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Equilibrium phases of two-dimensional bosons in quasiperiodic lattices
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We report on results of quantum Monte Carlo simulations for bosons in a two-dimensional quasiperiodic
optical lattice. We study the ground state phase diagram at unity filling and confirm the existence of three phases:
superfluid, Mott insulator, and Bose glass. At lower interaction strength, we find that sizable disorder strength is
needed in order to destroy superfluidity in favor of the Bose glass. On the other hand, at large enough interaction
superfluidity is completely destroyed in favor of the Mott insulator (at lower disorder strength) or the Bose
glass (at larger disorder strength). At intermediate interactions, the system undergoes an insulator to superfluid
transition upon increasing the disorder, while a further increase of disorder strength drives the superfluid to
Bose glass phase transition. While we are not able to discern between the Mott insulator and the Bose glass at
intermediate interactions, we study the transition between these two phases at larger interaction strength and find
no evidence of a Mott-glass-like behavior.
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I. INTRODUCTION

Condensed matter systems, either manufactured or oc-
curring in nature, possess, in general, a certain degree of
disorder. Studying physical phenomena such as Anderson
[1] localization, resulting from the presence of disorder,
is therefore of crucial importance. Anderson localization
pertains to the case of noninteracting fermions. More re-
alistic systems, though, consist of interacting particles. For
interacting systems, the interplay between disorder and in-
teraction may result in novel physical effects. For instance,
when random disorder is added to paradigmatic condensed
matter models, such as the Bose-Hubbard model or the BCS
model for superconductivity, it gives rise to disorder-driven
phase transitions from a conducting to an insulating phase,
resulting from the localization of bosons and Cooper pairs,
respectively [2–5]. While disorder-driven phase transitions
have been observed in a wide range of experimental systems
such as films of adsorbed 4He on substrates [6,7], bosonic
magnets [8–10], and thin superconducting films [11,12], and
in spite of a remarkable theoretical effort [13–20], a thorough
understanding of the effects of disorder in interacting quantum
many-body systems is lacking. On the one hand these systems
are challenging to study theoretically; on the other, poor
control over experimental condensed matter systems does
not allow for thorough experimental investigation of these
systems.

Optical lattice systems of ultracold atoms and molecules
provide a unique possibility of engineering matter with
an unprecedented level of control and flexibility over the
parameters entering the Hamiltonian [21–24]. Hence, optical
lattice simulators have rapidly become an important tool in
the study of disordered systems where disordered optical
lattice potentials are created using speckle patterns [25–27],
and quasidisorder potentials are created using multichromatic
incommensurate optical lattices [28] or localized atomic
impurities [29]. These techniques were employed in the
first realizations of Anderson localization in one dimension
using noninteracting bosons in continuum [30], and in an
optical lattice [31]. Subsequently, delocalization induced by

weak repulsive interaction was observed in one dimension
[32], while localization induced by strong interaction was
demonstrated in one and three dimensions [26,29,33,34].

In the past decade the behavior of strongly interacting
systems in the presence of random disorder has been studied
extensively using a variety of theoretical methods [3,35–43].
For the most part these studies have considered systems of
bosonic particles trapped in one-, two-, or three-dimensional
optical lattices. In the absence of disorder, these systems
feature two phases: superfluid (SF) and Mott insulator (MI).
In the presence of random disorder a third insulating but com-
pressible phase, known as the Bose glass (BG), is stabilized [2].
As a result of finite disorder strength, no direct SF-MI phase
transition exists [38] and the BG always intervenes between
the MI and SF regions.

Optical lattice systems can also be used to create quasiperi-
odic trapping potentials by employing bichromatic lattices
which are formed by combining two optical lattices with
incommensurate wavelengths [28]. In solid state physics,
quasiperiodic crystalline structures such as photonics qua-
sicrystals were found to have a nontrivial connection to
topological states of matter [44–46]. Nonintereacting bosons
in quasiperiodic one-dimensional potentials are described by
the analytically solvable Aubry-André model [47,48], which
features Anderson localization. This model was first realized
experimentally in [31], where Anderson localization was
confirmed by investigating transport properties, as well as the
spatial and momentum distributions. As in the case of random
disorder, the introduction of interactions to the Aubry-André
model increases the complexity of the system and gives rise to
new physical phenomena. Most of the recent theoretical work
has focused on one-dimensional systems of interacting bosons
in quasiperiodic potentials, where density-matrix renormal-
ization group (DMRG) methods can be successfully employed
[49–54]. These studies have identified a direct SF-MI transition
of Kosterlitz-Thouless type at weak disorder [50,53], in
accordance with the predictions of the Harris-Luck criterion
[55]. The criterion states that a perturbative quasiperiodic
disorder is irrelevant from the renormalization group point
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of view, leaving the nature of the phase transition unchanged
when compared to the transition in the clean system.

