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Goos-Hänchen shifts in spin-orbit-coupled cold atoms
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We consider a matter wave packet of cold atom gas impinging upon a step potential created by an optical light
field. In the presence of spin-orbit coupling, the atomic eigenstates contain two types of evanescent states, one
of which is an ordinary evanescent state with a pure imaginary wave vector while the other possesses a complex
wave vector and is recognized as an oscillating evanescent state. We show that the presence and interplay of
these two types of evanescent states can give rise to two different mechanisms for total internal reflection, and
thus lead to an unusual Goos-Hänchen (GH) effect. As a result, not only large positive but also large negative
GH shifts can be observed in the reflected atomic beam. The dependence of the GH shift on the incident angle,
energy, and height of the step potential is studied numerically.
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The Goos-Hänchen (GH) effect was first discovered in
1947 [1] as an optical phenomenon in which a light beam
incident upon the interface of two media can experience a
lateral shift under the condition of total internal reflection
(TIR). The origin of this lateral shift is rooted in the fact
that the incident beam is composed of different plane-wave
components with finite transverse distribution, which will
experience different phase shifts during TIR. So the key
physics inherent in the GH effect is wave interference, and
in this sense it can also be generated with a matter wave. As
a matter of fact, a GH shift in graphene [2], neutron [3], and
even atom optics [4] has been predicted.

Among these, the electronic analog of the GH effect has
been carefully studied [5]. Compared to an electromagnetic
wave, an electron provides an extra degree of freedom for
tuning the GH effect. For example, the effective electron mass
can be tuned from positive to negative [6], therefore a negative
GH shift can be observed. In graphene [2,7], for massless
electrons in the ultrarelativistic limit, it was found that the
GH effect becomes dependent on the spin degree of freedom.
However, the electronic GH shift is about an order of the
electron de Broglie wavelength (on the scale of a nanometer),
which impedes its direct observation in experiments. Recent
years have witnessed a rapid advancement in laser cooling
and trapping technology, which made ultracold atoms with
a relatively long de Broglie’s wavelength available. As
such, phenomena originally predicted for electrons in the
ultrarelativistic limit, such as Zitterbewegung [8] and Klein
tunneling [9], have been successfully observed in experiments
with cold atoms [10,11], thus making cold atom systems
appealing for the study of the GH and relativistic effects [12].

Furthermore, recent experimental progress has also imple-
mented spin-orbit (SO) coupling in ultracold atomic gas by
dressing cold atoms with lasers of a special configuration [13].
In electronic systems, SO coupling can originate from the
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interaction between the intrinsic electronic spin and the
magnetic field induced by its movement. It connects the
electronic spin to its orbital motion and thus the electron
transport becomes spin dependent. In the presence of SO
coupling, apart from the normal evanescent states, there exist
oscillating evanescent states [14], in which the matter wave
propagates with a complex longitudinal wave vector. The role
of the SO interaction and evanescent states on the tunneling
dynamics of electrons has been studied previously [14,15].
However, the role of these evanescent states on the TIR and
thus the GH effect still needs to be explored. As we will show
in the following, the presence and interplay of these two types
of evanescent states can give rise to two different mechanisms
for TIR, and thus lead to an unusual GH effect.

The Rashba SO coupling can be generated in neutral cold
atoms with a tripod scheme [16–18], in which the atomic
electronic energy-level structure is composed of an excited
state |0〉 and three degenerate hyperfine ground states |1〉, |2〉,
and |3〉. The ground state |j 〉 (j = 1,2,3) is coupled to |0〉
via a laser field with Rabi frequency �j . By appropriately
designing the laser configurations [17,18], the atom-laser
coupling system supports two degenerate dark states, which are
also the ground states of the system. In the subspace spanned
by the dark states, the effective Hamiltonian can be written as

H = �
2k2

2m
+ �α(kxσy − kyσx) + V (x), (1)

with k2 = k2
x + k2

y , α is the Rashba SO coupling strength,
σx = [0,1; 1,0], σy = [0, − i; i,0] are the Pauli matrices acting
on the two spin components, and the scattering potential is
described by V (x) = V0�(x), where �(x) is the Heaviside
step function. Such a step potential can be created via a super-
Gaussian laser beam with a large-enough order [19] and width
compared to the atomic de Broglie wavelength.

