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Strong-field ionization with two-color circularly polarized laser fields
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Strong-field ionization provides fundamental insight into light-matter interactions, encoding the structure
of atoms and molecules on the subångström and subfemtosecond scales. In this Rapid Communication, we
explore an important regime: strong-field ionization by two-color circularly polarized laser fields. In contrast to
past work using linearly polarized drivers, we probe electron trajectories that are driven in a two-dimensional
plane, thus separating the tunneling angle from the rescattering angle. This allows us to make several findings.
First, we observe a single-lobed electron distribution for co-rotating fields, and a three-lobed distribution for
counter-rotating fields, providing experimental validation of the theoretical model explaining the generation of
circularly polarized high harmonic light. Second, we discover that there is significant electron-ion rescattering
using counter-rotating fields, but not with co-rotating fields. Finally, we show that the rescattered electrons are
well separated from the directly ionized electrons, in striking contrast to similar low-energy structures seen
with linearly polarized fields. These findings help overcome the long-standing problem of how to decouple the
tunneling and rescattering steps in strong-field ionization, which will enable new dynamic probes of atomic and
molecular structure.
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The interaction of intense laser fields (1014 W cm−2) with
atoms and molecules is of great scientific and technological
interest because of two related phenomena: high-harmonic
generation (HHG) [1] and strong-field ionization (SFI) [2,3].
HHG enables tabletop generation of coherent beams of
extreme ultraviolet (EUV) and soft x-ray light [4], which
have a broad range of applications. For example, HHG makes
it possible to capture chemical reactions in real time [5–7],
to uncover correlated charge, spin, and phonon dynamics in
materials with elemental specificity [8–10], and to perform
coherent imaging on the nanometer scale near the wavelength
limit [11,12]. Similarly, recent studies have revealed that the
photoelectron distribution from SFI can provide information
about the dynamic orbital and molecular structure [13–16],
indicating its potential for understanding molecular dynamics.

Both HHG and SFI begin with the tunnel ionization of
an electron from an atom or molecule, after which the
free electron is accelerated in the laser field [17]. HHG
occurs when an electron that is driven back to the parent
ion recombines, releasing its kinetic energy by emitting a
high-energy photon. SFI results from electrons that do not
recombine, but may still re-encounter their parent ion and
rescatter. The fact that both recombination (i.e., HHG) and
rescattering are strongly suppressed in elliptically or circularly
polarized driving laser fields [3,18–21] means that past studies
have generally used linearly polarized light to drive the HHG
and SFI processes. However, when using linearly polarized
light, field-driven electrons are confined to one-dimensional
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(1D) trajectories, making it difficult to deconvolve molecular
structural information encoded by both the tunnel-ionization
and rescattering steps [22–24]. In contrast, using two-color
circularly polarized fields, electrons are driven in a two-
dimensional (2D) plane [25], allowing the tunneling and
rescattering processes to occur at different angles.

In this Rapid Communication, we present several important
experimental observations of SFI driven by two-color circu-
larly polarized fields. First, the photoelectron distributions
exhibit unusual symmetries: namely, a single-lobe crescent
shape when the two fields have the same helicity (co-rotating),
or a three-lobe shape when the fields have opposite helicity
(counter-rotating). Second, low-energy features appear in the
photoelectron distribution only when the two laser fields are
counter-rotating. Advanced numerical calculations using the
time-dependent Schrödinger equation show that these features
are due to strong electron-ion rescattering. Finally, we observe
that the low-energy rescattered electrons are well separated
from those that do not re-encounter the core [3,26–30].
This demonstration of well-separated electron-ion rescattering
structures paves the way for the development of spectroscopies
that will steer the 2D electron trajectories (by adjusting intensi-
ties, frequencies, and ellipticities of the driving fields) in order
to provide new probes of atomic and molecular dynamics.

In addition, the observation of the shape and symmetry
of the photoelectron distributions resulting from two-color
circularly polarized fields provides experimental validation of
the theoretical model of HHG under these fields [25,31–35].
Recently, HHG driven by counter-rotating fields has been
demonstrated as a breakthrough source of coherent circularly
polarized EUV light, enabling powerful spectroscopies—such
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FIG. 1. (Color online) (a) Two-color counter-rotating circularly polarized laser fields ionize atoms to produce photoelectron distributions
that exhibit distinct features (central yellow lobes) that result from electron-ion rescattering. (b) Experimental apparatus used to detect the
photoelectron distributions.

as probing chiral molecules using photoelectron circular
dichroism [36,37] and investigating femtosecond magnetic
dynamics using x-ray magnetic circular dichroism [34,38]—to
move from the synchrotron to the tabletop. The theoretical
model for HHG under these conditions is built on the idea that
electrons can be driven back to the parent ion three times per
laser cycle, each time at a different angle. Our observation of
threefold symmetric photoelectron distributions provides di-
rect experimental validation of this elegant theoretical model.