In the following, we use path integral quantum Monte
Carlo by the worm algorithm [56] to study two-dimensional
(2D) lattice bosons in the presence of quasiperiodic disorder.
Higher-dimensional quasiperiodic systems have not received
much theoretical attention since powerful techniques such as
DMRG are not suitable. Similarly to what is observed in 1D
[50], we find that if the interaction strength is smaller than the
critical interaction strength corresponding to the 2D SF-MI
transition in the clean system, sizable disorder is needed to
destroy superfluidity. On the other hand, at any given disorder,
one can find an interaction strength above which superfluidity
is completely destroyed in favor of an insulating phase. At
lower disorder strength this insulating phase is a MI, while at
larger disorder strength it is a BG. Our numerical results for the
compressibility in the range of interaction strengths where SF
has completely disappeared are consistent with a direct MI-BG
phase transition and do not show any evidence of a crossover
region characterized by Mott-glass-like behavior (or anoma-
lous Bose glass), unlike the findings of [57] for the case of
random disorder. Finally, at intermediate interaction strengths,
the system undergoes an insulator to superfluid transition upon
increasing the strength of the disorder. One can (re)enter the
Bose glass phase by further increasing disorder strength.

II. HAMILTONIAN

We study a system of bosons in a 2D lattice in the presence
of quasiperiodic disorder, described by the Hamiltonian

H = − J
∑

〈i j〉
(a†

i aj + H.c.) + U

2

∑

i

ni(ni − 1)

− μ
∑

i

ni +
∑

i

�ini . (1)

The first term in the Hamiltonian is the kinetic energy, where
a
†
i (ai) are the bosonic creation (annihilation) operators with

the usual commutation relations, and J is the hopping matrix
element between sites i and j . We use 〈· · · 〉 to denote nearest
neighboring sites. Here U sets the strength of the on-site
repulsion and μ is the chemical potential, which in the
absence of disorder, sets the number of particles in the system.
The quasiperiodic on-site disorder �i is created by perturbing
the primary optical lattice with a second incommensurate one.
The net result is a quasiperiodic external potential that couples
to the on-site density ni . Hence, the on-site disorder takes the
form �i = � cos(2πβdxi + φx) cos(2πβdyi + φy), where �

is the strength of disorder, φx,y is an arbitrary phase shift, and
βd measures the degree of commensurability. Both � and βd

can be tuned experimentally, the former by tuning the relative
heights of the primary and secondary lattices and the latter
by varying the wave numbers of the two lattice potentials.
The results presented below correspond to the maximally
incommensurate ratio given by the choice βd = (

√
5 − 1)/2.

III. RESULTS

In the following we present a numerical study of the Hamil-
tonian (1) at unit filling (n = N/Nsites = 1) by the means of

FIG. 1. (Color online) Ground state phase diagram of the system
described by Eq. (1) at filling factor n = 1. The horizontal and vertical
axes are the onsite interaction strength U/J and disorder strength
�/J , respectively. Using these two parameters as tuning knobs, the
system can form a Mott-Insulator (MI), a superfluid (SF), and a Bose
glass (BG). Simulations results for the SF-insulator phase boundary
are shown using solid orange circles (the solid orange line is a guide
to the eye), while solid purple squares (the dashed line is a guide to
the eye) correspond to the phase boundary between the MI and BG
phases. At lower disorder and intermediate interactions we are unable
to distinguish between the MI and the BG (dashed blue region). The
shaded, light blue region to the left of the dot-dashed line corresponds
to U/J � 10 which has not been explored (see text).

quantum Monte Carlo simulations using the worm algorithm.
In order to obtain accurate results in the thermodynamic
limit we perform finite-size scaling on the simulations results.
This process is challenging in the presence of quasiperiodic
disorder where the disorder is incommensurate with the
lattice. Incommensurability means that one cannot produce
comparable systems by simply scaling the lattice size. To
circumvent this problem we have used system sizes L,
with Nsite = L × L, from the Fibonacci sequence [58]. We
have found that for disorder strength � � 3J our results
depend strongly on the choice of (φx,φy). Hence, for each
set of parameters (μ,�,U,L) we have run simulations with
50 different choices for phases φx,y ∈ [0, 2π ). The results
presented below are extracted from the 50 runs using the
bootstrap method. We find that further averaging over (φx,φy)
realizations simply reduces the statistical error.

