, the TDFS QSE method is still unconditionally
robust. We conclude with Sec. V.

II. THE TIME-DEPENDENT DECOHERENCE-FREE
SUBSPACES AND THE QUANTUM-STATE

ENGINEERING PROGRAM

Let us start with the TDFS scheme. A DFS is a subspace
of the Hilbert space of the open quantum system, in which the
dynamics of the quantum system is still unitary [20]. It has
been shown that the principle behind the useful appearance
of the DFS is symmetry of the interaction between the open
quantum system and the environment. The existence of the
DFS has been demonstrated experimentally in many physical
systems [21–23], and many enlightening designs have also
been proposed based on DFSs in order to realize quantum key
distribution [24], quantum computation [25], and so on.

Although the DFS with fixed basic vectors (traditional DFS)
is a promising candidate for quantum information processes,
it is more suitable to storing and protecting the information
coded in quantum systems; however, in a QSE field, the DSF
is unable to manipulate quantum states precisely. For instance,
at least three physical qubits are needed to construct one
logical qubit against the effect of a dephasing environment,
and the quantum computation program on such a logical
qubit needs to accurately control the interactions between
the physical qubits [26], i.e., two interactions have to be
controlled simultaneously. However, it is difficult to manage
the couplings between the physical qubits at the same time.
Moreover, the decoherence becomes more complicated when
the number of physical qubits and energy levels increases.
In order to conquer these difficulties, the TDFS scheme is
introduced [15,17].The TDFS is still a DFS, but its basic
vectors depend on time, which means that the TDFS will
evolve in the Hilbert space of the quantum system.

In the following, we restrict our discussion to an N -
dimensional open quantum system and consider its dynamics
as Markovian. In the interaction picture, the evolution of the
quantum system must obey the Lindblad-Markovian master
equation, given as

ρ̇(t) = −i[H,ρ(t)] + Lρ(t),
(1)

Lρ(t) =
∑

α

[
Fαρ(t)F †

α − 1

2
{F †

αFα,ρ(t)}
]

,

where Fα is the Lindblad operator. which describes the
decoherence caused by the coupling to the environment, and
H is the Hamiltonian, which consists of the coherent control
field on the open quantum system. It has been shown in
Ref. [27] that if some of the environmental parameters can
be continuously varied as a function of time by means of
reservoir engineering technology, the Lindblad operators in
Eq. (1) will be time dependent. In other words, when the
environment varies with time, the symmetry of the interaction
between the open quantum system and its environment is time
dependent [28,29]. It is also a way of engineering the state
of the open quantum system, known as the incoherent control
method.

In the context of the Linblad-Markovian master equation,
the DFS is defined as a collection of quantum states in which
the dynamics is unitary and the purity is constant during the
evolution of the quantum states ρ(t), i.e., ∂Tr[ρ2(t)]/∂t = 0,
leading to the following conditions on the TDFS [17]:

Theorem. Let the time evolution of an open quantum system
in a finite-dimensional Hilbert space be governed by Eq. (1)
with time-dependent Hamiltonian H (t) and time-dependent
Lindblad operators Fα(t). The subspace

HDFS(t) = Span{|�1(t)〉,|�2(t)〉, . . . ,|�M (t)〉} (2)

is a TDFS if and only if each basis vector of HDFS(t) satisfies

Fα(t)|�j (t)〉 = cα(t)|�j (t)〉, j = 1, . . . ,M; α = 1, . . . ,K,

(3)

and HDFS(t) is invariant under

Heff(t) = G(t) + H (t)

+ i

2

∑
α

[c∗
α(t)Fα(t) − cα(t)F †

α(t)]. (4)

Here G(t) = iU †(t)U̇ (t) and U (t) is a unitary operator

U (t) =
M∑

j=1

|�j (0)〉〈�j (t)| +
N−M∑
n=1

|�⊥
n (0)〉〈�⊥

n (t)|. (5)

In this theorem, the time-dependent Hamiltonian describes
the coherent control on the open quantum system, which can be
rewritten as H (t) = ∑

n �n(t)Hn with the control Hamiltonian
Hn and the coherent control field �n(t). In our previous
work [17], we have proved that the theorem mentioned here is
a sufficient and necessary condition for existing the TDFS to
exist. In the following, we will apply this theorem to design
our QSE program and investigate the coherent and incoherent
control projects in detail.

