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The number of measurements necessary to perform the quantum state reconstruction of a system of qubits grows
exponentially with the number of constituents, creating a major obstacle for the design of scalable tomographic
schemes. We work out a simple and efficient method based on cyclic generation of mutually unbiased bases.
The basic generator requires only Hadamard and controlled-phase gates, which are available in most practical
realizations of these systems. We show how complete sets of mutually unbiased bases with different entanglement
structures can be realized for three and four qubits. We also analyze the quantum circuits implementing the various
entanglement classes.
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I. INTRODUCTION

Modern quantum science is nearing precise control and
manipulation of quantum states so as to achieve results beyond
the limits of conventional technologies. Quantum-enhanced
devices are already on the market and point to a transformation
of measurement, communication, and computation.

For the successful completion of these tasks, verification
of each stage in the experimental procedures is of utmost
importance; quantum tomography is the appropriate tool for
that purpose [1]. The main challenge of this technique is simple
to state: given a system in a state represented by the density
matrix � and an informationally complete measurement [2–4],
the state � must be inferred from the distinct measurement
outcomes.

For a d-dimensional quantum system (a qudit, in the modern
parlance of quantum information) this amounts to determining
d2 − 1 independent real numbers. A von Neumann measure-
ment (the only ones we consider here) fixes at most d − 1 real
parameters, so d + 1 different tests have to be performed to
reconstruct the state. This means that d2 + d histograms have
to be recorded. The approach is, thus, suboptimal because this
number is higher than the number of parameters in the density
matrix. This redundancy is optimized when the bases in which
the measurements are performed are mutually unbiased [5,6].

At a fundamental level, mutually unbiased bases (MUBs)
are intimately related to the nature of quantum information
and provide the most accurate statement of complementarity.
The idea emerged in the pioneering work of Schwinger [7] and
has gradually turned into a primitive of quantum theory: apart
from the role in quantum tomography, they are instrumental in
addressing a number of enthralling questions [8].

However, tomography becomes harder as we explore more
intricate systems. If we look at the simple, yet illustrative case
of n qubits, even with MUBs, one will have to make at least
2n + 1 measurements before one can claim to know everything
about an a priori unknown system. With such a scaling, it is
clear that the methods rapidly become intractable for present
state-of-the-art experiments [9,10].

We are thus inevitably led to the quest for tomographical
techniques with better scaling. A promising class of new
protocols are explicitly optimized only for particular kinds

of states. This includes states with low rank [11–13], with
special emphasis in some relevant cases as matrix product
states (MPSs) [14,15], or multiscale entangled renormaliza-
tion ansatz (MERA) states [16]. The specific but pertinent
example of permutationally invariant qubits has been also
examined [17–20], because they are of great import in diverse
quantum information strategies [21–27].

In this paper, we devise an alternate approach to this
problem. We revisit the MUB strategy but capitalize on a
recently developed construction which generates the corre-
sponding MUBs in a cyclic way [28,29]. From an experimental
viewpoint, the undeniable advantage of this approach is that a
single unitary operation U is enough to create all the MUBs.
Furthermore, this single unitary operator can be expressed
as a quantum circuits involving exclusively Hadamard and
controlled-phase gates [30]. In this way, the number of gates
scales only linearly in the number of qubits, which is an optimal
scaling.

Our paper is organized as follows: In Sec. II we concisely
sketch the rudiments of our method. For systems of qubits, it
is well known that different complete sets of MUBs exist with
distinct entanglement properties [31–37]. In Sec. III we work
out the simple example of three qubits, showing the quantum
circuits associated with the different complete sets, while the
case of four qubits is worked out in the Appendix. Finally, our
conclusions are briefly summarized in Sec. IV.