In the case where V (x) = V0 is a constant potential, the
eigenfunctions of Hamiltonian (1) split into two branches and
can generally be expressed as

φ±
k = Cei(kxx+kyy)

(−2a(ky + ikx)

E±
k − V0 − k2

)
, (2)
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with C the normalization constant and a = mα/�. E±
k is the

corresponding eigenenergy (scaled by �
2/2m) satisfying the

relation

(k2 + V0 − Ek)2 − 4a2k2 = 0, (3)

from which we can get the energy spectrum Ek = k2 ±
2ak + V0 or the modulus of the wave vector k = ∓a +√

a2 + Ek − V0.
In the situation considered here, the system is left free

along the y direction and is semi-infinite in the x direction,
thus ky is real and kx is generally complex. As those had been
illustrated in Ref. [14], the eigenfunctions of the system can
be grouped into three categories according to their properties:
propagating states with kx real, evanescent states (only existing
near the boundary of the system and propagating along it)
with kx = iκ (requiring |κ| < |ky |) and oscillating evanescent
states with kx = K ′

x + iK ′′
x , in which K ′

x,K
′′
x satisfy K ′2

x K ′′2
x =

a2(V0 − E − a2) and K ′2
x − K ′′2

x = 2a2 + E − V0 − k2
y . It is

clear that in order for the oscillating evanescent states to exist,
the condition of V0 > a2 + E needs to be satisfied.

In order to better understand the properties of these
eigenstates, we plot in Fig. 1 the energy spectra (Ek − V0)
as a function of |kx | for two typical values of ky , which exhibit
different structures depending on the value of ky . For both
cases, the two branches of propagating states are separated by

a gap of 4a|ky | at |kx | = 0. When |ky | < a, |kx | =
√

a2 − k2
y

is the energy minimum of the lower propagating branch and
the dispersion curve of the evanescent states forms a lobe with
its tip located at |kx | = |ky |, which intersects with the energy
spectra of propagating states at |kx | = 0. For |ky | > a, |kx | = 0
becomes the energy minimum of the lower propagating branch,
which intersects with the evanescent lobe at some finite |kx |
besides |kx | = 0. The oscillating evanescent states possess
minimum energies among these three types of solutions for
both cases, and they are linked to the energy minimum of the

FIG. 1. (Color online) Energy spectra of the different states
described by Ek = k2 ± 2ak + V0. The solid (blue and red) lines
correspond to the up and down branches of the propagating states.
The black dashed line represents the evanescent states while the
green (light) dashed line is for the oscillating evanescent states. The
parameters are set as (a) ky = 0.3a and (b) ky = 3a.

lower propagating branch for |ky | < a and the evanescent lobe
for |ky | > a.

The presence of two different types of evanescent states
provides different possibilities for TIR and could have a crucial
effect on the resulting GH shift. It would be convenient to
discuss the conditions for TIR to happen before we move on
to the calculations and discussions of the GH shift. First, the
energy spectra in Fig. 1 indicate that, in order for TIR to take
place, the incident atomic beam should be prepared in the
lower dispersion branch of the propagating states or the “outer
circles” on the left in Fig. 2. This is because any propagating
states prepared in the upper branch (or “inner circle”) will
always lead to double reflection [20] instead of TIR. Second,
in the normal case without SO coupling, there will be a pure
evanescent wave along the inner boundary of the step potential
when TIR takes place. The GH shift in this case can then be
understood as to account for the penetration of the evanescent

FIG. 2. (Color online) Schematic to illustrate the two different
mechanisms for TIR when the incident beam is prepared in the k =
a + √

a2 + E branch of the propagating states (outer circles in the
left). The different eigenstates in (a) and (b) are plotted with E = 5a2,
V0 = 10a2 and E = 5a2, V0 = 4a2, respectively, however, the figure
is for illustrative purposes only. In (a), where V0 > a2 + E such that
only oscillating evanescent states exist inside the step potential, the
range of ky that gives TIR as marked by the arrows is determined by
the incident energy E of the beam only. In (b), where V0 < a2 + E

and consequently no oscillating evanescent state exists inside the step
potential, the TIR happens only when evanescent states are available
at both sides of the potential. As a result, the range of ky that gives
TIR has an additional constraint from the potential compared with the
case in (a) and the critical angle for TIR to happen crucially depends
on the height of the potential.
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field to the other side of the interface and, as such, the GH
shift should be positive. The different physics inherent in the
present case with SO coupling can be understood as there are
two different mechanisms needed for TIR to take place.