Since the goal of the QSE program is to design a path in
the Hilbert space to connect the initial state and the target
state, the TDFS is the best candidate for implementing a fast
and robust QSE program. In the rest of this section, we show
how to engineer a state of an open quantum system in the
target state. The design process is illustrated in Fig. 1. From
the condition of the TDFS, one can conclude that the it can
be constructed by combining the incoherent control project
with the coherent control project on the open quantum system.
The two sorts of controls perform different duties. For the
incoherent control, since the basic vectors of the TDFS are
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The QSE Program

The t-DFS Scheme

The Quantum System The Environment
The Coupling

The Incoherent Control ProjectThe Coherent Control Project

The design of the basic vectors of t-DFS

FIG. 1. (Color online) A schematic diagram for the TDFS QSE
program. The solid lines are the control process of the TDFS, whereas
the dashed lines are to illustrate the design principle of the TDFS. The
goal of the QSE program is to design a path in the Hilbert space to
connect the initial state with the target state, which is assisted by the
TDFS scheme. According to the QSE program, the basic vectors of
the TDFS can be used to determine the incoherent control program,
and the coherent control project is also fixed by Eq. (6). Therefore,
by elegantly combining two projects together, the quantum state will
evolve strictly following the TDFS.

common eigenvectors of the Lindblad operators, the design
is used to obtain time-dependent Lindblad operators whose
common eigenvectors must connect the initial state with the
target state. At the same time, the evolution of the quantum
state must follow the TDFS strictly, which is the duty of the
coherent control part. The coherent control field is not only
determined by the incoherent control design, but also restricted
by the condition mentioned above, that the TDFS must be
invariant under the operator Heff, i.e., 〈�⊥

i (t)|Heff|�j (t)〉 = 0
for ∀ i,j , where |�⊥

i (t)〉 is one of the basic vectors of the
component subspace of HDFS(t). Considering the concrete
structure of Heff in Eq. (4), the condition mentioned above
can be reduced to the following form:

〈�k(t)|H (t)|�⊥
n (t)〉 = −i〈�̇k(t)|�⊥

n (t)〉

− i

2

∑
α

γαc∗
α(t)〈�k(t)|Fα(t)|�⊥

n (t)〉.

(6)

As shown in the above equation, the coherent control project
(the left terms) and the incoherent control project (the right
terms) restrict each other. When the design on the incoherent
control project is confirmed, the basic vectors of the TDFS
are determined at the same time, which also fixes the coherent
control project via Eq. (6). On the other hand, any requirement
on the coherent control field (e.g., the shape of the laser
field) also limits the incoherent control project. Thus if both
the coherent control and the incoherent control projects are
manipulated synchronously, the state of the open quantum
system will be locked in the TDFS. Therefore, the QSE process
is protected completely by the TDFS within an arbitrary total
engineering time.

Here we should make some remarks on the TDFS QSE
program. (1) Although the TDFS is a scheme for combining
the coherent controls with the incoherent ones, as reported
in Ref. [15], the TDFS QSE scheme completely protects the

quantum state by the symmetry of the interaction between
the open quantum system and its environment. (2) Unlike
traditional DFS QSE schemes, the basic vectors of the DFS
are time dependent, which helps us coherently engineer the
quantum state even in a one-dimensional TDFS. (3) The
total engineering time of the QSE is not dependent upon
the decay rate of the open system; rather, it is determined by
the incoherent control project.

III. ENGINEERING QUANTUM STATES BY THE
TDFS SCHEME

In the above section, we proposed a realizable method for
engineering the quantum state of a single atom by means of
the TDFS scheme. The interest in this topic is driven by funda-
mental connections to quantum physics, as well as by potential
applications to quantum-state measurements [30] and quantum
computing [31]. In the following, we will show how to engineer
the quantum states of a two-level atom into target states.

