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Phase-sensitivity bounds for two-mode interferometers
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We provide general bounds of phase estimation sensitivity in linear two-mode interferometers. We consider
probe states with a fluctuating total number of particles. With incoherent mixtures of states with different total
number of particles, particle entanglement is necessary but not sufficient to overcome the shot noise limit.
The highest possible phase estimation sensitivity, the Heisenberg limit, is established under general unbiased
properties of the estimator. If coherences can be created, manipulated, and detected, the Heisenberg limit can
only be set in the central limit, with a sufficiently large repetition of interferometric measurements.

DOI: 10.1103/PhysRevA.91.032103 PACS number(s): 03.65.Ta, 42.50.St, 42.50.Dv

I. INTRODUCTION

The problem of determining the ultimate phase sensitivity
(often tagged as the Heisenberg limit) of linear interferometers
has long puzzled the field [1–14] and still raises controversies
[15–36]. The recent revival of interest is triggered by the
current impressive experimental efforts in the direction of
quantum phase estimation with ions [37], cold atoms [38],
Bose-Einstein condensates [39], and photons [40], including
possible applications to large-scale gravitational wave de-
tectors [41]. Besides the possible technological applications,
the problem is closely related to fundamental questions of
quantum information, most prominently, regarding the role
played by quantum correlations. Several works have focused
on linear two-mode interferometers. In this case, it is widely
accepted that when the number of particles in the input state
is fixed and equal to N , there are two important bounds in
the uncertainty of unbiased phase estimation. The shot-noise
limit,

�θSN = 1√
m N

, for (�N̂ )2 = 0, (1)

is the maximum sensitivity achievable with probe states
containing only classical correlations among particles [15,16].
The factor m accounts for the number of independent measure-
ments repeated with identical copies of the probe state. This
bound is not fundamental. It can be surpassed by preparing
the N particles of the probe in proper usefully entangled states
[16]. The fundamental (Heisenberg) limit is given by

�θHL = 1√
m N

, for (�N̂)2 = 0, (2)

and it saturated [15,16] by maximally entangled (NOON)
states [42–46].

It should be noticed that most of the theoretical investiga-
tions have been developed in the context of systems having a
fixed, known, total number of particles. Yet, many experiments
are performed in presence of finite number fluctuations,
(�N̂)2 > 0. The consequences of such fluctuations (which
may have a classical or a quantum nature) have not been
investigated in great depth. It has been shown [17,18] that
phase uncertainty bounds can be critically affected by the
presence of coherences between different total number of
particles in the probe state and/or the output measurement.

However such quantum coherences do not play any role
in two experimentally relevant cases: (i) in the presence of
superselection rules, which are especially relevant for massive
particles and forbid the existence of number coherences in the
probe state; (ii) when the phase shift is estimated by measuring
an arbitrary function of the number of particles in the output
state of the interferometer, e.g., when the total number of
particles is postselected by the measurement apparatus. The
point (ii) is actually a ubiquitous condition in current atomic
and optical phase estimation experiments.

In the absence of number coherences, or when coherences
are present but irrelevant because of (ii), we can define a state as
separable if it is separable in each subspace of a fixed number
of particles [17]. A state is entangled if it is entangled in at
least one subspace of fixed number of particles. With separable
states, the maximum sensitivity of unbiased phase estimators
is bounded by the shot noise

�θSN = 1√
m 〈N̂〉

, for (�N̂ )2 > 0, (3)

while the Heisenberg limit is given by [17]

�θHL = max

[
1√

m〈N̂2〉
,

1

m〈N̂〉

]
, for (�N̂ )2 > 0. (4)

We point out that Eq. (4) cannot be obtained from Eq. (2) by
simply replacing N with 〈N̂〉 [47]. On the other hand, Eq. (4)
reduces to Eq. (2) when number fluctuations vanish, 〈N̂2〉 =
〈N̂〉2 = N2. An example of phase estimation saturating the
scaling 1/m〈N̂〉 is obtained with the coherent cross product
squeezed-vacuum probe state [50].

When the probe state and the output measurement contain
number coherences, the situation becomes more involved. The
notion of particle separability and entanglement becomes hazy
since the number of parties stay in a quantum superposition.
One can attempt to extend the notion of separability saying
that a state is separable if the projection over each fixed-N
subspace is separable [17]. However, within this definition, one
loses the relation between separability and shot-noise limit: it
is not difficult to find separable states that can achieve an
arbitrary high sensitivity. Regarding the Heisenberg limit, it
is still possible to show that Eq. (4) holds in the central limit
(m � 1), at least. Outside the central limit (i.e., for a small
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number of measurements), we can only set the bound

�θ � 1√
m〈N̂2〉

. (5)

The crucial point is that the fluctuations 〈N̂2〉 can be made
arbitrarily large even with a finite 〈N̂〉 and we cannot rule
out to the possibility that �θ < 1/m〈N̂〉. In general, no lower
bound in terms of 〈N̂〉 can be settled in this case.

This paper extends and investigates in detail the results
and concepts introduced in Ref. [17]. In Sec. II we review
the theory of multiparameter estimation with special emphasis
on two-mode linear transformations. In Sec. III we discuss
the relation between multiparticle entanglement of the probe
state and the achievable phase sensitivity. In Sec. IV we show
under which conditions the Heisenberg limit, Eq. (4), holds.
We finally give an overview of the phase-sensitivity bounds
recently discussed in the literature.

This paper focuses on the ideal noiseless case. It is worth
pointing out that decoherence can strongly affect phase-
uncertainty bounds. For several relevant noise models in
quantum metrology as, for instance, particles losses, correlated
or uncorrelated phase noise, phase-uncertainty bounds have
been derived [43,51–56].

II. BASIC CONCEPTS

In the multiphase estimation problem, a probe state ρ̂ un-
dergoes a transformation that depends on the unknown vector
parameter θ . The phase shift is estimated from measurements
done on the transformed state ρ̂out(θ ). The protocol is repeated
m times by preparing identical copies of ρ̂ and performing
identical transformations and measurements. The aim of this
section is to review the general theory of phase estimation for
linear and lossless two-mode interferometers.

A. Probe state

A generic probe state with fluctuating total number of
particles can be written as

ρ̂coh =
∑

k

pk|ψk〉〈ψk| (6)

with pk > 0 and
∑

k pk = 1, where

|ψk〉 =
∑
N

√
QN,k |ψN,k〉 (7)

is a coherent superposition of states |ψN,k〉 with different
number of particles. The coefficients QN,k are complex
numbers and the normalization condition 〈ψk|ψk〉 = 1 im-
plies

∑
N |QN,k| = 1. It is generally assumed that quantum

coherences between states of different numbers of particles do
not play any observable role [57]. In particular, with massive
particles this is the consequence of superselection rules (SSRs)
for the total number of particles [58]. In the presence of
SSRs the only physical states are those that commute with
the number of particles operator,

[ρ̂,N̂ ] = 0. (8)

A state satisfies this condition if and only if [59] it can be
written as the incoherent mixture

ρ̂inc =
∑
N

QN ρ̂(N), (9)

where ρ̂(N) is a normalized (Tr[ρ̂(N)] = 1) state, QN =
Tr[π̂N ρ̂π̂N ] are positive numbers satisfying

∑
N QN = 1 and

π̂N are projectors on the fixed-N subspace. The existence of
SSRs is the consequence of the lack of a phase reference frame
(RF) [57]. However, the possibility that a suitable RF can be
established in principle cannot be excluded [57]. If SSRs are
lifted, then coherent superpositions of states with different
numbers of particles become physically relevant.

B. Two-mode transformations

In the following we focus on linear lossless transformations
involving two modes. These cover a large class of optical
and atomic passive operations, including the beam splitters,
Mach-Zehnder and Ramsey interferometers [11]. Most of
the current phase-estimation experiments [37–40] are well
described within a two-mode model.

Denoting by â1 and â2 (b̂1 and b̂2) the input (output)
mode annihilation operators, we can generally write the mode
transformation as [

b̂1

b̂2

]
= U

[
â1

â2

]
, (10)

where U is a 2 × 2 matrix [3,60,61]. By imposing the
conservation of the total number of particles, â

†
1â1 + â

†
2â2 =

b̂
†
1b̂1 + b̂

†
2b̂2, we obtain that U can be explicitly written as

U = e−iφ0

[
e−iφt cos ϑ

2 −e−iφr sin ϑ
2

eiφr sin ϑ
2 eiφt cos ϑ

2

]
. (11)

The matrix (11) is unitary, preserves bosonic and fermionic
commutation relations between mode operators and its de-
terminant is equal to e−2iφ0 . The most general two-mode
transformation thus belongs to the U(2) = U(1) × SU(2)
group (unitary matrices with determinant |detU| = 1). The
coefficients ϑ is physically related to transmittance t =
cos2 ϑ/2 and reflectance r = sin2 ϑ/2 of the transformation
(11), φt and φr being the corresponding phases. The lossless
nature is guaranteed by t + r = 1.