The ground state phase diagram of the system at unit
filling is shown in Fig. 1, where the horizontal and vertical
axes correspond to U

J
and �

J
, respectively. At lower disorder

strength and for U/J � 16 the system is in the superfluid state
associated with the presence of off-diagonal long-range order.
The superfluid phase is characterized by finite compressibility
and nonzero single particle condensate order parameter, 〈ψ〉 =
〈ai〉 �= 0, associated with a finite superfluid stiffness ρs . The
superfluid stiffness is extracted from simulations using the
relation ρs = 〈W2〉/dLd−2β, where W is the winding number
in space, d is the spatial dimension (d = 2 in our case) [59],
and β = 1/T is the inverse temperature. In all our simulations
we have chosen β such that the system is in its ground state,
and have scaled β ∝ Lz where z is the dynamical critical
exponent. The SF phase becomes unstable at stronger disorder
strength and a transition to the insulating BG phase occurs. The
BG phase is characterized by vanishing superfluid stiffness
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FIG. 2. (Color online) Main plot: Scaled superfluid stiffness
ρsL

−(d+z−2) with z = 2, as a function of �/J for U/J = 22 and
L = 21, 34, 55, and 89 using red circles, blue squares, empty
black squares, and black diamonds, respectively. In these simulations
we have used β = (L/2)2 to scale the imaginary time dimension
Lτ . Inset: Data collapse using ν = 0.67, a = −9.4, ω = −0.9, and
�̄c = 10.21 corresponding to the critical point extracted from the
main plot. Here �̄ = �/J . The symbols are the same as those used
for the main plot.

and finite compressibility κ . The region of parameter space
corresponding to U/J � 10 has not been explored extensively
as finite-size effects are much more pronounced (see the
shaded, light blue region to the left of the dot-dashed line in
Fig. 1). In this region finite-size scaling becomes much more
difficult resulting in large statistical errors.

For 16 � U/J � 35 and at low disorder strength, the
system is in an insulating phase and undergoes a phase
transition in favor of the SF phase upon increasing the
disorder strength. A similar phase transition is present if the
trapping potential features random disorder, where it has been
shown that the presence of an intervening BG phase between
the MI and SF is guaranteed by the theorem of inclusions
[38]. It should be noted that this theorem does not apply
to quasiperiodic disorder and therefore the existence of the
BG phase or the lack thereof should be confirmed by direct
measurement of the compressibility. However, the parameter
regime corresponding to the range of interactions and disorder
strengths where the BG region may form is narrow. As for
the case of random disorder, the compressibility of the BG in
narrow regions would be too small to be detected numerically,
making it impossible to distinguish between the MI and BG
phases. We are therefore unable to discuss the onset of the
BG phase, and generically refer to the dashed blue region
separating the SF and the zero-disorder MI in Fig. 1 as
an insulating phase. Further increasing the disorder strength
results in the destruction of the SF order in favor of the BG.

Figure 2 illustrates the finite-size scaling procedure used to
determine the SF-BG (or generic insulator) phase boundary
(solid orange circles in Fig. 1). Here we plot the scaled
superfluid stiffness ρsL

(d+z−2) with z = 2, as a function of
�/J at U/J = 22 and L = 21, 34, 55, and 89 (red circles,
blue squares, empty black squares, and black diamonds,
respectively). In these simulations we have used β = (L/2)z

to scale the imaginary time dimension Lτ . The dynamical
critical exponent z was set to d = 2, following the prediction
in Ref. [2] for random disorder, and the recent unambiguous

FIG. 3. (Color online) Main plot: κ vs �/J for U/J = 45, L =
21, and β = L/2. The compressibility becomes finite at �/J ∼ 23.5
and plateaus at �/J ∼ 24.5. Inset: The top and bottom panels show
κLd−z versus �/J for z = 0.75 and z = 1, respectively, at U/J = 45.
The scaled compressibility is shown for L = 21, 34, 55, and 89
using black squares, red circles, blue triangles, and green diamonds,
respectively. Our data indicates that 0.75 � z � 1.25.

confirmation using Monte Carlo techniques [60]. The drift
in the position of the intersection point indicates that a
correction to the finite-size scaling relation ρsL

(d+z−2) =
f (L1/ν �

J
,βL−z) where f (x,const) is a universal function,

must be included in order to observe data collapse. After
this correction is taken into account the scaling relation takes
the form ρsL

(d+z−2) = (1 + aL−ω)f (L1/ν �
J
,βL−z) [61]. The

inset of Fig. 2 shows L2ρs/(1 + aL−ω) as a function of
(�̄ − �̄c)L1/ν , where �̄ = �/J . From the best data collapse
we find ν = 0.67 ± 0.07 (ν = 0.67 holds for the SF-insulator
transition of a clean system), a = −9.4 ± 0.5, ω = −0.9 ±
0.05, and �̄c = 10.21 ± 0.05. This value of ν suggests that
the quasiperiodic disorder is still irrelevant for �/J ∼ 10. As
noted above, the choice of dynamical exponent z = d has only
been predicted and confirmed for random disorder. To ensure
that our choice of the critical exponent z does not affect the
position of the transition line, we have performed finite-size
scaling with a choice of z = 1.5 for various points on the
transition line. We find that the critical point remains the same
within the error bars for the two different choices of z.