Consider a two-level atom with ground state |0〉 and excited
state |1〉 coupled to both a broadband squeezed vacuum field
and a coherent control field �(t). In the Markov approxima-
tion, the influence of the reservoir on the system of atoms can
be described by the dynamical semigroup with the generator

L = −i[H,·] + LD. (7)

In the rotating frame, the Hamiltonian of the two-level atom
can be written as

H = �(t)|0〉〈1| + H.c. (8)

The dissipator caused by the coupling to the squeezed vacuum
is

LDρ = γ cosh2(r)
(
σ+ρ(t)σ− − 1

2 {σ+σ−ρ(t)})
+ γ sinh2(r)

(
σ−ρ(t)σ+ − 1

2 {σ−σ+ρ(t)})
+ γ sinh(r) cosh(r) exp(−iθ )σ−ρ(t)σ−
+ γ sinh(r) cosh(r) exp(iθ )σ+ρ(t)σ+, (9)

where r is the squeezing parameter and θ is the squeezing
phase; σ− (σ+) is the lowering (raising) operator and γ is
the spontaneous decay rate. In Eq. (9), we have assumed
that the vacuum squeezing field is perfect. If we redefine the
decoherence operator as follows:

L = cosh(r) exp(−iθ/2)σ− + sinh(r) exp(iθ/2)σ+, (10)

the dissipator can be transformed into the Lindblad form,

LDρ = γ /2(2LρL† − {L†L,ρ}). (11)

By definition, the DFS is composed of states that undergo
unitary evolution. Obviously, the one-dimensional (1D) DFS
is inadequate for engineering the quantum states into the target
state. But if the basic vectors of the DFS depend on time, the
DFS will evolve in the Hilbert space of the two-level atom. So
we need to find the 1D DFS, and then let it evolve to the target
state. This is the main idea of the TDFS.

First, according to the necessary and sufficient condition of
TDFSs, a subspace spanned by Ht = {|φ〉} is a decoherence-
free subspace if |φ〉 is the eigenvector of the Lindblad operator
L. It is obvious that the Lindblad operator L [Eq. (10)] gives
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two nonorthogonal eigenvectors,

|φ1〉 = [
√

sinh(r) exp(iθ/2)|0〉 +
√

cosh (r)|1〉]/p,
(12)

|φ2〉 = [−
√

sinh(r) exp(iθ/2)|0〉 +
√

cosh (r)|1〉]/p,

with eigenvalues λ1 = √
sinh(r) cosh(r) and λ2 =

−√
sinh(r) cosh(r), in which p = sinh(r) + cosh(r) is

the normalizing factor. Any of the eigenvectors can be the
basic vector of the subspace Ht . To maintain generality,
we choose |φ1〉 to construct the 1D subspace Ht . At the same
time, the basic vector of the orthogonal complementary space
is also determined by

|φ⊥〉 = [
√

cosh(r) exp(iθ/2)|0〉 −
√

sinh (r)|1〉]/p. (13)

The set of bases {|φ1〉,|φ⊥〉} is a complete set of the Hilbert
space of the two-level atom H. Clearly, the eigenvector |φ1〉
depends on the parameters of the squeezed vacuum, i.e., the
squeezed parameter r and the squeezed phase θ . Assume
that there is a time-dependent squeezed parameter r(t) and
a squeezed phase θ (t), both of which ought to be reasonably
chosen and realizable in the laboratory.

In the following, we design an experimental process to
create the 1D TDFS. First, the two-level atom is placed in the
vacuum field. When it couples to the vacuum, the two-level
atom decays into the ground state |0〉. Here we consider a
more realistic case of an extremely small population in the
excited state. So the initial state we use here is |ϕ(0)〉 =√

1 − o2|0〉 + o|1〉, where o is an extremely small constant.
After that, we engineer the surroundings of the two-level atom
from the vacuum field to the squeezed vacuum field by means
of engineering reservoir technology [32,33], which results in
the time dependence of the squeezed parameters. The way in
which the parameters depend on time is determined by the
scheme of the reservoir engineering [34,35]. For simplicity,
both the squeezed parameter and the squeezed phase are set to
depend on time linearly,

r(t) = μt + o, θ = νt, (14)

where μ and ν are constants related to the concrete method of
reservoir engineering. With the evolution of the squeezed field
parameters, the subspace Ht is a time-dependent 1D subspace
in which the quantum state of a two-level atom is protected
against decoherence. Thus the two-level atom is controlled to
guarantee that the quantum state is bound to the subspace Ht