II. MUTUALLY UNBIASED BASES: BASIC BACKGROUND

We consider a d-dimensional quantum system with Hilbert
space isomorphic to Cd . The different outcomes of a maximal
test constitute an orthogonal basis of Cd [38]. One can also
look for orthogonal bases that, in addition, are “as different as
possible.” This is the idea behind MUBs and can be formally
stated as follows: two orthonormal bases Bj = {|ψ (j )

� 〉} and

Bj ′ = {|ψ (j ′)
�′ 〉} (j �= j ′) are mutually unbiased when

∣∣〈ψ (j )
�

∣∣ψ (j ′)
�′

〉∣∣2 = 1

d
, ∀ �,�′ = 1, . . . ,d. (2.1)

Unbiasedness also applies to measurements: two nondegener-
ate tests are mutually unbiased if the bases formed by their
eigenstates are MUBs. For example, the measurements of the
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components of a spin 1
2 along the x, y, and z axes are all

unbiased.
It has been shown that the number of MUBs is at most

d + 1 [5], and that such a complete set exists whenever d

is a prime or power of a prime [39]. Remarkably, there is
no known answer for any other values of d, although there
have been some attempts to find a solution to this problem
in some simple cases, such as d = 6 [40–45] or when d is a
non-prime-integer squared [46,47].

In what follows, we concentrate on a system of n qubits,
where the dimension of the space is d = 2n. The basic single-
particle Pauli operators σz and σx are

σz = |1〉〈1| − |0〉〈0|, σx = |0〉〈1| + |1〉〈0|, (2.2)

where |0〉 and |1〉 are the computational basis for a single
qubit. The concept can be extended to n qubits by introducing
2n-dimensional vectors

a = (
az

1, . . . ,a
z
n; ax

1 , . . . ,ax
n

)T
, (2.3)

where T denotes the transpose and az
i ,a

x
j ∈ Z2. In this way,

the generalized Pauli operators can be written down as

ZX(a) = (−i)a
z
1a

x
1 σ

az
1

z σ
ax

1
x ⊗ · · · ⊗ (−i)a

z
na

x
n σ az

nσ ax
n . (2.4)

In technical jargon, this set is just the Weyl–Heisenberg group
(modulo its center).

The importance of these operators lies in the observation
noticed in Ref. [48] that complete sets of MUBs naturally
arise from a partition of the set of Pauli operators into d + 1
subsets of d − 1 commuting operators, called classes; they can
be expressed as

Cj = {
ZX(a) : a = Gj c : c ∈ Zn

2

}
. (2.5)

In this way, each of the classes Cj can be specified by the
generator Gj .

Within each class Cj all Pauli operators commute. If we un-
veil the tensor product of the Pauli operators, we can consider
each Pauli operator as a joint operator that performs either a σz,
σx , σy , or an identity operation on each single qubit separately.
Within a certain class, the Pauli operators on each qubit can
either commute or not, which leads to different entanglement
properties. The maximal entanglement occurs when the Pauli
operators of one class commute only in combination, whereas
no entanglement appears when they commute on every qubit
separately. All possible partitions of the operators into their
subsystems give rise to different entanglement properties,
where a relabelling of the different sites should not influence
this classification at all. Therefore, we define a vector n which
represents the entanglement structure of a certain set of MUBs:
the entries of n are computed by counting the number of
classes with each entanglement structure, starting from a com-
pletely factorizable system, and ending with a fully entangled
one.

Different explicit constructions of MUBs in prime power
dimensions have been suggested in a number of recent
papers [49–55]. We follow here the approach established in
Refs. [28,29], that allows a cyclic generation of the MUBs;
that is, the generators appearing in each class (2.5) can be
expressed as

Gj = CjG0, (2.6)
where G0 is a fixed generator. We skip the mathematical details
involved in the derivation of the method and content ourselves
with the final result, which looks very compact: the symplectic
matrix C can be jotted down as

C =
(

B + AR−1 R + BA + AR−1A

R−1 R−1A

)
, (2.7)

where B, R, and A are n × n matrices whose properties will be
specified soon. The successive powers of C can be computed
as

Cj =
(

Fj+1(B) + AR−1Fj (B) Fj+1(B)A + Fj (B)R + AR−1[Fj (B)A + Fj−1(B)R]

R−1Fj (B) R−1[Fj (B)A + Fj−1(B)R]

)
. (2.8)

Here, Fj (x) refer to the Fibonacci polynomials, which are a
generalization of the well-known Fibonacci sequence. They
are defined recursively as