Finally, we turn our attention to the region U/J � 35
where the SF phase is completely absent and the system
undergoes a MI-BG transition upon increasing the disorder
strength. In this region of the parameter space we can easily
measure compressibility and distinguish between the MI and
BG phases. To this end we have performed simulations
with z = 0.75, 1, 1.25, and 1.5 at U/J = 45. The inset of
Fig. 3 shows the scaled compressibility κLd−z with z = 0.75
(top panel) and z = 1 (lower panel) for L = 21, 34, 55, and
89 using black squares, red circles, blue triangles, and green
diamonds, respectively. While we have not performed an
exhaustive scan over different values of dynamical exponent
z, we find that the best crossing corresponds to z = 0.75 and
gives the critical point at �c/J = 23.76 ± 0.05.

Lastly, we discuss the possibility of the existence of a
crossover region separating the MI from the BG, where the
system forms a Mott glass or possesses a Mott-glass-like
anomalous BG behavior as discussed in [57] for the case of
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FIG. 4. (Color online) The plot shows log κ as a function of β,
at U/J = 45 and L = 21 for �/J = 22, 23.5, 23.6, 23.7, 23.8,
23.9, and 26. Below the critical point �/J = 23.76 ± 0.05 (see inset
of Fig. 3) the behavior is consistent with that of a MI. Above the
transition, the behavior is consistent with that of the BG phase.

random disorder. A Mott glass is a gapless yet incompressible
insulator. In [57] the authors present numerical results which
suggest that there exists a region in parameter space where
the system possesses Mott-glass-like behavior, i.e., negligible
compressibility κ , with κ ∼ exp(−b/T α) + c (α < 1 and
c ∼ 0). In analogy with [57], we have studied the behavior of
κ away from the SF lobe boundary at fixed β as a function
of �/J , and at fixed �/J as a function of β. The main
plot of Fig. 3 shows κ vs �/J for U/J = 45, L = 21, and
β = L/2. The compressibility becomes finite at �/J ∼ 23.5
and plateaus at �/J ∼ 24.5. Figure 4 shows κ as a function of
β at U/J = 45 and L = 21 for �/J = 22, 23.5, 23.6, 23.7,
23.8, 23.9, and 26. Our data indicates that below the quantum
critical point, �c/J = 23.76 ± 0.05, the system is in the MI
state and κ ∼ exp(−β�G), where �G is the energy gap. Upon
increasing the disorder strength the system enters the BG phase
as shown by a plateaued compressibility at large enough β (see

curves corresponding to �/J = 23.9 and 26). It should be
noted that at �/J = 23.8 we observe MI-like behavior which
can be attributed to the finite size of the system. The numerical
results shown in Figs. 3 and 4 strongly support the absence of
a crossover region where the system behaves like a Mott glass.
If this crossover region exists at U/J = 45, Fig. 4 suggests
that it would only extend within a range of disorder strength
of width ∼1%.

In conclusion, we have used path integral quantum Monte
Carlo by the worm algorithm to study the phase diagram
of bosons in a two-dimensional quasiperiodic optical lattice.
As in the case of random disorder, the ground state phase
diagram contains three phases: superfluid, Mott insulator,
and Bose glass. At weaker interactions, the superfluid phase
is favored and significant disorder has to be introduced in
order to destroy superfluidity. At strong enough interactions,
the superfluid phase has disappeared, and for weak enough
disorder the system forms a Mott insulator. Upon increasing the
disorder strength the system undergoes a phase transition from
Mott insulator to Bose glass. We have used finite temperature
simulations to establish that unlike what was recently reported
for random disorder [57], there is no Mott-glass-like Bose
glass behavior separating the Mott insulator from the Bose
glass. Finally, at intermediate interaction strengths and lower
disorder, the compressibility of the Bose glass is too small to
be measured numerically in finite systems. In this region we
are unable to distinguish between a Mott insulator and a Bose
glass.

ACKNOWLEDGMENTS

We would like thank N. Prokof’ev and Ş. G. Söyler
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