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Asymmetric transmission through a flux-controlled non-Hermitian scattering center
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We study the possibility of asymmetric transmission induced by a non-Hermitian scattering center embedded
in a one-dimensional waveguide, motivated by the aim of realizing quantum diodes in a non-Hermitian system.
It is shown that a PT -symmetric non-Hermitian scattering center always has symmetric transmission although
the dynamics within the isolated center can be unidirectional, especially at its exceptional point. We propose a
concrete scheme based on a flux-controlled non-Hermitian scattering center, which comprises a non-Hermitian
triangular ring threaded by an Aharonov-Bohm flux. The analytical solution shows that such a complex scattering
center acts as a diode at the resonant energy level of the spectral singularity, exhibiting perfect unidirectionality
of the transmission. The connections between the phenomena of the asymmetric transmission and reflectionless
absorption are also discussed.
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I. INTRODUCTION

Asymmetric transmission is of significant interest in the
quantum analogues of electronic devices, such as quantum
diode device, which is the key to quantum information
processing in integrated circuits [1]. It is characterized by the
nonreciprocal particle transport along the opposite directions.
Recently, it has been reported that the unidirectional transport
can be realized in practical systems [2–5]. A non-Hermitian
Hamiltonian can possess peculiar features that have no Her-
mitian counterpart. A typical one is nonreciprocal dynamics,
which has been observed in experiments [6]. However, it was
not paid due attention by the physics community until the
discovery of non-Hermitian Hamiltonians with parity-time
symmetry, which have a real spectrum [7]. It has boosted the
research on the complex extension of quantum mechanics on a
fundamental level [8–18]. Recently, the concept of spectral
singularity of a non-Hermitian system has gained a lot of
attention [19–28], motivated by the possible physical relevance
of this since the pioneering work of Mostafazadeh [29]. The
majority of previous works focused on the non-Hermitian
system in the absence of an external magnetic field [21,30–43].

The aim of this work is to study the possibility of asymmet-
ric transmission induced by a non-Hermitian scattering center
embedded in a one-dimensional waveguide, motivated by the
recent investigation on the physical relevance of a spectral
singularity. It is shown that a PT -symmetric non-Hermitian
scattering center always has symmetric transmission although
the nonreciprocal dynamics within the isolated center is
allowed, especially at its exceptional point [31,44]. We
consider a PF-symmetric non-Hermitian scattering center,
which comprises a non-Hermitian triangular ring threaded by
an Aharonov-Bohm flux, where F is the action of flipping the
flux. We show that such a complex scattering center acts as a
diode, which is characterized by the different performances
of transmission coefficients along the opposite directions.
Furthermore, it is found that the perfect unidirectionality
of the transmission is a signature of the existence of a
spectral singularity. And the criterion for spectral singularity
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by transfer matrix is not applicable to the present system due
to the presence of the magnetic field.

This paper is organized as follows. In Sec. II, we present
a general formalism for the scattering problem. In Sec. III,
the Hamiltonian for asymmetric transmission is constructed
and the analytical scattering solution is obtained. In Sec. IV,
we study the connection between the perfect unidirectionality
and the spectral singularity. Finally, we give a summary and
discussion in Sec. V.

II. SYMMETRIC TRANSMISSION

In this section, we present a general formalism for one-
dimensional scattering process of several types of scattering
centers [45,46]. We will show that asymmetric transmission,
which is the base of a quantum diode, cannot be realized via
P-, T -, or PT -symmetric non-Hermitian scattering centers.
However, it may be possible via the non-Hermitian scattering
center with an internal degree of freedom.