Fj+1(x) = xFj (x) + Fj−1(x), (2.9)

with F0(x) = 0 and F1(x) = 1 and the coefficients therein are
binary numbers in Z2. In many considerations in this work,
we will take as the seed generator G0 = (1n,0n)T , which leads
to

Gj =
(

Fj+1(B)F−1
j (B)R + A

1m

)
, 1 � j � d. (2.10)

To ensure that complete sets of MUBs are generated, we
have to impose additional conditions. The first one, of rather
technical character, implies that the Fibonacci index [56]
of the characteristic polynomial of B has to be d + 1. In

addition, R, BR, and A have to be symmetric and R has to be
invertible [57].

It turns out that when R = 1m and A = 0m, the resulting
complete sets exhibit an entanglement structure with three
completely factorizable classes, which, following the original
work [57], will be called field-based sets, as the generators
represent a finite field. When R is not a polynomial in B

and A = 0m, the generators form an additive group, where
for only two of their classes the Pauli operators commute
on each qubit separately: they are denoted as group-based
sets, Finally, whenever R is not a polynomial in B, and A

is not the product of any polynomial in B with R added
to a diagonal matrix, the resulting cyclic set of MUBs has
only a single class left, where the Pauli operators commute
on all qubits separately. This case is denoted as semigroup-
based sets, because the generator represents an additive
semigroup.
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III. RESULTS

The three-qubit system is the first nontrivial instance
one can consider, and any complete set of MUBs exhibits
23 + 1 = 9 different bases. It is well known [31,33,34,58] that
each complete set of MUBs possesses one of the four different
entanglement structures, either (3,0,6), (2,3,4), (1,6,2), or
(0,9,0). In this particular example, in n = (n1,n2,n3), n1

denotes the number of separable bases (every eigenvector
of theses bases is a tensor product of singe-qubit states),
n2 the number of biseparable bases (one qubit is factorized
and the other two are in a maximally entangled state), and n3

the number of nonseparable bases.
To work out the cyclic construction of these sets, we first

notice that the only polynomial of order three that has full
Fibonacci index (i.e., index 9) is

p(x) = 1 + x + x3. (3.1)

For field-based sets, the matrix B has to be symmetric, such
as R = 1m. The only possible solution is

B =
⎛
⎝1 1 1

1 1 0
1 0 0

⎞
⎠, (3.2)

or one of its permutations. This corresponds to an entanglement
structure n = (3,0,6).

The group-based sets are richer, because polynomials of B

can be shifted into R. One possible solution is generated by

B =
⎛
⎝0 1 1

0 0 1
1 0 0

⎞
⎠, R =

⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠, (3.3)

which leads finally to the symplectic matrix

C =

⎛
⎜⎜⎜⎜⎜⎝

0 1 1 0 0 1
0 0 1 0 1 0
1 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

. (3.4)

This corresponds to the entanglement structure n = (2,3,4).
In a similar way, we find the following solution for the

semigroup-based sets

B =
⎛
⎝1 1 1

1 1 0
1 0 0

⎞
⎠, R =

⎛
⎝1 1 1

1 1 0
1 0 0

⎞
⎠,

A =
⎛
⎝1 0 1

1 1 0
1 0 0

⎞
⎠, (3.5)

which gives the matrix

C =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 1 1 1
1 0 0 0 1 1
1 0 1 1 0 1
0 0 1 1 0 0
0 1 1 0 1 0
1 1 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎠

. (3.6)

and the corresponding entanglement structure is n = (1,6,2).

The set n = (0,9,0) cannot be worked out initially from
this construction method. However, this can be easily fixed:
because this set does not contain any basis that measures
properties of a completely factorizable system, a sort of offset
operation transforming the standard basis is needed. Therefore,
the generator G0 cannot be taken as (1m,0m) anymore, but
instead its X part, which is 0m, has to be replaced with

Gx
0 =

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠, (3.7)

and so

C =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
1 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

. (3.8)

for the implementation of the symplectic generator.
One of the outstanding advantages of our approach is that

the unitary generator can be worked out in quite a direct
way as a quantum circuit involving only elementary gates.
Such a decomposition can be immediately found following
the standard rules [30]. In particular, this is relevant for a
practical implementation. In Fig. 1 we summarize the circuits
corresponding to the structures (3,0,6), (2,3,4), (1,6,2),