Using the Jordan-Schwinger representation of angular mo-
mentum systems in terms of mode operators [62], it is possible
to find the operator Û corresponding to the matrix (11). In other
words, b̂i = Û†âiÛ for i = 1,2 is the transformation of mode
operators (Heisenberg picture) and ρ̂out = Ûρ̂Û†, |ψout〉 =
Û|ψin〉, is the equivalent transformation of statistical mixtures
and quantum states, respectively (Schrödinger picture). One
finds [3,60]

Û(φ0,θ ) = e−iφ0N̂ e−iθ Ĵn , (12)

where

N̂ = â
†
1â1 + â

†
2â2
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is the number of particle operator,

Ĵx = â
†
1â2 + â

†
2â1

2
,

Ĵ y = â
†
1â2 − â

†
2â1

2i
,

Ĵz = â
†
1â1 − â

†
2â2

2
,

are pseudospin operators, and Ĵn = αĴx + βĴ y + γ Ĵz (where
α, β, and γ are the coordinates of the vector n in the Bloch
sphere and satisfy α2 + β2 + γ 2 = 1). The exact relation
between the parameters of the matrix U [φτ , φρ and ϑ in
Eq. (11)] and those of the operator Û [θ , α, β and γ in
Eq. (12)] is given in Appendix A. The operators Ĵx , Ĵ y

and Ĵz satisfy angular momentum commutation relations.
Since [Ĵn,N̂ ] = 0, we can thus rewrite Ĵn = ⊕N Ĵ

(N)
n , where

Ĵ
(N)
n = π̂N Ĵn π̂N . Furthermore, Ĵ

(N)
n = ∑N

l=1 σ̂
(l)
n /2, where

σ̂
(l)
n is the Pauli matrix (along the direction n in the Bloch

sphere, σ̂ (l)
n = ασ̂

(l)
x + βσ̂

(l)
y + γ σ̂ (l)

z ) acting on the lth particle.
Equation (12) can be rewritten as

Û(θ1,θ2) = eiχĴs [e−iθ1â
†
1 â1e−iθ2â

†
2 â2 ]e−iχĴs , (13)

where θ1 = φ0 + θ/2, θ2 = φ0 − θ/2, s is a direction per-
pendicular to z and n, and cos χ = n · z. θ1 and θ2 can be
identified as the phases acquired in each mode a1 and a2 inside
a Mach-Zehnder-like interferometer [with standard balanced
beam splitters replaced by the transformation e±iχĴs , see Fig.
1(a)]. Both phases may be unknown. When setting one of the
two phases to zero (or to any fixed known value), Eq. (13)
reduces to different single-phase transformations:

(i) SU(2) transformations e−iθ Ĵn (φ0 = 0) or, equivalently

Û(θ ) = e+iχĴs e−iθ Ĵz e−iχĴs , (14)

with notation analogous to Eq. (13) [see also Fig. 1(b)]. This
depends only on the relative phase shift θ = θ1 − θ2 among the
two interferometer modes. This encompasses the beam splitter
e−iθ Ĵx , the relative phase shift e−iθ Ĵz and the Mach-Zehnder
e−iθ Ĵy transformations.

(ii) U(1) transformations e−iφ0N̂ (θ = 0), which can be
understood as a phase shift equally imprinted on each of the
two modes: e−iφ0N̂ = e−iφ0â

†
1 â1 ⊗ e−iφ0â

†
2 â2 .

FIG. 1. (Color online) Schematic representation of (a) U(2) and
(b) SU(2) interferometers. In the U(2) case, the general transformation
is given by Eq. (13), where a1 and a2 are the modes inside the
interferometer and the green squares represent e±iχĴs . In the SU(2)
case, the general transformation is given by Eq. (14) and depends on
the relative phase shift θ among the a1 and a2 modes.

C. Output measurement

A general quantum measurement scenario can be described
by a set of bounded, non-negative Hermitian operators
{Ê(ε)}ε parametrized by ε and satisfying the complete-
ness relation

∫
dεÊ(ε) = 1 [63]. The quantity ε labels the

possible results of a measurement, which can be continu-
ous (as here), discrete, or multivariate. The set of opera-
tors {Ê(ε)}ε constitutes a positive-operator valued measure
(POVM). Projective measurements are a special POVM
class satisfying Ê(ε)Ê(ε′) = Ê(ε)δ(ε − ε′). In the case of
projective measurement, ε labels the possible eigenvalues
of the measurement observable. In general, each outcome ε

is characterized by a probability P (ε|θ ) = Tr[Ê(ε)ρ̂out(θ )],
conditioned by the true value of the parameters. The pos-
itivity and Hermiticity of {Ê(ε)}ε guarantee that P (ε|θ )
are real and non-negative, the completeness guarantees that∫

dεP (ε|θ ) = 1.
Generally speaking, a POVM {Ê(ε)}ε may or may not

contain coherences among different number of particles. A
POVM does not contain number coherences if and only if
all its elements Ê(ε) commute with the number of particles
operator:

[Ê(ε),N̂ ] = 0, ∀ε. (15)

or, equivalently [64],

Ê(ε) =
∑
N

ÊN (ε), (16)

where ÊN (ε) ≡ π̂N Ê(ε) π̂N acts on the fixed-N subspace and
π̂N are projectors. In the following we show that the class of
incoherent POVMs (16) includes all measurements that are
currently done experimentally.

In current phase estimation experiments, the phase shift
is generally estimated by measuring an observable, which is
a function f̂ (N̂1,N̂2) of the particle number operators at the
output ports of the interferometer. We can write f̂ (N̂1,N̂2) =∑

ε ε Ê(ε), where Ê(ε) indicates the projector operator on
the eigenstate of f̂ (N̂1,N̂2) with eigenvalue f (N1,N2). More
explicitly,

Ê(ε) =
∑

N1,N2

δ[f (N1,N2) − ε] |N1,N2〉〈N1,N2|, (17)

which, by the change of variables N = N1 + N2 and μ =
(N1 − N2)/2 (−N/2 � μ � N/2), rewrites as

Ê(ε) =
∑
N

∑
μ

δ[f (N,μ) − ε] |N,μ〉〈N,μ|. (18)

This POVM element (a projection operator, in this case) has
precisely the form of Eq. (16). Notice that the information
about the total number of particles is not necessarily included.

For instance, the POVM corresponding to the measure-
ment of the relative number of particles can be written as
[f (N,μ) = μ]

Ê(μ) =
∑

N�2μ

|N,μ〉〈N,μ|,

which, again, has the form of Eq. (16). Formally, we
can write the relative number of particles operator as
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TABLE I. The table summarizes the general two-mode transfor-
mation group for the phase estimation problem. The U(2) group is
only relevant when number coherences are present in both the probe
state and POVM.

POVM without
POVM with coherences coherences

ρ̂ with coherences U(2) SU(2)
ρ̂ without coherences SU(2) SU(2)

Ĵz = ⊕N Ĵ (N)
z = ∑

μ μÊ(μ). This example can be straight-
forwardly generalized to any function of the relative particle
number operator. Another example is the measurement of the
number of particles in a single mode (for instance the “1”
mode), we have [f (N,μ) = N/2 + μ]

Ê(N1) =
∑
N,μ

δ [N/2 + μ − N1] |N,μ〉〈N,μ|.

We recover a POVM of the form of Eq. (16) also in this case.
Analogous results hold for any function of N1 (or N2), for
instance the measurement of the parity operator [42,44,65,66]
at one output port [f (N,μ) = (−1)N/2±μ].

We conclude this subsection pointing out that, given the
probe state and interferometric transformation, there are good
and bad choices of POVM. The worse ones are those for which
the conditional probabilities of output results (see below) do
not depend on the phase shift(s). In general, the adequacy
of a certain POVM set for phase estimation is quantifies by
the Fisher information (see Sec. II E): the best POVM being
the one (not necessarily unique) that maximizes the Fisher
information.

D. Conditional probabilities

For general U(2) transformations, Eq. (13), the conditional
probabilities can be written as

P (ε|θ1,θ2) = Tr[Ê(ε)Û(θ1,θ2)ρ̂Û†(θ1,θ2)]. (19)

If the probe state and/or the POVM do not contain number
coherences, i.e., ρ̂ is given by Eq. (9) and/or Ê(ε) is given by
Eq. (16), then (19) reduces to

P (ε|θ ) =
∑
N

QNP (ε|N,θ ), (20)

where P (ε|N,θ ) = Tr[Ê(ε)e−iθ Ĵn ρ̂(N)e+iθ Ĵn ]. The derivation
of Eq. (20) is detailed in Appendix B. Equation (20) depends
only on θ , the relative phase shift among the two modes of
the interferometer. We conclude that U(2) transformations are
relevant only if the input state contains coherences among
different number of particles and the output measurement
is a POVM with coherences. In all other cases, the phase
shift e−iφ0N̂ is irrelevant as the conditional probabilities are
insensitive to φ0. In this case, the mode transformation Eq. (13)
restricts to the unimodular (i.e., unit determinant) subgroup
SU(2). The SU(2) representation, while being not general,
is widely used because, experimental measurements do not
contain number coherences, as discussed in Sec. II C. Table
I summarizes the general two-mode transformation group for

the phase estimation problem, depending on the presence of
number coherences in the probe state and/or POVM.

E. Multiphase estimation

Since U(2) transformations involve two phases, we recall
here basic elements of two-parameter estimation theory
[63,67]. The vector parameter θ ≡ {θ1,θ2} is inferred from the
values ε ≡ {ε1,ε2, . . . ,εm} obtained in m repeated independent
measurements. The mapping from the measurement results
into the two-dimensional parameter space is provided by
the estimator function �(ε) ≡ [�1(ε),�2(ε)]. Its mean value
is �̄ ≡ [�̄1,�̄2], with �̄i = ∫

dεL(ε|θ)�i(ε) (i = 1,2) and
L(ε|θ ) ≡ ∏m

l=1 P (εl|θ) the likelihood function. We further
introduce the covariance matrix B of elements

Bi,j =
∫

dεL(ε|θ)(�i(ε) − �̄i)(�j (ε) − �̄j ). (21)

Notice that B is symmetric and its ith diagonal element is the
variance (�θi)2.