(i) When V0 > a2 + E, the only available states inside the
step potential are oscillating evanescent ones. So the TIR
happens when one of the reflected beams at the x < 0 side
is evanescent [see the range of ky marked by the arrows in
Fig. 2(a)], the lower bound of which defines the critical incident
angle ϕ1

c of the TIR,

ϕ1
c = sin−1

√
E + a2 − a√
E + a2 + a

, (4)

which is independent of the height of the step potential. The
available oscillating evanescent states inside the step potential
are composed of two counterpropagating ones [±K

′
x—see the

right of Fig. 2(a)], one of which penetrates along the potential
boundary and gives rise to an evanescent wave on the outer
boundary of the step potential. This accounts for the creation
of negative GH shifts.

(ii) When V0 < a2 + E such that no oscillating evanescent
state exists inside the step potential, the TIR occurs only when
evanescent states are available at both sides of the potential.
Thus, apart from the marked range of ky as in the case of
V0 > a2 + E, there is an extra constraint from the potential
side. The lower bound of the overlapped range as marked in
Fig. 2(b) defines the critical incident angle ϕ2

c for the TIR to
happen in this case,

ϕ2
c = sin−1

√
E − V0 + a2 + a√

E + a2 + a
, (5)

and in this case the critical angle shows a crucial dependence
on the height of the step potential.

After the discussion of the two different mechanisms
needed for TIR to occur, we now proceed to the calculations
and discussions of the resulting GH shifts. The atoms are
initially prepared in the k = a + √

a2 + E branch of the
propagating states with energy E and, incident upon the step
potential from x < 0, the wave function reads

	in =
∫

dkyf (ky − ky0)ei(kxx+kyy)

(−e−iϕ(ky )/2

ieiϕ(ky )/2

)
, (6)

in which the distribution function f (ky − ky0) describes that
the incident atomic beam has a narrow angular distribution
centering at ky = ky0 with incident angle ϕ(ky) = arg(kx +
iky). We can then expand ϕ(ky) around ky = ky0 and as such
ϕ(ky) � ϕ(ky0) + ϕ′(ky0)ky . By using the Fourier transform
shift theorem, i.e., a linear phase shift in the wave-vector
domain introduces a translation in the space domain, the center
of the incident atomic beam for the two spin components at
x = 0 will locate at y in

± = ±ϕ′(ky0)/2, respectively.
Under the condition of TIR, from Fig. 2 we know that the

reflected wave is a linear superposition of two waves: One is
the reflected propagating wave,

	r =
∫

dkyf (ky − ky0)ei(−kxx+kyy)r(ky)

(
ieiϕ(ky )/2

−e−iϕ(ky )/2

)
, (7)

which is obtained from Eq. (6) by replacing kx → −kx , ϕ →
π − ϕ, and r(ky) = |r(ky)|eiφ(ky ) is the reflection amplitude.
The other wave on the incident side is an evanescent one,

	e =
∫

dkyf (ky − ky0)eκx+ikyys(ky)

(− 2a(κ+ky )
E−k2

y+κ2

1

)
, (8)

in which s is the reflection amplitude of the evanescent
wave with κ > 0. In the case of TIR, |r(ky)| = 1 becomes
independent of ky , then at the interface x = 0 the center
of the two reflected atomic components will be at yr

± =
−φ′(ky0) ∓ ϕ′(ky0)/2. Combining the expressions of yr

± and
y in

± , the atomic beam will experience a lateral shift upon TIR:
σ± = yr

± − y in
± = −φ′(ky0) ∓ ϕ′(ky0) and the average shift

σ = (σ+ + σ−)/2 = −φ′(ky0) (9)

is recognized as the GH shift.
As we have discussed above, under the condition of TIR the

states in the step potential can be either oscillating evanescent
states (V0 > a2 + E) or evanescent states (V0 < a2 + E). The
theoretical derivations of the reflection amplitudes in the two
cases are similar, i.e., first write down the wave function inside
the step potential and then match the wave function using the
boundary conditions at x = 0. In the following, we will focus
on the derivation when the oscillating evanescent states are
the only available ones [21], such that the waves in the step
potential have the following form,

	t =
∫

dkyf (ky − ky0)e−K ′′
x x+ikyy

[
b1(ky)

(
a

iK ′
x−K ′′

x +ky

a2+iK ′
xK

′′
x

1

)
eiK ′

xx + b2(ky)e−iK ′
xx

(
a

−iK ′
x−K ′′

x +ky

a2−iK ′
xK

′′
x

1

)]
, (10)

in which K ′
x and K ′′

x are positive real and b1(2) are the transmission amplitudes.
By integrating the Schrödinger equation H	(x) = E	(x) over the interval expanded around the interface x = 0, we get

	in|x=0 + 	r |x=0 + 	e|x=0 = 	t |x=0,
∂	in

∂x

∣∣∣∣
x=0

+ ∂	r

∂x

∣∣∣∣
x=0

+ ∂	e

∂x

∣∣∣∣
x=0

= ∂	t

∂x

∣∣∣∣
x=0

, (11)