at all times. In other words, the subspace Ht is a TDFS if
and only if the two-level atom is controlled to make sure that
the subspace Ht is invariant under Heff(t), as shown in Eq. (4).
When the effective Hamiltonian Heff(t) acts on a quantum state
|φ〉 in the TDFS Ht , the quantum state |ϕ〉 = Heff(t)|φ〉 is still
within the TDFS Ht , i.e., 〈φ⊥|ϕ〉 = 0. Taking the Hamiltonian
Eq. (8) into the effective Hamiltonian Heff(t) and considering
the above requirement, we are able to find an accurate function
of the coherent control field �(t). The real part �R(t) and the
imaginary part �I (t) of the coherent control field [�(t) =
�R(t) + i�I (t)] can be written as

�R(t) = −cos(νt)f1(t) − sin(νt)f2(t),
(15)

�I (t) = sin(νt)f1(t) − cos(νt)f2(t),
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FIG. 2. (Color online) The population of the ground state |0〉 (red
cross lines) and the excited state |1〉 (green star lines) versus the
dimensionless parameter μt . The results were obtained by calculating
the master equation with the coherence control field �(t) (solid lines)
and without the coherence control field (dashed lines). The figure is
evaluated for μ = γ and ν = 2πγ/3.

with f1(t) = ν exp(−μt − o)
√

sinh(μt + o) cosh(μt + o)/2
and f2(t) = exp(−μt − o)[μ/

√
sinh(μt + o) cosh(μt + o) +

γ
√

sinh(μt + o) cosh(μt + o)]/2. By combining the reservoir
engineering scheme Eq. (10) with the coherence control field
Eq. (15), the 1D TDFS is constructed and the quantum state
of the two-level atom evolves from the ground state |0〉 to a
superposition state |φ〉 coherently. In the same way, the QSE
with a different initial state can also be engineered.

To judge the validity of our scheme for population engi-
neering, we studied both the population transferring from the
ground state to the excited state and the purity of the quantum
state. In Fig. 2, the populations in the ground state |0〉 (red
cross lines) and the excited state |1〉 (green star lines) are
both plotted. The solid lines in the figure are the populations
in the ground state (P0) and the excited state (P1), which are
plotted according to the master equation (7) with the coherence
control field Eq. (15); the dashed lines are the populations in the
ground state (P ′

0) and the excited state (P ′
1), which are plotted

based on the same master equation but without the coherence
control field. Here we choose μ = γ and ν = 2πγ/3. Fig. 2
shows that either the two-level state is manipulated by �(t)
or not and that the population will definitely transfer from the
ground state to the excited state; the populations in the ground
state and the excited state are equal when the steady state is
reached.

However, the principle behind the similarity mentioned
above is different. On the one hand, when the two-level atom
is not manipulated by the coherent control field Eq. (15),
its quantum character will gradually be lost because of the
coupling to the squeezed vacuum field. If we consider the
purity (p′) of the quantum state (see the green solid line in
Fig. 3), we find it decays over time. As a consequence, the
quantum state will become the maximally mixed state [2].
On the other hand, when the two-level atom is coherently
controlled on the basis of Eq. (15), the quantum state of the
two-level system stabilizes in the TDFS from the beginning to
the end. The TDFS ensures that the evolution of the quantum
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FIG. 3. (Color online) The purity versus the dimensionless pa-
rameter μt . The results were obtained by calculating the master
equation with the coherence control field �(t) (red solid lines) and
without the coherence control field (green dashed lines).The figure is
evaluated for μ = γ and ν = 2πγ/3.

state is unitary and that the purity (p) does not change over time
(see the red dashed line in Fig. 3). The results obtained above
coincide with our previous prediction. We should also mention
that the choice of μ = γ is not a necessary requirement on
our QSE scheme; it is used to compare our scheme with
the decoherence process of a two-level atom. Theoretically
speaking, the selections of μ and ν are quite arbitrary. The
only limiting factor is the experimental technology for the
reservoir engineering.