1. Cramér-Rao bound

Following a Cauchy-Schwarz inequality [68], we have [69]

(v�b u)2 � m(v�Bv)(u�Fu), ∀ u,v ∈ R, (22)

where bi,j = ∂�̄i/∂θj is the Jacobian matrix and

Fi,j =
∫

dε
1

P (ε|θ )

(
∂P (ε|θ)

∂θi

)(
∂P (ε|θ)

∂θj

)
(23)

the Fisher information matrix (FIM) [70], which is symmetric
and non-negative definite. The FIM depends on the specific
POVM via the conditional probability distribution. Note that
B, F, and b generally depend on θ but we do not explicitly
indicate this dependence, in order to simplify the notation.
In the inequality (22) u and v are arbitrary real vectors:
depending on u and v we thus have an infinite number of
scalar inequalities. If the FIM is positive definite, and thus
invertible, the specific choice u = F−1b�v in Eq. (22) leads to
the vector parameter Cramér-Rao lower bound B � BCR [71],
in the sense that the matrix B − BCR is non-negative definite
[i.e., v�Bv � v�BCRv holds for any real vector v], where

BCR = b F−1 b�

m
. (24)

This choice of u leads to a bound that is saturable by the
maximum likelihood estimator (see Sec. II E 2) asymptotically
in the number of measurements. As shown by the Cramér-
Rao lower bound Eq. (24), optimal POVMs are the ones that
minimize F−1.

In the two-parameter case, the FIM

F =
[
F1,1 F1,2

F1,2 F2,2

]
(25)

is invertible if and only if F1,1F2,2 − F 2
1,2 
= 0, its inverse given

by

F−1 = 1

F1,1F2,2 − F 2
1,2

[
F2,2 −F1,2

−F1,2 F1,1

]
. (26)
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Furthermore, if �̄i does not depend on θj for j 
= i (i.e., b is
diagonal), the diagonal elements of BCR satisfy:

(�θi)
2
CR = Fj,j b2

i,i

m
(
Fi,iFj,j − F 2

i,j

) �
b2

i,i

mFi,i

, (27)

with i 
= j , i,j = 1,2. For the two-parameter case, the in-
equality (27) can be immediately demonstrated by using
F1,1F2,2 − F 2

1,2 > 0, which holds since F is non-negative
definite and assumed here to be invertible.

In the estimation of a single parameter, the matrix BCR

reduces to the variance (�θCR)2. In the unbiased case [�̄(θ ) =
θ ], Eq. (24) becomes

�θCR = 1√
mF

, (28)

where F = ∫
dε 1

P (ε|θ)

(
dP (ε|θ)

dθ

)2
is the (scalar) Fisher infor-

mation (FI). By comparing Eq. (27) and Eq. (28), we see,
as reasonably expected, that the estimation uncertainty of a
unbiased multiparameter estimation is always larger, or at
most equal, than the optimal uncertainty obtained for a single
parameter (namely, when all other parameters are exactly
known).

2. Maximum likelihood estimation

A main goal is to find the estimators saturating the Cramér-
Rao bound. These are called estimators. While such estimators
are rare, it is not possible to exclude, in general, that an efficient
unbiased estimator may exist for any value of m. One of the
most important estimators is the maximum likelihood (ML)
�ML(ε). It is defined as the value �ML(ε), which maximizes
the likelihood function:

�ML(ε) = arg[max
ϕ

L(ε|ϕ)]. (29)

It is possible to demonstrate, by using the law of large numbers
and the central limit theorem, that, asymptotically in the
number of measurements, the maximum likelihood is unbiased
and normally distributed with covariance given by the inverse
FIM [63,67,68]. Therefore, the specific choice of vector u,
which leads to the Cramér-Rao bound (24) is justified by the
fact that the ML saturates this bound for a sufficiently large
number of measurements.

3. Quantum Cramér-Rao bound

The FIM satisfies

F � FQ, (30)

in the sense that the matrix FQ − F is positive definite. The
symmetric matrix FQ is called the quantum Fisher information
matrix and its elements are

[FQ]i,j = 1
2 Tr[ρ̂(θ )(L̂iL̂j + L̂j L̂i)], (31)

where the self-adjoint operator L̂i , called the symmetric
logarithmic derivative (SLD) [63], is defined via

∂ρ̂(θ )

∂θi

= L̂i ρ̂(θ ) + ρ̂(θ)L̂i

2
. (32)

In particular, we have dP (ε|θ )
dθi

= �(Tr[ρ(θ)Ê(ε)L̂i]), �(x)

being the real part of x. Note also that the operator L̂i (and
also FQ) generally depends on θ . Equation (30) holds for
any FIM (invertible or not) and there is no guarantee that,
in general, the equality sign can be saturated. Assuming that F
and FQ are positive definite (and thus invertible) and combining
Eq. (24)—in the unbiased case—with Eq. (30), we obtain the
matrix inequality BCR � BQCR [72], where

BQCR = FQ
−1

m
. (33)

This sets a fundamental bound, the quantum Cramér-Rao
(QCR) [63], to the phase sensitivity achievable with unbiased
estimators. The bound cannot be saturated, in general, in the
multiparameter case.

In the single-parameter case we have �θCR � �θQCR,
where the quantum Cramér-Rao reduces to

�θQCR = 1√
mFQ[ρ̂(θ )]

. (34)

The (scalar) quantum Fisher information (QFI) can be written
as

FQ[ρ̂(θ )] = (�L̂)2, (35)

where L̂ is the θ -dependent SLD and we used Tr[ρ̂(θ )L̂] = 0.
The equality �θCR = �θQCR (or, equivalently F = FQ) holds
if the POVM {Ê(ε)} is made by the set of projector operators
over the eigenvectors of the operator L̂, as first discussed in
Ref. [73]. The quantum Cramér-Rao is a very convenient way
to calculate the phase uncertainty since it can be saturated and
depends on the probe state and phase-encoding transformation.

III. SEPARABILITY AND ENTANGLEMENT

In this section we discuss the relation between phase-
estimation sensitivity and the entanglement properties of the
probe state. We first briefly review the case of states with
a fixed number of particles [15,16,74,75]. For states with
number fluctuations, the situation is more involved: a relation
between particle entanglement and phase sensitivity can be
established only in the incoherent case. In presence of number
coherences, the definition of separability and entanglement
between particles becomes a fuzzy concept because the
number of parties stay in a quantum superposition.

A. Bounds on the QFI for states with a fixed number of particles

A state of N particle is called separable if it can be written
as a convex sum of product states [76,77],

ρ̂(N)
sep =

∑
k

Pk

N⊗
i=1

|φk,i〉〈φk,i |, (36)

where |φk,j 〉 is the state of the ith particle (i = 1, . . . ,N )
and Pk � 0. A state is (multiparticle) entangled if it is not
separable. One can further consider the case where only κ � N

particles are in an entangled state and classify multiparticle
entangled states following Refs. [77–81]. A state of N particles
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is κ producible if it can be written as

ρ
(N)
κ−prod =

∑
k

Pk

Mk⊗
i=1

ρ̂
(Ni )
k , (37)

where ρ̂
(Nj )
k is a state of Nj � κ particles (j = 1, . . . ,Mk)

with
∑Mk

j=1 Nj = N . A state is κ-particle entangled if it is κ

producible but not (κ − 1) producible. In other words, a state
is κ-particle entangled if it contains at least one group of κ

particles that are in an entangled state. Notice that, formally, a
separable state is κ = 1 producible.

When the number of particles is fixed, there exists a precise
relation between the entanglement properties of a probe state
and the QFI: if the state is separable [i.e., can be written as in
Eq. (36)] then the inequality

FQ

[
ρ̂(N)

sep ,Ĵ (N)
n

]
� N (38)

holds [15,16]. A QFI larger than N is a sufficient condition
for entanglement and singles out the states that are useful for
quantum interferometry [16], i.e., states that can be used to
achieve a sub-shot-noise phase uncertainty. Furthermore, in
Refs. [74,75], it has been shown that for κ-producible states
the bound

FQ

[
ρ

(N)
κ−prod; Ĵ (N)

n

]
� sκ2 + r2 (39)

holds, where s = �N/κ� is the largest integer smaller than, or
equal to, N/κ and r = N − sκ . Hence, a violation of the bound
(39) proves (κ + 1)-particle entanglement. For general states
of a fixed number of particles, we have FQ[ρ̂(N),Ĵ

(N)
n ] � N2

[15,16], whose saturation requires N -particle entanglement
[15,16,74,75].

B. Bounds on the QFI for states with a fluctuating number of
particles, without number coherences

We here extend the definition of separability and entan-
glement to states of a fluctuating number of particles without
number coherences. An incoherent mixture (9) is defined as
separable if it can be written as [17]

ρ̂sep =
∑
N

QNρ̂(N)
sep , (40)

where ρ̂(N)
sep is a separable state of N particles, Eq. (36).

Incoherent states that are not separable according to this
definition are entangled. Similarly, an incoherent mixture is
κ producible if [82]

ρκ−prod =
∑
N

QNρ
(N)
κ−prod, (41)

where ρ
(N)
κ−prod is a κ-producible state of N particles, Eq. (37).

For separable states without number coherences we obtain

FQ[ρ̂sep,Ĵn] =
∑
N

QNFQ

[
ρ̂(N)

sep ,Ĵ (N)
n

]
�

∑
N

QNN = 〈N̂〉.

(42)

This inequality follows from Eq. (38) and the general relation

FQ[ρ̂inc,Ĵn] =
∑
N

QNFQ
[
ρ̂(N),Ĵ (N)

n

]
, (43)

valid for states without number coherences, where
FQ[ρ̂(N),Ĵ

(N)
n ] is the QFI calculated on the fixed-N subspace.

To demonstrate Eq. (43) we recall that the QFI for unitary
transformations can be written as [73],

FQ[ρ̂,Ĵn] = 2
∑

i,j

pi+pj 
=0

(pi − pj )2

pi + pj

|〈i|Ĵn|j 〉|2, (44)

where pj � 0 and {|j 〉} is a basis of the Hilbert
space,

∑
j |j 〉〈j | = 1, chosen such that ρ̂ = ∑

j pj |j 〉〈j |.
For states without number coherences, we have ρ̂inc =∑

N QN

∑
j p

(N)
j |j (N)〉〈j (N)| where {|j (N)〉} is a basis on

the fixed-N subspace. We obtain Eq. (43) by noticing that
〈j (N)|Ĵn|j ′(N ′)〉 = 〈j (N)|Ĵ (N)

n |j ′(N)〉δN,N ′ , which follows since
Ĵn does not couple states with different number of particles.
Similarly, it is possible to demonstrate that the SLD L̂ is
given by the sum of SLDs in each fixed-N subspace, L̂ =∑

N L̂(N). We thus conclude that when the input state does
not have number coherences the Von Neumann measurement
on the eigenstates of L̂(N) for each value of N—which in
particular does not have number coherences—is optimal: the
corresponding FI saturates the QFI.