This term “one-dimensional” refers to the space domain of
incident, reflected, and transmitted waves, rather than that of
the scattering center. This constraint requires the asymptotic
eigenfunctions to be one-dimensional plane waves. Consider a
scattering problem for an arbitrary scattering center, which is
schematically illustrated in Fig. 1(a). According to the above
analysis, for the left and right incident waves, we have

ψk
L(x) =

{
eikx + rk

Le−ikx, (x � 0)

t kLeikx, (x � 0)
, (1)

and

ψk
R(x) =

{
t kRe−ikx, (x � 0)

e−ikx + rk
Reikx, (x � 0)

. (2)

Combining ψk
R(x) and ψ−k

L (x) into the form t−k
L ψk

R(x) −
ψ−k

L (x) and comparing it to −r−k
L ψk

L(x), we have the following
relations for the reflection and transmission amplitudes:

t−k
L t kR + r−k

L rk
L = 1, (3)

t−k
L rk

R + r−k
L t kL = 0. (4)

It still holds if we take L � R or k −→ −k.
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FIG. 1. (Color online) Sketch of one-dimensional scattering sys-
tems for incident waves from the left and right. (a) An arbitrary
scattering center with three-dimensional structure and magnetic
flux is represented by �(x,y,z,φ), which can be non-Hermitian or
possesses certain symmetry. (b) A tight-binding scattering center
which comprises a non-Hermitian triangular ring threaded by an
Aharonov-Bohm flux φ. The non-Hermiticity arises from the on-site
complex potential V . It turns out that the optimal φ and V can
lead to perfect asymmetric transmission, the diode characteristic:
rk

R,L = t k
L = 0, |t k

R| = 1.

In the following, we investigate the symmetry of the
transmission for several types of scattering centers. For a
scattering center with time reversal (T ) symmetry, where the
time-reversal operator T has the function T iT −1 = −i, the T
symmetry brings up additional constraints for the coefficients.
One can obtain the following relations:(

t kL
)∗

t kR + (
rk

L

)∗
rk

L = 1, (5)(
t kL

)∗
rk

R + (
rk

L

)∗
t kL = 0, (6)

because the conjugations of Eqs. (1) and (2) are still the
asymptotic eigenfunctions of the system. Together with the
continuity of probability currents∣∣t kL,R

∣∣2 + ∣∣rk
L,R

∣∣2 = 1, (7)

we have the symmetry relations

t kR = t kL,
∣∣rk

R

∣∣ = ∣∣rk
L

∣∣. (8)

This indicates that for a Hermitian scattering center, the
asymmetry potential cannot lead to transmission asymmetry.

A natural question is whether a non-Hermitian scattering
center can lead to the asymmetrical transmission. Before
we answer this question we would like to point out that
several types of non-Hermitian scattering centers cannot be
candidates. This may provide guidance for the diode design.
To begin with, a parity-symmetric non-Hermitian scattering

center should exhibit symmetric reflection and transmission.
Here the parity operator P has the function PxP−1 = −x.
In addition to that, we will show that a PT -symmetric
non-Hermitian scattering center also possesses the transmis-
sion symmetry. For a PT -symmetric scattering center, wave
functions obtained by the PT action on Eqs. (1) and (2) are
still the asymptotic eigenfunctions.

Comparing PT ψk
R(x)(PT )−1 and ψ−k

L (x), we have(
rk

R

)∗ = r−k
L ,

(
t kR

)∗ = t−k
L , (9)

which still holds if we take L � R or k −→ −k. Together
with Eq. (3), we have(

t kR
)∗

t kR + (
rk

R

)∗
rk

L = 1, (10)

and (
t kL

)∗
t kL + (

rk
R

)∗
rk

L = 1, (11)

which lead to ∣∣t kR∣∣ = ∣∣t kL∣∣. (12)

This result indicates that it is impossible to construct a diode,
a scattering center allowing unidirectional flow, by a PT -
symmetric non-Hermitian scattering center in the framework
of this paper, although it cannot tell us which type of structure
meets the demand.