H

H

H

Z

Z

i

i

-1

i

i

H

H

H

i

i

H

H-1

H i

i

FIG. 1. (Color online) Quantum circuits implementing the gen-
erators of three-qubit MUBs with entanglement structures (from left
to right) (3,0,6), (2,3,4), and (1,6,2). The notation for the gates is the
standard one [30].
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i H
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H

H

H

H-1

FIG. 2. (Color online) Quantum circuit implementing the generator of three-qubit MUBs with entanglement structure (0,9,0). In the left,
enclosed in a box, we show the circuit for the offset generator G0

x .

whereas in Fig. 2 we give the circuit for (0,9,0), including
the offset (3.7).

The method works for any number of qubits. Since the ideas
are analogous, we omit the unnecessary details although, for
completeness, we give the complete solution for four qubits in
the supplementary material.

IV. CONCLUSIONS

In short, we have shown the construction of cyclic MUBs
for n qubits with all possible entanglement structures. On
physical grounds, one could expect that the performances of
these different classes with respect to entanglement-specific
state properties will also be different. In our approach, this
is reflected in the different complexities of the associated
generator. Finally, the fact that only one generator needs to
be implemented to generate the whole set of MUBs makes this
method especially interesting and a potential candidate for a
realistic scheme for current experimental setups.
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APPENDIX: CYCLIC MUBs FOR FOUR QUBITS

For completeness, we show the construction of complete
sets of MUBs for four qubits following our method. We
must first find a matrix B with characteristic polynomial with
Fibonacci index 17, which therefore creates 17 different bases.
For the characteristic polynomial we have two options; namely,

p(x) = 1 + x + x2 + x3 + x4, (A1)

p′(x) = 1 + x + x4, (A2)

although we limit ourselves to the first solution. The entan-
glement structures will be indicated by the vector n defined
according to Ref. [58].

For field-based sets, B has to be symmetric; a possible
solution is given by

B =

⎛
⎜⎝

1 1 1 0
1 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠ (A3)

and leads, with R = 14 and A = 04, to the field-based set with
the entanglement structure n = (3,0,0,2,12).

Seven group-based sets with different entanglement struc-
tures exist for four-qubit systems. We list them in what follows:

n = (2,0,4,2,9),

B =

⎛
⎜⎝

1 1 1 1
0 0 0 1
0 1 0 0
1 0 0 0

⎞
⎟⎠, R =

⎛
⎜⎝

1 0 1 0
0 0 1 1
1 1 0 0
0 1 0 0

⎞
⎟⎠. (A4)

n = (2,1,2,1,11),

B =

⎛
⎜⎝

1 0 1 1
1 0 0 1
0 1 0 0
1 0 0 0

⎞
⎟⎠, R =

⎛
⎜⎝

1 1 1 1
1 1 0 1
1 0 0 0
1 1 0 0

⎞
⎟⎠. (A5)

n = (2,2,0,2,11),

B =

⎛
⎜⎝

1 1 0 1
1 0 1 1
1 1 0 0
1 0 0 0

⎞
⎟⎠, R =

⎛
⎜⎝

1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

⎞
⎟⎠. (A6)

n = (2,1,2,0,12),

B =

⎛
⎜⎝

1 1 1 1
0 1 1 0
1 0 1 0
1 0 0 0

⎞
⎟⎠, R =

⎛
⎜⎝

1 0 1 1
0 0 1 0
1 1 0 0
1 0 0 0

⎞
⎟⎠. (A7)

n = (2,0,4,0,11),

B =

⎛
⎜⎝

0 1 0 1
0 0 1 1
1 0 1 0
1 0 0 0

⎞
⎟⎠, R =

⎛
⎜⎝

1 0 1 1
0 1 0 1
1 0 0 0
1 1 0 0

⎞
⎟⎠. (A8)

n = (2,1,2,2,10),

B =

⎛
⎜⎝

1 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0

⎞
⎟⎠, R =

⎛
⎜⎝

1 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠. (A9)
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n = (2,0,4,1,10),