As a direct consequence of Eq. (42) and the quantum
Cramér-Rao bound, the phase sensitivity achievable with
separable states without number coherences satisfies �θ �
�θSN, where

�θSN = 1√
m〈N̂〉

, (45)

is the shot-noise or standard quantum limit. This brings us
to the following result: An arbitrary state which fulfills the
inequality

χ2 ≡ 〈N̂〉
FQ[ρ̂,Ĵn]

< 1, (46)

for some direction n, is necessarily particle entangled accord-
ing to the definition given above. In other words, entanglement
is a necessary resource for sub-shot-noise sensitivity in
linear SU(2) interferometers when number coherences are not
available. States ρ̂ satisfying Eq. (46) are useful in a linear
interferometer implemented by the transformation Ĵn, since,
according to Eq. (34), they can provide a sub-shot-noise phase
sensitivity.

The relation between the properties of a probe state without
number coherences and the QFI can be further extended to the
case of κ-particle entanglement. Using Eqs. (41) and (43), we
have FQ[ρκ−prod; Ĵn] = ∑

N QNFQ[ρ(N)
κ−prod; Ĵ (N)

n ] and thus,
using Eq. (39),

FQ

[
ρ inc

κ−prod; Ĵn
]

�
∑
N

QN

{(
N

κ

)
κ2 +

[
N −

(
N

κ

)
κ

]2
}

= 〈ŝκ2〉 + 〈r̂2〉.
The operators ŝ = �N̂/κ� and r̂ = N̂ − ŝκ commute with N̂ .
The maximum value of the Fisher information is thus obtained
for maximally entangled states (κ = N ) and is

max
ρ̂inc

FQ[ρ̂inc,Ĵn] = 〈N̂2〉. (47)
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or, equivalently,

min
ρ̂inc

�θQCR = 1√
m〈N̂2〉

. (48)

Equations (47) and (48) are saturated by incoherent superpo-
sitions of NOON-like states ρ̂ = ∑

QN |NOON〉n〈NOON|,
where

|NOON〉n = |N,0〉n + |0,N〉n√
2

, (49)

and |N,0〉n(|0,N〉n) is the eigenstate of Ĵn with eigenvalue
N/2(−N/2). By a proper choice of the QN distribution, 〈N̂2〉
can be an arbitrary function of 〈N̂〉. Therefore, when fixing
〈N̂〉, the bound Eq. (48) can be arbitrarily small, even zero for
distribution having 〈N̂2〉 = +∞. This was first noticed in Ref.
[18]. The significance of the bound Eq. (48) is the subject of a
vivid debate in the recent literature, see Sec. IV.

C. Bounds on the QFI for states with a fluctuating number of
particles, with number coherences

A possible definition of separability for states of a fluc-
tuating number of particles has been proposed in Ref. [17].
There, a state with number coherences is called separable if it
is separable in every fixed-N subspace, i.e., if the incoherent
mixture

∑
N π̂N ρ̂cohπ̂N , obtained from ρ̂coh by projecting over

fixed-N subspaces, has the form of Eq. (40). States that are
not separable are called entangled. Yet, with this definition,
there is no clear relation multiparticle entanglement and phase
sensitivity. The main difficulty is due to the fact that the QFI
of a state with number coherences is generally larger than the
QFI of the incoherent counterpart of that state:

FQ[|ψ〉,Ĵn] � FQ[ρ̂inc,Ĵn], (50)

where |ψ〉 = ∑
N

√
QN |ψN 〉 is a normalized pure

state with coherences and ρ̂inc = ∑
N π̂N |ψ〉〈ψ |π̂N =∑

N |QN | |ψN 〉〈ψN | is obtained from |ψ〉〈ψ | by tracing
out the number coherences. Note that |ψ〉 and ρ̂inc have
the same number of particles distribution. Moreover, if
FQ[|ψ〉,Ĵn] > FQ[ρ̂inc,Ĵn] holds, then the saturation of
FQ[|ψ〉,Ĵn] necessarily requires a POVM with number
coherences. Indeed, the Fisher information obtained with
POVMs without coherences is upper bounded by FQ[ρ̂inc,Ĵn],
independently on the presence of number coherences in the
probe state.

Equation (50) can be demonstrated using (i) FQ[|ψ〉,Ĵn] =
4(�Ĵn)2

|ψ〉 [16,73] and FQ[ρ̂inc,Ĵn] = ∑
N QN (�Ĵ

(N)
n )2

|ψN 〉
[see Eq. (43)], where we have explicitly indicated the state
on which the variance is calculated on (we will keep this
notation where necessary and drop it elsewhere) and (ii) the
Cauchy-Schwartz inequality( ∑

N

|QN |〈ψN |Ĵ (N)
n |ψN 〉

)2

�
∑
N

|QN |〈ψN |Ĵ (N)
n |ψN 〉2.

(51)

Note that in Eq. (51), the equality holds if and only if
〈ψN |Ĵ (N)

n |ψN 〉 is a constant independent of N . As a conse-
quence of Eq. (50), we can find states with number coherences

TABLE II. The table summarizes the upper bound to the Fisher
information for separable states and SU(2) transformations. When
number coherences are present in both the probe state and in the
POVM there is no specific bounds for separable states. In this case
we have F � 〈N̂ 2〉, which holds for general states (see Sec. III C 3).

POVM without
POVM with coherences coherences

ρ̂ with coherences F � FQ � 〈N̂ 2〉 F � 〈N̂〉
ρ̂ without coherences F � FQ � 〈N̂〉 F � FQ � 〈N̂〉

that are separable in each fixed-N subspace and have a QFI
that can be arbitrarily larger than 〈N̂〉 (and can thus overcome
the shot-noise phase sensitivity). The two examples below
illustrate this fact.

We can give an operational meaning to the above definition
of separability and entanglement for states with number
coherences, if we restrict to SU(2) transformations and
POVMs without number coherences. In this (nonoptimal)
case, the Fisher information for separable states is F � 〈N̂〉.
Therefore, for coherent separable states and POVM without
coherences, the inequality �θ � �θSN holds. States with
number coherences, which, in a phase estimation experi-
ment using POVMs without number coherences, overcome
the shot-noise sensitivity, are necessarily entangled within
the definition given above. The situation is summarized in
Table II.

1. Example: MOON state

We consider the state (which we call MOON state)

|ψ〉 =
√

N

N + M
eiφ |M,0〉 +

√
M

N + M
|0,N〉, (52)

with N,M > 0. For N 
= M this state is separable in each
subspace of a fixed number of particles and thus separable
according to the definition [17] given above. If N = M

Eq. (52) reduces to the well-known NOON state [42–46],
which is maximally entangled. The QFI along the z direction
and given by

FQ[|ψ〉,Ĵz] = NM. (53)

The average number of particles is 〈N̂〉 = 2NM/(N + M).
Therefore, FQ[|ψ〉,Ĵz]/〈N̂〉 = (N + M)/2, and we have an
example of a separable state (with number coherences) which
has a QFI (arbitrarily, for N + M > 2) larger than the average
number of particles.

By projecting Eq. (52) over fixed-N subspaces we obtain
an incoherent mixture of separable states,

ρ̂inc = N

N + M
|M,0〉〈M,0| + M

N + M
|0,N〉〈0,N |. (54)

Its QFI is maximum on the plane orthogonal to z and fulfills
FQ[ρ̂inc,Ĵn] � 〈N̂〉, as expected [see Eq. (42)]. Notice also
that FQ[|ψ〉,Ĵz] � FQ[ρ̂inc,Ĵz], in agreement with Eq. (50).

2. Example: Coherence with the vacuum

An example similar to the one above has been discussed in
Ref. [27] and highlights how the coherence with the vacuum
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state can increase the QFI (see also [25,26] for a discussion in
the single-mode case). Let us take

|ψ〉 =
√

1 − 〈N̂〉
N

|vac〉 +
√

〈N̂〉
N

eiφN |N,0〉, (55)

where |vac〉 is the vacuum and 〈N̂〉 � N is the average number
of particles. The QFI for rotations around the Ĵz axis is
FQ[|ψ〉,Ĵz] = N〈N̂〉 − 〈N̂〉2. By properly choosing N , it is
possible to reach arbitrary large values of the QFI. For instance
FQ[|ψ〉,Ĵz] > 〈N̂〉k for N > 〈N̂〉k−1 + 〈N̂〉 and any k > 0.
In particular, Eq. (55) is, as above, an example of separable
state [according to Eq. (40)], which has a QFI larger than
〈N̂〉 [for N > 〈N̂〉 + 1]. We also have FQ[|ψ〉,Ĵz] > 〈N̂〉2

for N > 2〈N̂〉. Finally note that, as expected, the condition
FQ[|ψ〉,Ĵz] < 〈N̂2〉 = N〈N̂〉 is always fulfilled for 〈N̂〉 > 0.