Now we consider the case where the scattering center has
an internal degree of freedom φ as illustrated in Fig. 1(a). The
Hamiltonian has PF symmetry, i.e.,

PFH (PF)−1 = H, (13)

where F is the φ-flip operator, defined as FH (φ)F−1 =
H (−φ). Applying the PF operator on the Eqs. (1) and (2), we
obtain the new solutions of the Hamiltonian, which lead to the
relations

t kL(φ) = t kR(−φ), rk
L(φ) = rk

R(−φ). (14)

In contrast to the systems with P , T , and PT symmetry,
respectively, one cannot get the conclusion of the symmetric
transmission. It opens the possibility of t kL(φ) �= t kR(φ), and a
perfect diode for the specific kc and φc, i.e.,∣∣t kc

R (φc)
∣∣2 = 1, t

kc

L (φc) = 0, r
kc

R,L(φc) = 0, (15)

does not contradict the general constraint relations in Eq. (14).
In the following section, we propose a concrete example,
a non-Hermitian PF-symmetric scattering center embedded
in a one-dimensional tight-binding network, which exhibits
perfect unidirectionality.

III. PERFECT UNIDIRECTIONALITY

Inspired by the previous work [47] and the analysis in the
above section, we start our design of a diode scattering center
by the simplest geometry, a three-site cluster. The threading
flux and single on-site complex potential can destroy the P
symmetry as well as the PT symmetry. However, it possesses
PF symmetry with the internal degree of freedom being the
threading flux.
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The Hamiltonian of the concerned scattering tight-binding
network has the form

H = HL + HR + HTri, (16)

where

HL = −J

−2∑
j=−∞

(a†
j+1aj + H.c), (17)

HR = −J

∞∑
j=1

(a†
j+1aj + H.c), (18)

represent the left (HL) and right (HR) waveguides with real J ,
and

HTri = −eiφ/3J (a†
0a−1 + a

†
1a0 + a

†
−1a1) + H.c + V a

†
0a0,

(19)

describes a non-Hermitian scattering center, with the non-
Hermiticity arising from the complex potential V �= V ∗. In
these equations, the notation a

†
j and aj are boson creation and

annihilation operators, respectively, and H.c. represents the
Hermitian conjugate of all hopping items. It is a triangular
lattice threaded by a magnetic flux φ, which satisfies Eq. (13)
and is schematically illustrated in Fig. 1(b). We note that zero
φ leads toP symmetry, and real V leads toPT symmetry, both
of which are the obstacles for the transmission asymmetry as
shown in the above section. In this paper, we consider the case
with complex potential V = −Jeiγ [γ ∈ (0,π )].

We consider the left and right incident scattering processes.
We focus our study on a single-particle subspace spanned
by the basis {|j 〉 = a

†
j |0〉}. The discrete versions of Eqs. (1)

and (2) have the forms

ψk
L(j ) =

{
eikj + rk

Le−ikj , (j � 0)

t kLeikj , (j � 0)
, (20)

and

ψk
R(j ) =

{
t kRe−ikj , (j � 0)

e−ikj + rk
Reikj , (j � 0)

, (21)

which correspond to the Bethe ansatz wave function. Employ-
ing the Bethe ansatz technique, we have

rk
L = rk

R = −cos φ + cos k

�(k,φ,γ )
, (22)

t kL = ie−iφ/3 sin k(eiφ + 2 cos k − eiγ )

�(k,φ,γ )
, (23)

t kR = t kL(φ → −φ), (24)

with

�(k,φ,γ ) = eik[i sin k(2 cos k − eiγ ) + eik cos φ + 1].

(25)

For an incident wave with momentum kc = γ from left or
right, from Eq. (22) we have

r
kc

L = r
kc

R = 0, (26)

t
kc

R = eiπ/3e−i4γ /3, t
kc

L = 0, (27)
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FIG. 2. (Color online) Absolute values of the (a) transmission
and (b) reflection amplitude profiles as functions of the wave number
k whose unit is radian (rad). It shows the perfect asymmetric behavior
at kc = 2π/3.

which exhibits perfect unidirectionality, when the flux φ

takes the value φc = π − γ . To illustrate the asymmetric
transmission effect we consider the case with γ = 2π/3
and φ = π/3. Figure 2 shows transmission and reflection
profiles as functions of the wave number k. The perfect
asymmetric behavior with |rkc

L,R| = |t kc

L | = 0.0 and |t kc

R | = 1.0
at kc = 2π/3, as expected, is observed. It shows that there is a
relative wider region around kc, within which the system still
exhibits the diode characteristic approximately.