B =

⎛
⎜⎝

1 0 1 1
1 1 1 1
0 1 1 0
1 0 0 0

⎞
⎟⎠, R =

⎛
⎜⎝

1 0 1 1
0 1 0 1
1 0 0 0
1 1 0 0

⎞
⎟⎠. (A10)

Thirteen semigroup-based sets with different entanglement structures exist. We list them in the following:
n = (1,4,0,2,10),

B =

⎛
⎜⎝

1 1 0 1
1 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠, R =

⎛
⎜⎝

1 1 0 1
1 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠, A =

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠. (A11)

n = (1,2,4,0,10),

B =

⎛
⎜⎝

1 1 0 1
1 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠, R =

⎛
⎜⎝

1 1 0 1
1 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠, A =

⎛
⎜⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎠. (A12)

n = (1,0,0,8,8),

B =

⎛
⎜⎝

1 1 0 1
1 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠, R =

⎛
⎜⎝

1 1 0 1
1 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠, A =

⎛
⎜⎝

0 1 1 0
1 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎠. (A13)

n = (1,2,4,2,8),

B =

⎛
⎜⎝

1 1 0 1
1 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠, R =

⎛
⎜⎝

1 1 0 1
1 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠, A =

⎛
⎜⎝

0 1 0 1
1 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎠. (A14)

n = (1,4,0,1,11),

B =

⎛
⎜⎝

1 1 1 1
0 0 0 1
0 1 0 0
1 0 0 0

⎞
⎟⎠, R =

⎛
⎜⎝

1 0 1 0
0 0 1 1
1 1 0 0
0 1 0 0

⎞
⎟⎠, A =

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠. (A15)

n = (1,1,6,0,9),

B =

⎛
⎜⎝

1 1 1 1
0 0 0 1
0 1 0 0
1 0 0 0

⎞
⎟⎠, R =

⎛
⎜⎝

1 0 1 0
0 0 1 1
1 1 0 0
0 1 0 0

⎞
⎟⎠, A =

⎛
⎜⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎠. (A16)

n = (1,3,2,2,9),

B =

⎛
⎜⎝

1 0 1 1
1 0 0 1
0 1 0 0
1 0 0 0

⎞
⎟⎠, R =

⎛
⎜⎝

1 1 1 1
1 1 0 1
1 0 0 0
1 1 0 0

⎞
⎟⎠, A =

⎛
⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎠. (A17)

n = (1,2,4,1,9),

B =

⎛
⎜⎝

0 1 1 1
0 1 1 0
1 1 0 0
1 0 0 0

⎞
⎟⎠, R =

⎛
⎜⎝

1 1 1 0
1 1 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠, A =

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠. (A18)

n = (1,3,2,0,11),

B =

⎛
⎜⎝

1 0 1 0
1 0 0 1
1 1 0 0
1 0 0 0

⎞
⎟⎠, R =

⎛
⎜⎝

1 1 0 1
1 1 1 1
0 1 0 0
1 1 0 0

⎞
⎟⎠, A =

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠. (A19)
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U. SEYFARTH, L. L. SÁNCHEZ-SOTO, AND G. LEUCHS PHYSICAL REVIEW A 91, 032102 (2015)

n = (1,0,8,1,7),

B =

⎛
⎜⎝

1 0 1 0
1 0 0 1
1 1 0 0
1 0 0 0

⎞
⎟⎠, R =

⎛
⎜⎝

1 1 0 1
1 1 1 1
0 1 0 0
1 1 0 0

⎞
⎟⎠, A =

⎛
⎜⎝

0 1 1 0
1 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎠. (A20)

n = (1,1,6,1,8),

B =

⎛
⎜⎝

1 1 1 1
0 1 1 0
1 0 1 0
1 0 0 0

⎞
⎟⎠, R =

⎛
⎜⎝

1 0 1 1
0 0 1 0
1 1 0 0
1 0 0 0

⎞
⎟⎠, A =

⎛
⎜⎝

0 1 1 0
1 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎠. (A21)

n = (1,1,6,2,7),

B =

⎛
⎜⎝

0 1 0 1
0 0 1 1
1 0 1 0
1 0 0 0

⎞
⎟⎠, R =

⎛
⎜⎝

1 0 1 1
0 1 0 1
1 0 0 0
1 1 0 0

⎞
⎟⎠, A =

⎛
⎜⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎠. (A22)

n = (1,3,2,1,10),

B =

⎛
⎜⎝

1 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0

⎞
⎟⎠, R =

⎛
⎜⎝

1 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠, A =

⎛
⎜⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎠. (A23)

Thirteen extra sets with different entanglement structures
exist for four-qubit systems. The corresponding generator G0

is replaced in its X part, which is 0m, by

Gx
0 =

⎛
⎜⎝

0 1 1 0
1 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎠. (A24)

n = (0,5,2,2,8),

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 1 1
0 0 1 0 0 1 1 1
0 1 0 0 1 1 1 0
1 0 0 0 0 1 0 0
1 0 0 1 0 1 1 0
0 1 1 0 1 0 1 1
0 0 1 0 0 0 1 1
0 0 0 1 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A25)

n = (0,5,2,1,9),

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 1 1
0 0 1 0 1 1 1 1
0 1 0 0 0 0 1 0
1 0 0 0 1 0 1 0
1 1 1 1 0 1 0 1
0 0 1 1 1 1 1 0
0 0 0 1 0 1 1 1
1 0 0 1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A26)

n = (0,5,2,0,10),

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 1 1 1
0 0 1 0 1 1 0 1
0 1 0 0 0 1 1 1
1 0 0 0 0 0 1 0
0 0 1 0 1 1 0 0
0 1 0 1 0 0 1 0
1 1 1 0 1 1 0 0
0 1 0 0 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A27)

n = (0,4,4,2,7),

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 1 1 1
0 0 1 0 1 1 0 1
0 1 0 0 1 1 1 1
1 0 0 0 1 1 1 0
0 1 1 1 0 1 0 0
0 1 1 1 0 1 1 1
0 0 1 1 1 1 1 0
1 0 0 0 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A28)

n = (0,4,4,1,8),

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 1 1 0 0
0 0 1 0 1 0 0 0
0 1 0 0 1 0 0 1
1 0 0 0 0 1 1 1
0 0 0 1 1 1 0 1
0 1 1 0 0 0 1 1
0 0 1 0 1 1 0 0
1 0 0 0 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A29)
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n = (0,4,4,0,9),

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 1 1 0 1
0 0 1 0 1 0 0 0
0 1 0 0 1 0 0 1
1 0 0 0 1 1 1 1
0 1 1 1 1 1 0 1
0 1 1 1 1 1 1 0
0 0 1 1 0 0 0 1
1 0 0 0 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A30)

n = (0,3,6,2,6),

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 1 1
0 0 1 0 1 0 0 1
0 1 0 0 0 1 0 0
1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 1 0 1 0 1 1
0 0 0 0 0 1 0 0
1 0 0 0 1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A31)

n = (0,3,6,1,7),

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 1 1 0 1
0 0 1 0 1 0 1 0
0 1 0 0 0 1 0 1
1 0 0 0 0 0 1 1
0 0 1 1 0 1 1 0
0 1 0 1 1 0 1 0
1 0 1 0 1 1 0 1
0 1 0 0 1 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A32)

n = (0,3,6,0,8),

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 1 0 1 1
0 0 1 0 1 1 1 1
0 1 0 0 1 0 1 0
1 0 0 0 0 1 1 1
0 0 0 1 1 0 1 0
0 0 1 0 1 1 0 1
0 0 0 0 0 1 0 0
1 0 0 0 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A33)

n = (0,2,8,1,6),

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 1 1
0 0 1 0 0 1 0 1
0 1 0 0 0 1 1 0
1 0 0 0 1 0 0 0
0 0 1 0 0 1 0 0
0 1 0 1 0 1 1 1
1 1 1 0 1 1 1 1
0 1 0 0 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A34)