From Eqs. (11), the scattering index {r,s,b1,b2} can be found to satisfy the following matrix equation,

M

⎛
⎜⎝

r

s

b1

b2

⎞
⎟⎠ =

⎛
⎜⎜⎝

e−iϕ/2

−ieiϕ/2

ikxe
−iϕ/2

kxe
iϕ/2

⎞
⎟⎟⎠ , (12)
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with

M =

⎛
⎜⎜⎜⎜⎝

ieiϕ/2 −2a
κ+ky

E−k2
y+κ2 −a

iK ′
x−K ′′

x +ky

a2+iK ′
xK

′′
x

−a
−iK ′

x−K ′′
x +ky

a2−iK ′
xK

′′
x

−e−iϕ/2 1 −1 −1

kxe
iϕ/2 −2aκ

κ+ky

E−k2
y+κ2 −a(iK ′

x − K ′′
x ) iK ′

x−K ′′
x +ky

a2+iK ′
xK

′′
x

a(iK ′
x + K ′′

x )−iK ′
x−K ′′

x +ky

a2−iK ′
xK

′′
x

ikxe
−iϕ/2 κ −iK ′

x + K ′′
x iK ′

x + K ′′
x

⎞
⎟⎟⎟⎟⎠ , (13)

from which the reflection amplitude r can be derived straight-
forwardly as

r = e−iϕ/2A + ieiϕ/2B + ikxe
−iϕ/2C − kxe

iϕ/2D

ieiϕ/2A + e−iϕ/2B + kxeiϕ/2C − ikxe−iϕ/2D
, (14)

where A,B,C,D are minors of the first column entries of
matrix M.

By calculating the phase shift inherent in the reflection
amplitude r = eiφ(ky ) according to Eq. (9) under the condition
of TIR, the GH shift can be derived and the results are shown
in Figs. 3 and 4. The GH shift is scaled in units of a−1, which
is the wavelength of the light field used to create the SO
coupling and is on the order of several hundred nanometers.
This is much larger than the electronic de Broglie wavelength
and could be easily observed in cold atom experiments. From
Fig. 3 one can see that when the incident angle exceeds the
critical angle (0.0076π ), TIR will take place. This critical
angle is independent of the step potential height V0, resulting
from the fact that V0 > E + a2. From Fig. 3 one can also
observe the appearance of a negative GH shift. With an increase
of the incident energy E, the GH shift will gradually become
positive.

The dependence of the GH shifts on the height of the
potential V0 and the incident energy E are shown in Fig. 4.
Figure 4(a) verifies that TIR occurs only when Eq. (5) is
satisfied. For example, when the incident energy is E = 5a2,
according to Eq. (5), for incident angles of π/6 and π/3, the
critical heights of the step potential for the TIR to occur are
5.47a2 and 2.05a2, respectively, which show good agreement
with the numerics in Fig. 4(a). On the other hand, Fig. 4(b)
indicates that a negative GH shift can only be observed for
very small incident energy and the TIR will take place in

FIG. 3. The GH shift σ vs the incident angle ϕ for E = 0.1a2

and V0 = 15a2 (solid line), V0 = 6.5a2 (dashed line).

a larger energy interval with a larger incident angle. Again,
the theoretical critical energies for TIR to happen according
to Eqs. (4) and (5) with incident angles of π/12, π/6,
and π/3 are 1.88a2, 8.0a2, and 52.3a2, respectively, and
from Fig. 4(b) we see that they agree very well with the
numerics.

In summary, we studied the GH effect in cold atoms with
SO coupling and found that there are two different mechanisms
needed for TIR to occur, which can lead to unusual GH
shifts, e.g., not only large positive but also large negative
GH shifts can be observed. In addition, the modulation of
the GH shift can be realized by changing the potential height
and the incident energy. Since the GH shift is much larger than
the atomic de Broglie wavelength, one can expect that it can
be readily measured in experiment from the density evolution
of the atomic ensemble via absorption imaging [22].

FIG. 4. (a) The GH shift σ vs the potential height V0 for E = 5a2

and (b) σ vs the incident energy E for V0 = 15a2 at incident angle
ϕ = π/12 (solid line), ϕ = π/6 (dashed line), and ϕ = π/3 (dotted
line). The inset figure displays the occurrence of a negative GH shift
for a small incident energy.
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