3. Upper bounds of the quantum Fisher information for states
with number coherences

In the following we derive upper bounds on the QFI for
arbitrary states with number coherences. We consider different
transformations:

(i) SU(2) transformation Û (θ ) = e−iθ Ĵn . In this case, using
the convexity of the QFI [67] we obtain

FQ[ρ̂coh,Ĵn] �
∑

k

pkFQ[|ψk〉,Ĵn] = 4
∑

k

pk(�Ĵn)2
|ψk〉,

(56)

where the equality holds only for pure states. Furthermore,

4(�Ĵn)2
|ψk〉 � 4

∑
N

|QN,k|
〈
J 2

n

〉
|ψN,k〉

�
∑
N

|QN,k|N2 = 〈N̂2〉|ψk〉, (57)

where the first inequality is saturated for 〈Ĵn〉|ψk〉 = 0 and the
second inequality, due to 4〈Ĵ 2

n 〉|ψN,k〉 � N2, is saturated by
a NOON-like state (49). Combining Eqs. (56) and (57), we
obtain

FQ[ρ̂coh,Ĵn] � Tr[ρ̂cohN̂
2], (58)

where the equality is saturated by the coherent superposition
of states (49) (note that 〈NOONn|Ĵn|NOONn〉 = 0). We thus
have

(�θ )2
QCR � 1

mTr[ρ̂cohN̂2]
. (59)

(ii) U(2) transformations Û (φ0) = e−iφ0N̂ . From the convexity
of the QFI [67], we obtain

FQ[ρ̂coh,N̂ ] � 4
∑

k

pk(�N̂ )2
|ψk〉 � 4(�N̂ )2

ρ̂coh
, (60)

where the second inequality follows from Cauchy-Schwarz.
Therefore

(�φ0)2
QCR � 1

4m(�N̂)2
ρ̂coh

. (61)

(iii) U(2) transformations Û (θ,φ0) = e−iθ Ĵne−iφ0N̂ . In this case
both parameters are estimated at the same time and we apply

the multiparameter estimation theory outlined above. The
inequality (27) leads to

(�θ )2
CR � 1

mFQ[ρcoh,Ĵn]
, (�φ0)2

CR >
1

mFQ[ρcoh,N̂ ]
,

which can be further bounded using the inequalities (58) and
(60). For pure states

F−1
Q = 2

det[FQ]

(
2(�Ĵn)2 〈N̂〉〈Ĵn〉 − 〈N̂ Ĵn〉

〈N̂〉〈Ĵn〉 − 〈N̂ Ĵn〉 (�N̂ )2/2

)
,

where det[FQ] = 4(�N̂ )2(�Ĵn)2 − 4[〈N̂ Ĵn〉 − 〈N̂〉〈Ĵn〉]2.
We thus have

(�φ0)2 � m−1

(�N̂ )2 − [〈N̂ Ĵn〉 − 〈N̂〉〈Ĵn〉]2/(�Ĵn)2
, (62)

which, in particular, is always larger than 1/m(�N̂ )2, and

(�θ )2 � m−1

4(�Ĵn)2 − 4[〈N̂ Ĵn〉 − 〈N̂〉〈Ĵn〉]2/(�N̂ )2
, (63)

which is always larger than 1/4m(�Ĵn)2.

IV. HEISENBERG LIMIT

In this section we discuss the ultimate phase sensitivity
achievable when fixing the average number of particles
〈N̂〉 in the probe state. This is generally indicated as the
Heisenberg limit. We focus on SU(2) transformations e−iθ Ĵn . In
Sec. IV A we show that the Heisenberg limit for states and/or
POVMs without number coherences is given by Eq. (4). For
states with number coherences, the situation is more involved
and a conclusive demonstration of Eq. (4) is not available. In
Sec. IV B we demonstrate that Eq. (4) holds in the central limit,
at least. Finally, in Sec. IV C we give an overview of the main
results obtained in the literature regarding the Heisenberg limit
for states with number coherences.

A. Heisenberg limit for states and/or POVMs without number
coherences

The mean value and variance (for m independent measure-
ments) of an arbitrary estimator �(ε) are

�̄ =
∫

dε P (ε|θ ) �(ε), (64)

and

(�θ )2 =
∑

ε

P (ε|θ ) [�(ε) − �̄]2, (65)

respectively, where ε ≡ {ε1,ε2, . . . ,εm} and P (ε|θ ) =∏m
i=1 P (εi |θ ). For states and/or POVMs without number

coherences, taking P (ε|θ ) as in Eq. (20), we can rewrite Eq.
(64) as

�̄ =
∑

N

QN �̄N , (66)

where the sum extends over all possible sequences N ≡
{N1,N2, . . . ,Nm}, QN ≡ ∏m

i=1 QNi
is the probability of the
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given sequence [
∑

N QN = 1],

�̄N ≡
∫

dε P (ε|N,θ ) �(ε), (67)

and P (ε|N,θ ) ≡ ∏m
i=1 P (εi |Ni,θ ). Following analogous cal-

culations, we can rewrite Eq. (65) as

(�θ )2 =
∑

N

QN [�̄N − �̄]2 +
∑

N

QN (�θN )2, (68)

where

(�θN )2 ≡
∫

dε P (ε|N,θ ) [�(ε) − �̄N ]2 (69)

is the variance of the estimator �(ε) for a given sequence
N . Since

∫
dεP (ε|N,θ ) = 1, we can apply the Cramér-Rao

theorem to set the bound

(�θN )2 � b2
N

FN (θ )
, (70)

where bN ≡ ∂θ �̄N and

FN (θ ) ≡
∫

dε
1

P (ε|N,θ )

(
d

dθ
P (ε|N,θ )

)2

(71)

is the Fisher information for the specific N . Note that
FN (θ ) = ∑m

i=1 FNi
(θ ), where FNi

(θ ) is the Fisher information
calculated on the subspace of Ni particles,

FNi
(θ ) ≡

∫
dεi

1

P (εi |Ni,θ )

(
d

dθ
P (εi |Ni,θ )

)2

. (72)

If all the numbers Ni are equal to N , we recover FN (θ ) =
mFN (θ ) and thus the usual multiplication factor m. Note also
that the Fisher information FNi

(θ ) is bounded as FNi
(θ ) � N2

i

[15,16], and thus FN (θ ) �
∑m

i=1 N2
i = N · N = N2. Using

this result and Eq. (70) we obtain

∑
N

QN (��N )2 �
∑

N

QNb2
N

N2
�

∑
N

QNb2
N

S(N)2
, (73)

where S(N) ≡ ∑m
i=1 Ni is the sum of all values of N in the

sequence. The last inequality in Eq. (73) is a consequence of
N2 � S(N)2, which follows since all Ni are positive numbers.
We now use the Cauchy-Schwarz inequality

∑
N

QNb2
N

S(N)2

∑
N ′

QN ′ �
(∑

N

QN bN

S(N)

)2

. (74)

Using the normalization of QN and Eq. (73), we have

∑
N

QN (�θN )2 �
(∑

N

QN bN

S(N)

)2

. (75)

A second Cauchy-Schwarz inequality gives

∑
N

QN bN

S(N)

∑
N ′

QN ′S(N ′) �
(∑

N

QN

√
bN

)2

, (76)

FIG. 2. (Color online) Schematic representation of Eq. (4) in log-
log scale (solid line). In the left-hand side of the figure (orange region),
�θHL = 1/m〈N̂〉 (solid line), which is larger than 1/

√
m〈N̂ 2〉 (dashed

line). In the right-hand side of the figure (green region), for m �
〈N̂ 2〉/〈N̂〉2, �θHL = 1/

√
m〈N̂ 2〉 (solid line) is larger than 1/m〈N̂〉

(dashed line)

where we note that
∑

N QNS(N) = m〈N̂〉, bN are positive
numbers, and 〈N̂〉 = ∑

N QNN is the average number of
particles. We thus have

∑
N

QN (�θN )2 �
(∑

N QN
√

bN
)4

(m〈N̂〉)2
. (77)

Finally, by using Eqs. (68) and (77), the sensitivity of the
estimator can be bounded as

(�θ )2 �
∑

N

QN (�̄N − �̄)2 +
( ∑

N QN
√

bN
)4

(m〈N̂〉)2
. (78)

This is the main result of this section. The first term in Eq. (78)
is always positive and is characteristic of phase estimation with
probe states of a nonfixed number of particles. It is equal to
zero if and only if �̄N = �̄ for all possible sequences N .
Since sequences with m values of the same total number
of particles N are possible, the condition �̄N = �̄ implies
that the mean value of the estimator is the same (and equal
to �̄) in each fixed-N subspace. Furthermore, a convenient
situation is to have an unbiased estimator �̄ = θ for all values
of m. In this case [assuming that the first term in Eq. (78)
is equal to zero, �̄N = θ for all possible sequences N], we
have [17]

�θ � 1

m〈N̂〉 . (79)

We recall that this inequality holds when the estimator is
unbiased in each fixed-N subspace, for all the values of m.
If the estimator is biased in some fixed-N subspace, the more
general, but less conclusive, inequality (78) holds.

1. Discussion

In Fig. 2 we schematically represent Eq. (4) as a function
of the number of measurements m. We recall here that the
first bound of Eq. (4), derived above, is generally not tight
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and is valid for estimators which are unbiased in each fixed-N
subspace. The second bound in Eq. (4) is the optimal quantum
Cramér-Rao bound, Eq. (48), for estimators which are globally
unbiased (�̄ = θ ). It can be saturated by the maximum
likelihood estimator in the central limit (i.e., for m � mcl and
a sufficiently large mcl) by using an incoherent mixture of
NOON-like states.

Since 〈N̂2〉 � 〈N̂〉, we can distinguish two regimes. For
m � 〈N̂2〉/〈N̂〉2, the first bound in Eq. (4) is significant. In this
regime, we can thus rule out, for states and/or POVM without
coherences, the existence of estimators that are unbiased in
each fixed-N subspace and saturate the Cramér-Rao bound:
indeed, if such estimators would exist, we would have a
violation of Eq. (4). The saturation of the Cramér-Rao bound
is only possible for m � 〈N̂2〉/〈N̂〉2, where the second bound
in in Eq. (4) dominates. In other words,

mcl � 〈N̂2〉
〈N̂〉2

. (80)

The larger is 〈N̂2〉, the smaller is Eq. (48) but, at the same
time, the larger is the number of repeated measurements
needed to reach the central limit and saturate Eq. (48). If
〈N̂2〉 → ∞, reaching the central limit requires an infinite
number of measurements m → +∞, and, accordingly, the
phase uncertainty vanishes, �θ → 0.