IV. SPECTRAL SINGULARITY

In this section, we will show that the occurrence of perfect
unidirectionality is related to the presence of a spectral
singularity. To this end, we consider the solution of the
Hamiltonian

H † = HL + HR + H
†
Tri, (28)

where

H
†
L = HL = −J

−2∑
j=−∞

(a†
j+1aj + H.c), (29)

H
†
R = HR = −J

∞∑
j=1

(a†
j+1aj + H.c), (30)
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H
†
Tri = −eiφ/3J (a†

0a−1 + a
†
1a0 + a

†
−1a1)

+ H.c. − Je−iγ a
†
0a0, (31)

which is the Hermitian conjugation of H . According to
pseudo-Hermitian quantum mechanics [48], the eigenfunc-
tions of H and H † can construct the biorthogonal basis except
in the case of spectral singularity, at which the biorthonormal
set is spoiled. By the same procedure, the scattering wave
functions can be obtained in the forms

ψ
k

L(j ) =
{

eikj + rk
Le−ikj , (j � 0)

t
k

Leikl, (j � 0)
, (32)

and

ψ
k

R(j ) =
{

t
k

Re−ikj , (j � 0)

e−ikj + rk
Reikj , (j � 0)

, (33)

where

rk
L = rk

R = rk
L(γ → −γ ), (34)

t
k

L,R = t kL,R(γ → −γ ). (35)

However, it becomes a little complicated when we consider
the solution for k = kc. We find that the eigenfunctions with
kc do not exist when the flux φ takes the value φc = π − γ .
We investigate the limit of rk

L,R and t
k

L,R as (k,φ) → (γ,π − γ )
along the following two paths: (I) φ = π − k, k ↓ γ and (II)
φ = π − k, k ↑ γ , respectively. A straightforward calculation
shows that two different paths give unequal limits, i.e.,

(I)

⎧⎪⎪⎨
⎪⎪⎩

limk↓γ rk
L,R = 0

limk↓γ t
k

L = −∞ + i∞
limk↓γ t

k

R = eiπ/3e−i4γ /3

, (36)

(II)

⎧⎪⎪⎨
⎪⎪⎩

limk↑γ rk
L,R = 0

limk↑γ t
k

L = +∞ − i∞
limk↑γ t

k

R = eiπ/3e−i4γ /3

, (37)

We see that the transmission amplitude t
k

L has a singularity at
the point k = kc = γ , which indicates that the Bathe ansatz
solutions in the form of Eqs. (32) and (33) do not exist.
We can also investigate this point from another way, taking
the limits of rk

L,R and t
k

L,R as (k,φ) → (γ,π − γ ) along the
following two paths: (I) k = γ , φ ↑ φc and (II) k = γ , φ ↓ φc,
respectively . To demonstrate the singularity, we plot t

kc

L,R
as functions of φ for kc = γ = π/6 in Fig. 3. The profiles
of the plots show clearly that the one-sided limits from the
left and from the right for the real and imaginary parts
are discontinuous and divergent at φ = 5π/6 and φ = 7π/6,
respectively. These observations imply that the biorthogonality
of the eigenfunctions may be defective at this point.