n = (0,2,8,0,7),

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 1 0 1 0
0 0 1 0 1 0 0 1
0 1 0 0 1 0 0 0
1 0 0 0 0 1 1 1
0 0 0 1 1 0 1 1
0 1 1 0 0 0 1 1
0 0 1 0 1 1 0 1
1 0 0 0 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A35)

n = (0,1,10,0,6),

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 1 0 1 1
0 0 1 0 0 1 0 1
0 1 0 0 0 1 1 0
1 0 0 0 0 0 0 1
0 0 1 0 0 1 0 0
0 1 0 1 1 1 1 1
1 1 1 0 0 1 1 0
0 1 0 0 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A36)

n = (0,0,2,12,3),

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 1 0 0 0
0 0 1 0 1 0 1 0
0 1 0 0 0 1 0 1
1 0 0 0 0 0 1 1
0 1 1 1 0 0 1 1
0 0 1 1 0 1 0 1
1 1 1 0 1 0 0 1
1 1 0 0 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A37)

The associated quantum circuits can be constructed as in
the paper.
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[4] D. Sych, J. Řeháček, Z. Hradil, G. Leuchs, and L. L. Sánchez-
Soto, Informational completeness of continuous-variable mea-
surements, Phys. Rev. A 86, 052123 (2012).

[5] I. D. Ivanovic, Geometrical description of quantal state deter-
mination, J. Phys. A: Math. Gen. 14, 3241 (1981).

[6] W. K. Wootters and B. D. Fields, Optimal state-determination
by mutually unbiased measurements, Ann. Phys. (NY) 191, 363
(1989).

[7] J. Schwinger, Unitary operator basis, Proc. Natl. Acad. Sci. USA
46, 570 (1960).

[8] T. Durt, B.-G. Englert, I. Bengtsson, and K. Zyczkowski, On
mutually unbiased bases, Int. J. Quantum Inf. 8, 535 (2010).

[9] T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg,
W. A. Coish, M. Harlander, W. Hänsel, M. Hennrich, and R.
Blatt, 14-qubit entanglement: Creation and coherence, Phys.
Rev. Lett. 106, 130506 (2011).

[10] X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H.
Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, and J.-W. Pan,

032102-7

http://dx.doi.org/10.1007/BF01807146
http://dx.doi.org/10.1007/BF01807146
http://dx.doi.org/10.1007/BF01807146
http://dx.doi.org/10.1007/BF01807146
http://dx.doi.org/10.1007/BF00731904
http://dx.doi.org/10.1007/BF00731904
http://dx.doi.org/10.1007/BF00731904
http://dx.doi.org/10.1007/BF00731904
http://dx.doi.org/10.1103/PhysRevA.86.052123
http://dx.doi.org/10.1103/PhysRevA.86.052123
http://dx.doi.org/10.1103/PhysRevA.86.052123
http://dx.doi.org/10.1103/PhysRevA.86.052123
http://dx.doi.org/10.1088/0305-4470/14/12/019
http://dx.doi.org/10.1088/0305-4470/14/12/019
http://dx.doi.org/10.1088/0305-4470/14/12/019
http://dx.doi.org/10.1088/0305-4470/14/12/019
http://dx.doi.org/10.1016/0003-4916(89)90322-9
http://dx.doi.org/10.1016/0003-4916(89)90322-9
http://dx.doi.org/10.1016/0003-4916(89)90322-9
http://dx.doi.org/10.1016/0003-4916(89)90322-9
http://dx.doi.org/10.1073/pnas.46.4.570
http://dx.doi.org/10.1073/pnas.46.4.570
http://dx.doi.org/10.1073/pnas.46.4.570
http://dx.doi.org/10.1073/pnas.46.4.570
http://dx.doi.org/10.1142/S0219749910006502
http://dx.doi.org/10.1142/S0219749910006502
http://dx.doi.org/10.1142/S0219749910006502
http://dx.doi.org/10.1142/S0219749910006502
http://dx.doi.org/10.1103/PhysRevLett.106.130506
http://dx.doi.org/10.1103/PhysRevLett.106.130506
http://dx.doi.org/10.1103/PhysRevLett.106.130506
http://dx.doi.org/10.1103/PhysRevLett.106.130506
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