2. Example: Biased estimator

We recall that Eq. (79) applies to estimators that are
unbiased in each fixed-N subspace. If this is not the case,
the bound 1/m〈N̂〉 can be violated. This is explicitly shown
in the following example. We consider the state

ρ̂ = (1 − p) |vac〉〈vac| + p |NOON〉n〈NOON|, (81)

where |vac〉 is the vacuum and |NOON〉n = (|M,0〉n +
|0,M〉n)/

√
2 is a NOON-like state [see Eq. (49)] of M

particles. The average number of particles is 〈N̂〉 = pM . The
QFI is

FQ[ρ̂,Ĵn] = pM2 = 〈N̂〉2

p
, (82)

leading to the quantum Cramér-Rao bound

(�θQCR)2 = 1

mFQ[ρ̂,Ĵn]
= p

m〈N̂〉2
. (83)

We consider an optimal POVM (for which F = FQ) and an
estimator [83]

�(ε) =
{

0 if N = 0

�̃(ε)/p if N = M,

where ε is the result of a possible measurement in the fixed-N
subspace and �̃(ε) is an arbitrary unbiased estimator. The
estimator �(ε) is biased on each N subspace but it is globally
unbiased, �̄ = θ . In this case Eq. (79) does not apply. We
further assume that the estimator �̃(ε) saturates the Cramér-
Rao bound for a single measurement (m = 1). In this case,
using Eq. (68) [with Q0 = 1 − p,QM = p, �̄0 = 0, �̄M =

θ/p,�θ0 = 0 and �θM = ��̃/p] we have

(�θ )2 =
∑
N

QN (�̄N − �̄)2 +
∑
N

QN (�θN )2

=
(

1 − p

p

)
θ2 + (��̃)2

p

=
(

1 − p

p

)
θ2 + 1

pFQ[|NOON〉n,Ĵn]

=
(

1 − p

p

)
θ2 + p

〈N̂〉2
.

The first term highlights the role of θ = 0 as a sweet spot for the
phase estimation. If θ = 0 we may have a violation of Eq. (4)
by an arbitrary small factor p, where p may even scale as p ∼
1/〈N̂〉k , inversely proportional to an arbitrary power of 〈N̂〉.

B. Some considerations about the Heisenberg limit for states
and POVMs with number coherences

Here we show that the bound 1/m〈N̂〉 applies in the
fully coherent situation at least in the central limit. As
discussed in Sec. III C, the optimal quantum Cramér-Rao
bound is �θQCR = 1/

√
m〈N̂2〉, which is uniquely saturated

by a probe given by superpositions of pure NOON-like states
of the form |ψ〉 = ∑

N

√
QN |NOON〉n [see Eq. (49)]. Since

〈NOONn|Ĵn|NOONn〉 = 0 for any N , the QFI can be written,
in this case, as FQ = 4〈Ĵ 2

n 〉. In addition, since the operator
Ĵn commutes with N̂ , off-diagonal terms N 
= N ′ in the
density matrix |NOON〉n〈NOON| do not play any role in
the calculation of the Cramér-Rao bound. Hence a mixture∑

N QN |NOON〉n〈NOON| has the same QFI. It follows that

the limit �θ = 1/
√

m〈N̂2〉 can be saturated for m � minc
cl with

a POVM without number coherences. It may happen, however,
that the number of measurements for which the Cramér-Rao
bound is saturated is different if number coherences in the
state and POVM are used. For an asymptotically large m, the
saturation in both cases is guaranteed by the Fisher theorem. In
this regime, the results of Sec. IV A hold and we conclude that
the Heisenberg limit Eq. (4) is valid also in the full coherent
case. In particular, �� � 1/m〈N̂〉 is a general bound for
sufficiently large m, even if states with coherences and POVMs
with coherences are used.

A final remark concerns the uniqueness of the states
that saturate the Cramér-Rao bound. Saturating FQ = 〈N̂2〉
requires that 4(�Ĵ

(N)
n )2 = N2 for any N . Only states such

that π̂Nρπ̂N = QN |NOON〉n〈NOON| satisfy this constraint.
However, there are many such states for given 〈N̂〉 and 〈N̂2〉.
This is because fixing 〈N̂〉 and 〈N̂2〉 corresponds to choosing
two constraints on the distribution {QN }, in addition to the
constraints

∑
N QN = 1 and QN � 0. {QN } is in general not

uniquely defined by these constraints. Even though different
states can reach FQ = 〈N̂2〉, they may be characterized by
different values of mcl, i.e., the minimal number where the
central limit is reached, depending also on the estimator.

C. Overview of recent literature on the Heisenberg limit

The comparison between our results and the recent liter-
ature deserves a discussion. We recall that our definition of
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TABLE III. Summary of the fundamental bounds of phase
sensitivity discussed in this paper. For states and/or POVM without
number coherence, the Heisenberg limit is given by the competition
of two bounds [�θHL, Eq. (4)], as explained in Sec. IV. For POVMs
and states with number-coherences only the Cramèr-Rao bound �θCR

applies. In this case and for SU(2) transformations, Eq. (4) holds at
least in the central limit, as discussed in Sec. IV B.

POVM without
POVM with coherences coherences

ρ̂in with coherences �θ � �θCR �θ � �θHL

ρ̂in without coherences �θ � �θHL �θ � �θHL

Heisenberg limit, Eq. (4), holds for two-mode transformations
and unbiased estimators. In particular, it does not apply to
states and POVM with number coherences outside the central
limit, for which no conclusive results has been obtained so
far. A summary of our findings is reported in Table III. In
the literature, the problem of defining the Heisenberg limit for
states and POVMs with number coherences has been tackled
with different techniques, which we briefly discuss below.
Overall, there is a strong indication in the literature that Eq. (4)
is the general form of Heisenberg limit. While the literature
leaves open the possibility to overcome the bound 1/m〈N̂〉 at
specific phase values, there is no proposal showing convincing
evidence of sub-Heisenberg uncertainties [26].

Before presenting an overview of the literature, it is
important to recall here that there are two models of phase
estimation [84,85]: (i) The first model assumes that the phase
shift θ is a fixed (nonrandom) unknown quantity. This is the
framework discussed in this paper. It assumes that we can
collect an arbitrary number of sequences ε = {ε1,ε2, . . . ,εm}
of m measurements while keeping fixed the (unknown) phase
shift. The phase sensitivity is given by the variance of the
estimator �(ε) (see Sec. II E):

(��)2
θ =

∫
dε P (ε|θ )[�(ε) − �̄(θ )]2, (84)

where �̄(θ ) is the θ -dependent mean value of the estimator.
(ii) The second model assumes that the phase is a random
variable with a probability distribution P (θ ), called the prior.
Parameter estimation based on this model is referred to as
Bayesian estimation [85]. In this case, each sequence ε of
m measurements is obtained with a random phase shift. The
phase sensitivity is defined as the weighed mean-square error

(��)2
bay =

∫
dθ

∫
dε P (ε,θ )[�(ε) − �̄(θ )]2, (85)

where P (ε,θ ) = P (ε|θ )P (θ ) is the joint probability distribu-
tion of phase θ and experimental measurement ε.

1. Sweet spot phase estimation

Let us consider here the estimation of a fixed phase shift
with probe states and POVMs with number coherences. At
certain phase values (indicated as “sweet spots” in Ref. [34])
the Cramér-Rao bound can be arbitrary small when fixing the
average number of particles 〈N̂〉 in the state. Nevertheless, in
Ref. [34] it is shown that the sum of uncertainties at two nearby
phase shifts, θ1 and θ2, is bounded when the phases are suffi-

ciently far apart. For unbiased estimators, the inequality [34]

(��)θ1 + (��)θ2

2
� κ

m(〈Ĥ 〉 − H0)
(86)

holds, where Ĥ is the generator of phase shift (a phase
encoding transformation e−iĤ θ is assumed), H0 is the
minimum eigenvalue of Ĥ populated in the probe state. The
maximum value of κ is 0.074 reached when |θ1 − θ2| �
0.83/m(〈Ĥ 〉 − H0). In the special (which yet might be
nonoptimal) case when the phase sensitivity (��)θ does not
depend on θ , Eq. (86) implies (��)θ � κ/m(〈Ĥ 〉 − H0)
[34]. These results require the generator of phase shift to have
a discrete spectrum and a finite lowest eigenvalue [34]. The
bound (86) thus holds, for instance, for single-mode phase
estimation, when the generator of phase shift is the number
of particles operator, N̂ . Equation (86) does not hold for the
two-mode case unless one imposes a bound on the total number
of particles distribution. It should also be noticed that the
bound found in Ref. [34] refers to the mean-square fluctuation
of the estimator with respect to the true phase values [which
coincides to Eq. (84) only if the estimator is unbiased]. For
biased estimators, the bound (86) does not apply.

2. Bayesian bounds

Several works [29–33] have discussed the Heisenberg limit
within the framework of Bayesian phase estimation, i.e.,
when the phase sensitivity is averaged over the prior, see
Eq. (85). This approach might be considered as a generaliza-
tion of the averaging over two phases discussed in the previous
subsection [34]. In this case, the Heisenberg limit is found by
making use of suitable Bayesian bounds. Using the Ziv-Zakai
(Bayesian) bound [85] in the low prior information regime
[e.g., when P (θ ) is uniform a phase interval sufficiently wider
than 1/m〈Ĥ 〉] it is possible to demonstrate that [29,30]

(��)bay � α

m〈Ĥ 〉 , (87)

where α is a constant [29,30] (α = 0.1548 for an uniform prior
distribution [35]). In the opposite regime, when the width
of P (θ ) is smaller than 1/m〈Ĥ 〉, the phase uncertainty is
essentially determined by the prior distribution [29,35]. In this
case, sub-Heisenberg uncertainties are possible but ineffective
(i.e., the estimation process does not bring more information
than a random guess of the phase within the prior itself [29]). In
Refs. [29,30] the bound (87) was demonstrated by assuming
Ĥ to have a finite lower bound in the spectrum, as in the
single-mode case with Ĥ = N̂ . The extension of Eq. (87) to
unbounded Hamiltonians (and thus when Ĥ = Ĵn) is discussed
in Ref. [35].