A good way to confirm this is to take the Bethe ansatz
solutions of H and H † in a general form as

ϕk(j ) =
{

A−eikj + B−e−ikj , (j � 0)

A+eikj + B+e−ikj , (j � 0)
, (38)

2.6 2.61 2.62 2.63 2.64
−4

−2

0

2

4

φ

10
3  t L

3.64 3.65 3.66 3.67 3.68
−4

−2

0

2

4

φ

10
3  t R

 

 

(a)

(b)

FIG. 3. (Color online) Transmission amplitudes from Eq. (35)
with k = γ = π/6. The unit of φ is radian (rad). It shows that real and
imaginary parts of the amplitudes are discontinuous and divergent at
φ = 5π/6 and φ = 7π/6, respectively.

and

ϕk(j ) =
{

A−eikj + B−e−ikj , (j � 0)

A+eikj + B+e−ikj , (j � 0)
, (39)

respectively. It is easy to check that at the point k =
kc = γ , we have A+ = 0, ei(π−4k)/3B+ = B− and A− =
0, ei(π−4k)/3B+ = B−. Also, to satisfy the Dirac nor-
malization, we take B± = 0, A− = 1/

√
N and B− =

1/
√

2Nei(π−4k)/3B+ = 1/
√

2Nei(π−4k)/3, A− = 0. Hence, the
eigenfunctions of H are

ϕk
s,1(j ) = 1√

N

{
eikj , (j � 0)

0, (j � 0)
, (40)

ϕk
s,2(j ) = 1√

2N

{
ei(π−4k)/3e−ikj , (j � 0)

e−ikj , (j � 0)
, (41)

where s represents spectral singularity, a special situation, and
N is the system size. Similarly, the eigenfunctions of H † are

ϕk
s,1(j ) = 1√

N

{
0, (j � 0)

eikj , (j � 0)
, (42)

ϕk
s,2(j ) = 1√

2N

{
ei(π−4k)/3e−ikj , (j � 0)

e−ikj , (j � 0)
. (43)

The physics of the solutions is clear that ϕk
s,2(j ) and ϕk

s,2(j )
describe the reflectionless transmission from the right to
the left side, while ϕk

s,1(j ) and ϕk
s,1(j ) represent unilateral
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reflectionless absorption and self-sustained emission from the
scattering center, respectively. We can readily check that〈

ϕk
s,1(j )

∣∣ϕk
s,1(j )

〉 = 0,
〈
ϕk

s,1(j )
∣∣ϕk

s,2(j )
〉 = 0, (44)〈

ϕk
s,2(j )

∣∣ϕk
s,1(j )

〉 = 0,
〈
ϕk

s,2(j )
∣∣ϕk

s,2(j )
〉 = 1, (45)

which indicates that the biorthogonality of the eigenfunctions
of H and H † is destroyed. Therefore, we conclude that the
perfect asymmetric transmission corresponds to the existence
of the spectral singularity of the non-Hermitian diode model.

It is noted that the theory of spectral singularity for a
non-Hermitian scattering center arising from pure complex
potential has been well established [21,29]. It is shown that
the transfer matrix can be employed to identify the spectral
singularity.

We believe that this formalism is applicable to the discrete
system. Similarly, the eigenvalue equation Hψ = Eψ yields
the following asymptotic expressions for the eigenfunctions of
H :

ϕk(j ) → A±eikj + B±e−ikj for j → ±∞. (46)

A± and B± are possibly k-dependent complex coefficients that
are related by the so-called transfer matrix M according to(

A+
B+

)
= M

(
A−
B−

)
. (47)

The transfer matrix reveals almost complete features of the
scattering center. Next, the Jost solution of H can be readily
constructed from Eq. (26) as the form

ϕk
+(j ) =

{
eikj /tkL + rk

Le−ikj /tkL, (j � 0)

eikj , (j � 0)
, (48)

ϕk
−(j ) =

{
e−ikj , (j � 0)

e−ikj /tkR + rk
Reikj /tkR, (j � 0)

, (49)

which satisfies the asymptotic boundary conditions

ϕk
±(j ) → e±ikj as j → ±∞. (50)

Then the corresponding transfer matrix can be written as

Mk =
⎛
⎝ tkL tkR−(rk

R)2

tkR

rk
R

tkR

− rk
R

tkR

1
tkR

⎞
⎠ , (51)

which connects the asymptotic scattering wave functions at
±∞.