For illustrating the phase engineering more obviously, the
Bloch vectors are plotted in Fig. 4. As shown by the red
straight line in Fig. 4, the quantum state decays to the center
of the Bloch sphere gradually in the case of absence of the
coherent control field. Even though the squeezed vacuum field
is engineered accordingly, there is no response of the phase to
the reservoir engineering. However, when the two-level atom
is manipulated by the coherent control field [Eq. (15)], the

FIG. 4. (Color online) The evolution of the quantum state on the
Bloch sphere. The results were obtained by calculating the master
equation with the coherence control field �(t) (blue curved line) and
without the coherence control field (red straight line). The figure is
evaluated for μ = γ and ν = 2πγ/3.

situation is changed. The phase between the ground state and
the excited state (blue curved line in Fig. 4) varies following
our prediction, which is useful in the quantum computation
program [1].

The coherence control field is the key point for implement-
ing the TDFS scheme for both the population and the phase
engineering. When the atom is controlled opportunely, the
Bloch vector of the quantum state is on the Bloch sphere’s
surface. Otherwise, the Bloch vector will enter the Bloch
sphere towards the zero vector [2]. Considering the asymptotic
behavior of the TDFS’s basic vector, every single point on the
surface of the lower part can be reached by means of the TDFS
scheme.

IV. ADJUSTMENT OF THE COHERENT CONTROL FIELD

If we neglect the extremely small constant o in Eq. (15),
the coherence control field should have a singular point at
t = 0, i.e., limo→0 �(0) = ∞. It is difficult to achieve such a
control function experimentally. In the following, we propose
another coherence control function to avoid such a case.
It can be observed that the single point is caused by the
denominator [

√
2 sinh(μt) cosh(μt)] of the function f2(t), so

that the control function of the coherent control field can be
adjusted accordingly. The new control field �′(t) has the same
structure of �(t) as Eq. (15); the only difference is that

f2(t) = exp(−μt)

2

(
μ√

sinh(μt + ε) cosh(μt)

+ γ
√

sinh(μt) cosh(μt)

)
, (16)

where ε is a small constant. When we use the control function
�′(t) instead of �(t), the evolution of the quantum state is not
unitary and the purity must decay. Here we intend to study
the effect of this modification on both the coherence control
field and the purity of the quantum state. On the one hand,
with the increase of constant ε, the control field’s strength
�′(0) becomes weaker and weaker, which is advantageous in
the realization of the TDFS scheme experimentally. On the
other hand, the modification of the coherence control field
cannot protect the quantum state perfectly. Therefore, we will
concentrate on the asymptotic state of the two-level atom first.
Since the adjustment to the coherent control field in this way
does not affect the phase engineering and the manipulation of
the phase has no effect on the asymptotic purity, it is convenient
to choose ν = 0 in the following discussion. As a consequence,
the coherent control field is given by

�′(t) = −i
exp(−μt)

2

[μ + γ sinh(μt) cosh(μt)]√
sinh(μt + ε) cosh(μt)

. (17)

Taking the above coherent control function in Eq. (7), the
matrix elements of the quantum state ρ with respect to the
basis |0〉 and |1〉 satisfy the following differential equation set:

ρ̇00 = sinh2(μt) − 2i�′(t)ρ01 − cosh(2μt)ρ00,
(18)

ρ̇01 = i�′(t)(1 − 2ρ00) − exp(−2μt)ρ01,

in which �′(t) = −�′(t)∗ and ρ00 + ρ11 = 1 were considered.
Direct calculations show that the quantum state is a unique
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FIG. 5. (Color online) The evolution of (a) the control field |�′|
and (b) the purity p. The results were obtained by calculating the
master equation with the adjusted control function �′(ε) with ε =
10−3 (blue dashed line), ε = 10−2 (green dotted line), and ε = 10−1

(red solid line). The figure is evaluated for μ = γ .

stationary asymptotic state ρs that has nonvanishing matrix
elements

ρs
00 = 1/2, ρs

01 = 2�′
s , (19)

with the asymptotic strength of the coherence control field
�′

s = exp(ε/2)/4. When the coherent control field is absent,
the asymptotic state is the maximally mixed state; when ε = 0,
the TDFS scheme can be achieved. Generally speaking, the
asymptotic purity as a function of the parameter ε can be
written as

ps = 1 + exp(−ε)

2
, (20)

In Fig. 5, the evolutions of both the purity and the coherence
control field are plotted. With the increase of the parameter
ε, the strength of the control field is evidently reduced. At
the same time, the purity also decays. However, we can see
that even the control field strength is so weak [red solid line
in FIG. 5(a)] that the asymptotic purity is still high. In other
words, although the coherence field cannot be reached as in
Eq. (15), the coherence of the quantum state is also robust.