In Refs. [31–33], using an entropic uncertainty relation, it
was possible to show that

(��)bay � β

m〈|Ĥ − h|〉 , (88)

where h is an arbitrary eigenvalue of Ĥ , which can have a
discrete or continuous spectrum [33], and β, depending on
the prior distribution P (θ ), can be arbitrarily small for a
sufficiently narrow prior (β = 0.559 for a completely random
phase shift in a 2π interval [31]). The derivation of Eq. (88)
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does not require Ĥ to be discrete, have integer eigenvalues,
or have a finite lowest eigenvalue [33]. In particular, the
bound applies to two-mode operators [32], i.e., when Ĥ = Ĵn.
In this case, we have 〈|Ĵn|〉 = ∑

N

∑N/2
μ=−N/2 |μ| |QN,μ|2,

where −N/2 � μ � N/2 are eigenvalues of Ĵ
(N)
n with eigen-

state |N,μ〉 and the mean value is calculated over |ψ〉 =∑
N,μ QN,μ|N,μ〉, which is a state with number coherences.

Using |μ| � N/2 we obtain 〈|Ĵn|〉 � 〈N̂〉/2 and thus, from
Eq. (88), (��)bay � β/m〈N̂〉.

3. Coherent superposition with the vacuum

Reference [25] discusses a single-mode phase estimation
reaching, at specific phase values, a phase uncertainty
arbitrarily smaller than 1/m〈N̂〉. This result is obtained
from a calculation of the Fisher information for pure states
having a large vacuum component (see a similar example in
Sec. III C 2). In [25] it is argued that the maximum likelihood
estimator might reach an arbitrary small phase uncertainty
[25]. Results and claims similar to the one of Ref. [25] can be
found in the early literature [5–7]. The bounds (87) and (88)
do not apply to this case and therefore there are no analytical
results in the literature that forbid the conclusions of Ref. [25]
(and also of Refs. [5–7]). A detailed numerical analysis of the
estimation protocol proposed in Ref. [25] can be found in Ref.
[26], showing no violation of the Heisenberg limit. For a small
number of measurements, m, the estimation protocol proposed
in Ref. [25] is strongly biased [26]. In the large m limit, the
estimation becomes unbiased and the sensitivity saturates
the Cramér-Rao bound (�θ )2

θ = 1/mF (θ ). However, the
number of measurements needed to saturate an arbitrary
small Cramér-Rao bound is so large that the Heisenberg limit
�θ = 1/m〈N̂〉 is not surpassed [26]. Analogous conclusions
were reported in Ref. [8], showing no violation of the
Heisenberg limit for the proposals [5–7].

4. Two-mode squeezed vacuum proposal

In Ref. [21] it is argued that the two-mode squeezed
vacuum state can be used to overcome the Heisenberg limit
in a Mach-Zehnder interferometer with parity detection in a
single-output. As discussed in Sec. II C, the measurement of
the parity of the number of particles in a single output port
does not contain number coherences. Therefore, Eq. (4) applies
here, for estimators that are unbiased in each fixed-N subspace.
It is worth analyzing this example in detail.

The two-mode squeezed vacuum state is

|ψ〉 =
+∞∑
N=0

e−iψN (tanh r)N

cosh r
|N,N〉, (89)

where r is a squeezing parameter. We have 〈N̂〉 = 2 sinh2 r ,
〈N̂2〉 = 2〈N̂〉(〈N̂〉 + 1) and (�N )2 = sinh2 2r = 〈N̂〉(〈N̂〉 +
2). The Heisenberg limit (4) is

(�θ )HL = max

[
1√

2m〈N̂〉(〈N̂〉 + 1)
,

1

m〈N̂〉

]
. (90)

This can be compared to the quantum Cramér-Rao bound
for rotations around the y axis, [corresponding to the Mach-
Zehnder interferometer transformation, with quantum Fisher

information FQ = 4(�Ĵy)2]:

(�θ )QCR = 1√
m〈N̂〉(〈N̂〉 + 2)

. (91)

In Ref. [21] the sensitivity was calculated with an error
propagation formula, that matches Eq. (91) at θ = 0. Equa-
tion (91) overcomes �θ = 1/

√
m〈N̂〉 that is often indicated

as the Heisenberg limit [21]. While this appears as the natural
extension of Eq. (2) to the case of fluctuating number of
particles (by replacing N with 〈N̂〉), it is not a fundamental
bound.

In the large-m limit Eq. (91) is always (for the interesting
case 〈N̂〉 > 1) larger than Eq. (90). The two-mode squeezed
vacuum state is very useful to overcome the shot-noise
limit but it does not really surpass the Heisenberg limit
(even if POVMs with number coherences are used). The
saturation of the Heisenberg limit in the large-m limit Eq.
(90) can be obtained with the superposition of NOON states∑+∞

N=0
e−iψN (tanh r)N

cosh r

|N,0〉+|0,N〉√
2

.
In the small-m limit, when the second term in Eq. (90)

dominates over the first one (for m = 1 in particular), we find
(�θ )QCR � 1/〈N̂〉. The apparent contradiction between our
results and Ref. [21] is solved by noticing that Eq. (91) is
known to be saturable (by the maximum likelihood estimator)
only in the central limit. There is no guarantee (and not shown
in Ref. [21]) that an unbiased estimator saturating Eq. (91) for
small-m values can be found. The results of our paper show
that such an estimator (unbiased in each fixed-N subspace)
cannot exist: the central limit is reached for m � 2 + 1/〈N̂〉,
where the first term in Eq. (90) dominates over the second one.
If the phase is estimated with a POVM with coherences (that
is not the case discussed in [21]), then Eq. (90) holds in the
central limit, at least.

V. CONCLUSIONS

Phase estimation will likely become the first many-body
quantum technology where classical bounds are overcome
thanks to quantum correlations. It is therefore interesting to
define the fundamental quantum bound (generally indicated
as the Heisenberg limits), which limit the sensitivity of
phase-estimation experiments. In this paper we have set
the Heisenberg limit, Eq. (4), under relevant experimental
conditions: fluctuating number of particles, absence of number
coherences in the probe state and/or in the measurement
strategy, and unbiased estimations. In this case we have also
demonstrated that particle entanglement (we have extended
the concept of particle entanglement to the case of state with
fluctuating number of particles) is necessary to overcome the
classical—shot-noise—phase uncertainty. If the probe state
and the output measurement contain coherences between
different total number of particles, it is not possible to establish
a relation between entanglement and phase sensitivity. In this
case, the phase-sensitivity bound Eq. (4) can only be set in the
central limit.
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APPENDIX A: GENERAL TWO-MODE
TRANSFORMATIONS

It is possible to write the general transformation (11) as the
product of four matrices [60]:

U =
[
e−iφ0 0

0 e−iφ0

]
×

[
e−iψ/2 0

0 eiψ/2

]

×
[

cos ϑ
2 − sin ϑ

2

sin ϑ
2 cos ϑ

2

]
×

[
e−iφ/2 0

0 e+iφ/2

]
,

where φt = (ψ + φ)/2 and φr = (ψ − φ)/2. Using the
Jordan-Schwinger representation of angular momentum, we
have [3],

Ux =
[

cos ϑ
2 −i sin ϑ

2

−i sin ϑ
2 cos ϑ

2

]
↔ Ûx = e−iϑĴx , (A1)

Uy =
[

cos ϑ
2 − sin ϑ

2

sin ϑ
2 cos ϑ

2

]
↔ Ûy = e−iϑĴy , (A2)

Uz =
[
e−iφ/2 0

0 e+iφ/2

]
↔ Ûz = e−iφĴz , (A3)

and using eiφ0N̂ â e−iφ0N̂ = e−iφ0 â, Eq. (11) can be associated
to

Û(φ0,θ ) = e−iφ0N̂ e−iψĴz e−iϑĴye−iφĴz . (A4)

By using the Euler-Rodrigues formula, Eq. (A4) can be
rewritten as Eq. (12), where

cos
θ

2
= cos

ϑ

2
cos

φ + ψ

2
,

and Ĵn = αĴx + βĴ y + γ Ĵz , with

α = sin ϑ
2 sin φ−ψ

2√
1 − cos2 ϑ

2 cos2 φ+ψ

2

,

β = sin ϑ
2 cos φ−ψ

2√
1 − cos2 ϑ

2 cos2 φ+ψ

2

,

γ = cos ϑ
2 sin φ+ψ

2√
1 − cos2 ϑ

2 cos2 φ+ψ

2

.

This encompasses, for instance, the beam splitter [Eq. (A1), for
φ = π/2, ψ = −π/2 and ϑ = θ ], Mach-Zehnder [Eq. (A2),
for φ = ψ = 0 and ϑ = θ ], and phase shift [Eq. (A3), for
ψ = ϑ = 0 and φ = θ ] transformations.

APPENDIX B: DERIVATION OF EQ. (20)

States without number coherences. The incoherent probe
Eq. (9) transforms according to Eq. (12) as

ρ̂out(φ0,θ ) =
+∞∑
N=0

QN Û(φ0,θ ) ρ̂(N) Û(φ0,θ )†

=
+∞∑
N=0

QN e−iθ Ĵn ρ̂(N)e+iθ Ĵn , (B1)

as a consequence of [ρ̂(N),N̂ ] = 0. Equation (B1) is a function
of θ and shows that only SU(2) transformations, e−iθ Ĵn , are
relevant for states without number coherence. Equation (20)
follows from Eq. (B1), independently from the presence of
number coherences in the POVM.