Now we consider the case with φ = 0, which represents
the non-Hermitian scattering center arising from complex on-
site potentials. Straightforward derivation shows that when the
momentum k = kc, with

sin kc = −cos γ + 1

2 sin γ
, (52)

we have

(Mkc
)22 = 1/t

kc

R = 0. (53)

It identifies a spectral singularity at kc, which also corresponds
to |t kc

R,L| = |rkc

R,L| = ∞. This result accords with the theorems

proposed in Ref. [29]. Furthermore, the corresponding eigen-
functions can be written as

ϕ
kc± (j ) =

{
e−ikcj , (j � 0)

eikcj , (j � 0)
, (54)

because

lim
k→kc

rk
L

/
t kL = lim

k→kc

rk
R

/
t kR = 1. (55)

Obviously, the physics of the solution in Eq. (54) corresponds
to the unidirectional plane wave, which has been proposed in
Refs. [24,31]. It can be seen from the following analysis. The
group velocities of the incident plane waves from left and right
are denoted as υL = υ−

kc
and υR = υ+

kc
, where

υ±
kc

=
(

∂Ek

∂k

)
±kc

= ±2J sin kc. (56)

For the center loss potential V = −Jeiγ with γ ∈ (0,π ),
we have sin kc < 0 according to Eq. (52) and then yields
υL > 0, υR < 0. It indicates that the solution in Eq. (54)
represents the current flow from both sides to the center. It
corresponds to reflectionless absorbtion with P symmetry,
which is schematically illustrated in Fig. 1(c).

On the other hand, when we consider the nonzero φ case,
we will find that such a criterion is invalid for the spectral
singularity under the condition of the perfect asymmetric
transmission. From Eq. (26), the corresponding transfer matrix
can be written as

Mkc
=

(
0 0

0 ei(4kc−π)/3

)
, (57)

which indicates M22 �= 0. It implies that the criterion for the
existence of spectral singularity is not necessary when the
magnetic field is involved.

Finally, we would like to discuss the asymmetric trans-
mission from another perspective. It turns out that there is
another peculiar phenomenon, reflectionless absorption, in the
semi-infinite non-Hermitian system [24,31]. We have shown
above that such a phenomenon in its symmetrized version
can occur in the present system with zero φ. Now we will
show the connection between the perfect unidirectionality and

iV Je

iV Je

(a)

(b)

FIG. 4. (Color online) Sketch of semi-infinite systems possess-
ing the reflectionless absorption characteristic, which can be con-
structed by disconnecting the (a) right or (b) left lead from a diode
configuration.
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reflectionless absorption. In contrast to the previous study, we
consider the system in the presence of a magnetic flux. One can
see this connection simply by disconnecting one of two leads
in the system with the Hamiltonian in Eq. (16). Figures 4(a)
and 4(b), which are obtained by cutting off the right and
left leads, respectively, schematically illustrate this geometry.
Then we can conclude that a perfect diode scattering center
can always be reduced to a setup of reflectionless absorption.
However, the latter is not sufficient to construct a diode device.

V. SUMMARY AND DISCUSSION

In summary, we have studied the possibility of asymmetric
transmission induced by a non-Hermitian scattering center
embedded in a one-dimensional waveguide. We have shown
that the non-Hermiticity of a scattering center is not sufficient
for the asymmetric transmission, while it is forbidden for a
Hermitian scattering center. We have constructed a concrete

setup possessing the perfect unidirectionality of the trans-
mission, which comprises a non-Hermitian triangular ring
threaded by an Aharonov-Bohm flux. It seems to imply that a
magnetic flux is crucial for such a phenomenon. Furthermore,
the analytical solution shows the connection between the
perfect unidirectionality and spectral singularity. We have also
showed that the criterion for spectral singularity associated
with the transfer matrix is invalid when a magnetic field is
involved.
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