What we have shown above is only an example of adjusting
the control field �, but there are still many more methods to
adjust it. Generally speaking, we can introduce the adjusted
control field as

�g(ε) = �(ε)�, (21)

where �(ε) is an adjusted function, ε should not have to be
a constant, and � is the coherent control field, as shown in
Eq. (15) with ν = 0. The function �(ε) needs to satisfy the
following conditions: (1) The adjusted control field �g must be
analyzed at the singular point of the control field �; (2) Under
the control of �g , the purity must be as robust as possible.
To give an example, we introduce a simple function �(t) =√

sinh(μt)/ sinh[μt + ε0 exp(−�t)], where � is the decay rate
of the parameter ε0. Such an adjusted control field certainly
satisfies both of the conditions mentioned above. For t = 0,
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X: 2.835

Y: 0.9999

FIG. 6. (Color online) The evolution of (a) the control field |�g|
and (b) the purity p. The results were obtained by calculating the
master equation with the control function �g with ε0 = 10−1 and
� = 103γ . The figure is evaluated for μ = γ .

the singular point of the control field vanishes. And since

d|�g|
d�

= |�|
√

sinh[μt + ε(t)]

sinh μt

× � exp(−�t) cosh[μt + ε(t)] sinh(μt)

2 sinh[μt + ε(t)]
> 0,

the following inequality can be given:

dps

d�
= 16|�g|d|�g|

d�
> 0.

These results indicate that the more rapidly the parameter
decays, the higher is the purity obtained. The purity of the
quantum state controlled by �′(ε0) is the lower limit, which
is controlled by �g . This adjustment on the control function
is so powerful that a simple and realizable control field can
protect the quantum character of the two-level atom. In Fig. 6,
the control field �g and the purity p are presented, where the
decay rate � is chosen as � = 103μ and the constant parameter
is ε0 = 10−1. The evolution of the quantum state is almost
unitary and the purity is no less than 0.9999. It is important
to emphasize that the TDFS scheme is universal and allows
several ways of engineering the reservoir coupled to the main
system. By engineering the reservoir and choosing the control
field properly, the quantum state of the main system can be
engineered as though the surrounding environment does not
exist.

V. SUMMARY

We have presented a proposal employing a TDFS scheme
to engineer the quantum state of an open quantum system.
We showed that, although the quantum system couples to
a decohering environment, the QSE process designed using
our method is completely unitary within an arbitrary total
engineering time. As shown in this paper, the TDFS QSE
program is designed according to an elegant combination of
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incoherent control and coherent control projects, which play
different roles in this program.

Such a method is powerful and reliable for realizing
quantum information and quantum simulation equipment.
First, a QSE task can be implemented in a one-dimensional
TDFS with no fidelity loss. For the QSE program of an
open quantum system, the previous proposals either need
numerous physical qubits to construct a multidimensional DFS
or require ultrafast operation on a single physical qubit in
order to preserve the quantum character of the open quantum
system. Moreover, every single common eigenvector of the
Lindblad operators with any eigenvalue can be chosen as the
basic vector of the TDFS. This provides various selections for
implementing the QSE program, which is useful for finding
the best scheme in realization of the QSE program. Second, a
real quantum information process always involves numerous
operations on a single qubit. A tiny loss in fidelity in one of the

QSE programs will lead to the quantum information process
failure after repeated operation on the same qubit. To avoid this,
the QSE process must be unitary, or at least the asymptotic
purity of the quantum state must be robust. Our method
can achieve a unitary operation on the qubit to implement
a multitask QSE program with no loss of fidelity. Even if the
effect of decoherence excites the state, the asymptotic purity
remains satisfactory. So the proposed scheme is not only a
reliable QSE process experimentally, it is also a good choice
when the goal is to construct a real quantum computer or
quantum communication equipment.
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