POVMs without number coherences. For the case of
states with coherences, Eq. (6), and POVM without number
coherences, Eq. (16), we have

P (ε|θ ) =
∑
N

Tr[π̂N ÊN (ε) π̂N Û(φ0,θ ) ρ̂coh Û(φ0,θ )†]

=
∑
N

Tr[ÊN (ε) Û(φ0,θ ) π̂N ρ̂cohπ̂N Û(φ0,θ )†]

=
∑
N

QNTr[ÊN (ε)Û(φ0,θ )ρ̂(N)Û(φ0,θ )†]

=
∑
N

QNTr
[
ÊN (ε)e−iθ Ĵ

(N)
n ρ̂(N)e+iθ Ĵ

(N)
n

]

=
∑
N

QNP (ε|N,θ ), (B2)

where P (ε|N,θ ) = Tr[ÊN (ε)e−iθ Ĵ
(N)
n ρ̂(N)e+iθ Ĵ

(N)
n ]. To derive

this result we have used the commutation relation [Û,π̂N ] =
0 and π̂N ρ̂cohπ̂N = QNρ̂(N), where ρ̂(N) is a density ma-
trix defined on the fixed-N subspace. We have also used
π̂N Û(φ0,θ )π̂N = e−iφ0Ne−iθ Ĵ

(N)
n due to Ĵn = ⊕N Ĵ

(N)
n , where

Ĵ
(N)
n acts on the fixed-N subspace. When POVM as in Eq. (16)

are used, we can therefore conclude, from Eq. (B2), that only
SU(2) transformations are relevant and number coherences in
the probe state do not play any role.
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(2010); B. Lücke et al., Science 334, 773 (2011); C. F. Ockeloen,
R. Schmied, M. F. Riedel, and P. Treutlein, Phys. Rev. Lett. 111,
143001 (2013); T. Berrada et al., Nature Comm. 4, 2077 (2013);
S. van Frank et al., ibid. 5, 4099 (2014); H. Strobel et al., Science
345, 424 (2014).

[40] P. Walther et al., Nature (London) 429, 158 (2004); M. W.
Mitchell, J. S. Lundeen, and A. M. Steinberg, Nature 429,
161 (2004); T. Nagata et al., Science 316, 726 (2007); M.
Kacprowicz et al., Nature Photon. 4, 357 (2010); I. Afek, O.
Ambar, and Y. Silberberg, Science 328, 879 (2010); G. Y. Xiang
et al., Nature Photon. 5, 43 (2011); R. Krischek et al., Phys. Rev.
Lett. 107, 080504 (2011).

[41] R. Schnabel, N. Mavalvala, D. E. McClelland, and P. K. Lam,
Nature Commun. 1, 121 (2010); The LIGO Scientific Collab-
oration, Nature Phys. 7, 962 (2011); H. Grote, K. Danzmann,
K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, Phys.
Rev. Lett. 110, 181101 (2013).

[42] J. J. Bollinger and W. M. Itano, D. J. Wineland and D. J. Heinzen,
Phys. Rev. A 54, R4649 (1996).

[43] S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert,
M. B. Plenio, and J. I. Cirac, Phys. Rev. Lett. 79, 3865
(1997).

[44] C. C. Gerry and R. A. Campos, Phys. Rev. A 68, 025602 (2003);
R. A. Campos, Christopher C. Gerry, and A. Benmoussa, ibid.
68, 023810 (2003).
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[50] L. Pezzè and A. Smerzi, Phys. Rev. Lett. 100, 073601 (2008).
[51] A. Shaji and C. M. Caves, Phys. Rev. A 76, 032111 (2007).
[52] U. Dorner, R. Demkowicz-Dobrzanski, B. J. Smith, J. S.

Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley,
Phys. Rev. Lett. 102, 040403 (2009).

[53] B. M. Escher, R. L. de Matos Filho, and L. Davidovich, Nature
Phys. 7, 406 (2011).

[54] R. Demkowicz-Dobrzanski, J. Kolodynski, and M. Guta, Nature
Commun. 3, 1063 (2012).

[55] U. Dorner, New J. Phys. 14, 043011 (2012).
[56] M. Landini, M. Fattori, L. Pezzè, and A. Smerzi, New J. Phys.
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[77] O. Gühne and G. Tóth, Phys. Rep. 474, 1 (2009).
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[83] R. Demkowicz-Dobrzański (private communication).
[84] M. G. A. Paris, Int. J. Quantum Inform. 7, 125 (2009).
[85] Bayesian Bounds for Parameter Estimation and Nonlinear

Filtering/Tracking, edited by H. L. Van Trees and K. L. Bell
(Wiley-IEEE, Piscataway, 2007).

032103-15

http://dx.doi.org/10.1103/PhysRev.88.101
http://dx.doi.org/10.1103/PhysRev.88.101
http://dx.doi.org/10.1103/PhysRev.88.101
http://dx.doi.org/10.1103/PhysRev.88.101
http://dx.doi.org/10.1103/PhysRevA.40.1371
http://dx.doi.org/10.1103/PhysRevA.40.1371
http://dx.doi.org/10.1103/PhysRevA.40.1371
http://dx.doi.org/10.1103/PhysRevA.40.1371
http://dx.doi.org/10.1103/PhysRevA.48.3265
http://dx.doi.org/10.1103/PhysRevA.48.3265
http://dx.doi.org/10.1103/PhysRevA.48.3265
http://dx.doi.org/10.1103/PhysRevA.48.3265
http://dx.doi.org/10.1016/0375-9601(67)90366-0
http://dx.doi.org/10.1016/0375-9601(67)90366-0
http://dx.doi.org/10.1016/0375-9601(67)90366-0
http://dx.doi.org/10.1016/0375-9601(67)90366-0
http://dx.doi.org/10.1080/00107514.2010.509995
http://dx.doi.org/10.1080/00107514.2010.509995
http://dx.doi.org/10.1080/00107514.2010.509995
http://dx.doi.org/10.1080/00107514.2010.509995
http://dx.doi.org/10.1103/PhysRevA.87.043833
http://dx.doi.org/10.1103/PhysRevA.87.043833
http://dx.doi.org/10.1103/PhysRevA.87.043833
http://dx.doi.org/10.1103/PhysRevA.87.043833
http://arxiv.org/abs/arXiv:1411.5164
http://dx.doi.org/10.2307/1401114
http://dx.doi.org/10.2307/1401114
http://dx.doi.org/10.2307/1401114
http://dx.doi.org/10.2307/1401114
http://dx.doi.org/10.1103/PhysRevLett.72.3439
http://dx.doi.org/10.1103/PhysRevLett.72.3439
http://dx.doi.org/10.1103/PhysRevLett.72.3439
http://dx.doi.org/10.1103/PhysRevLett.72.3439
http://dx.doi.org/10.1103/PhysRevA.85.022321
http://dx.doi.org/10.1103/PhysRevA.85.022321
http://dx.doi.org/10.1103/PhysRevA.85.022321
http://dx.doi.org/10.1103/PhysRevA.85.022321
http://dx.doi.org/10.1103/PhysRevA.85.022322
http://dx.doi.org/10.1103/PhysRevA.85.022322
http://dx.doi.org/10.1103/PhysRevA.85.022322
http://dx.doi.org/10.1103/PhysRevA.85.022322
http://dx.doi.org/10.1103/PhysRevA.40.4277
http://dx.doi.org/10.1103/PhysRevA.40.4277
http://dx.doi.org/10.1103/PhysRevA.40.4277
http://dx.doi.org/10.1103/PhysRevA.40.4277
http://dx.doi.org/10.1016/j.physrep.2009.02.004
http://dx.doi.org/10.1016/j.physrep.2009.02.004
http://dx.doi.org/10.1016/j.physrep.2009.02.004
http://dx.doi.org/10.1016/j.physrep.2009.02.004
http://dx.doi.org/10.1088/1367-2630/7/1/229
http://dx.doi.org/10.1088/1367-2630/7/1/229
http://dx.doi.org/10.1088/1367-2630/7/1/229
http://dx.doi.org/10.1088/1367-2630/7/1/229
http://dx.doi.org/10.1103/PhysRevA.73.052319
http://dx.doi.org/10.1103/PhysRevA.73.052319
http://dx.doi.org/10.1103/PhysRevA.73.052319
http://dx.doi.org/10.1103/PhysRevA.73.052319
http://dx.doi.org/10.1103/PhysRevA.65.012107
http://dx.doi.org/10.1103/PhysRevA.65.012107
http://dx.doi.org/10.1103/PhysRevA.65.012107
http://dx.doi.org/10.1103/PhysRevA.65.012107
http://dx.doi.org/10.1103/PhysRevA.72.014101
http://dx.doi.org/10.1103/PhysRevA.72.014101
http://dx.doi.org/10.1103/PhysRevA.72.014101
http://dx.doi.org/10.1103/PhysRevA.72.014101
http://dx.doi.org/10.1103/PhysRevA.71.052302
http://dx.doi.org/10.1103/PhysRevA.71.052302
http://dx.doi.org/10.1103/PhysRevA.71.052302
http://dx.doi.org/10.1103/PhysRevA.71.052302
http://dx.doi.org/10.1103/PhysRevLett.86.4431
http://dx.doi.org/10.1103/PhysRevLett.86.4431
http://dx.doi.org/10.1103/PhysRevLett.86.4431
http://dx.doi.org/10.1103/PhysRevLett.86.4431
http://dx.doi.org/10.1103/PhysRevA.86.012337
http://dx.doi.org/10.1103/PhysRevA.86.012337
http://dx.doi.org/10.1103/PhysRevA.86.012337
http://dx.doi.org/10.1103/PhysRevA.86.012337
http://dx.doi.org/10.1142/S0219749909004839
http://dx.doi.org/10.1142/S0219749909004839
http://dx.doi.org/10.1142/S0219749909004839
http://dx.doi.org/10.1142/S0219749909004839