To study SFI with two-color circularly polarized fields,
we used a velocity map imaging (VMI) spectrometer [39]
to record 2D projections of the three-dimensional (3D) pho-
toelectron distributions onto a microchannel-plate–phosphor-
screen detector (Beam Imaging Solutions) and a CCD camera
(Fig. 1). The fundamental laser pulses (790 nm, 45 fs)
were derived from a Ti:sapphire regenerative laser amplifier
(KMLabs Wyvern HP) operating at 4 kHz. The second
harmonic (395 nm) was obtained via frequency doubling in
a 200-μm-thick beta barium borate (BBO) crystal. Dichroic
mirrors were used to separate, and later recombine, the funda-
mental and second harmonic in a Mach–Zehnder geometry.
A delay stage was placed in the 790 nm arm to control
the relative time delay of the laser pulses. Waveplates (λ/4
and λ/2) were placed in each beam to separately control the
polarization of the 395-nm and 790-nm laser pulses. A one-
to-one magnification telescope consisting of two lenses was
placed in the 790-nm arm of the delay line to compensate for
chromatic aberration in the final focusing lens. The laser pulses
were focused into a skimmed supersonic jet of argon gas,
with intensities of ∼5 × 1013 W cm−2 for each of the beams
separately. The photoelectron distributions were then recorded
as a function of the time delay between the fundamental and
the second harmonic, using a step size of ∼133 attoseconds.
The experiment was carried out by combining the fundamental
and second harmonic fields in two distinct cases: with the fields
counter-rotating, and with the fields co-rotating.

By recording the photoelectron distributions as a function
of time delay between the 395-nm and 790-nm fields, we
make several important discoveries about SFI under two-color

circularly polarized fields: (1) The shape of the photoelectron
distributions depends on the relative helicities between the
circularly polarized fields. (2) The electron distributions rotate
with the time delay between the two laser fields, allowing
the 3D photoelectron distribution to be reconstructed using
tomographic methods [40–43]. (3) Counter-rotating fields
enable electron-ion rescattering (and HHG), which is not
present for co-rotating fields.

One noticeable difference in the shape of the photoelectron
distribution between the two cases is that the co-rotating
circular fields produce higher kinetic energy photoelectrons
than the counter-rotating fields. The differences in the
photoelectron kinetic energies can be explained through a
simple analysis of the electric field ( �E) that results from
the sum of the two laser fields. Within the strong-field
approximation (SFA), which ignores the role of the Coulomb
potential of the ion, the final drift momentum of the electron
is given by �p(tb) = (px,py) = ∫ ∞

tb
�E(t)dt , where tb is the

time that the electron tunnels from the atom. To predict the
photoelectron distributions, two factors must be considered:
�p (tb), which is where an electron that tunnels at tb will
impact on the spectrometer, and �E, which determines the
probability that an electron will tunnel ionize at that moment,
and therefore the signal intensity on the spectrometer.

In the case of counter-rotating fields, the total electric
field vector traces out a trefoil or “three-leaf clover” pattern
[Fig. 2(a)], which has three maxima per laser cycle. These three
maxima in E correspond to the three minima in final momen-
tum p, which leads to the expectation that the photoelectron
distribution from counter-rotating fields should consist of three
lobes separated by 120◦. In contrast, for the case of co-rotating
fields, the electric field has only a single maximum per laser
cycle [Fig. 2(b)], and this maximum in E corresponds to a
maximum in p. Thus, co-rotating circularly polarized pulses
should produce a photoelectron distribution that consists of a
single lobe of relatively high kinetic energy electrons. Thus,
the most prominent differences in the photoelectron kinetic
energies from co- and counter-rotating circularly polarized
fields can be explained as a result of electrons that tunnel
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FIG. 2. (Color online) (a),(b) The combined laser electric field
( �E) and final drift momentum of tunnel-ionized electrons ( �p), where
the dots indicate time zero for �E and �p. (c),(d) Normalized 1D
projections of the experimental photoelectron distributions plotted as
a function of time delay between the 790-nm and 390-nm laser pulses,
which reveal oscillations due to the rotation of the photoelectron
distribution with a period of 1.3 fs (one cycle of the 395-nm field).
(e),(f) Theoretical photoelectron distributions using the strong-field
approximation (SFA) reproduce the qualitative differences between
the co-rotating and counter-rotating cases.

ionize near the peak of the two-color laser field and proceed
to the detector without re-encountering the parent ion.

To determine the role of electron-ion rescattering in SFI
from two-color circularly polarized laser fields, it is neces-
sary to evaluate the complete 3D photoelectron distribution.
However, the VMI spectrometer only records a 2D projection
on the detector, and the lack of cylindrical symmetry prevents
conventional reconstruction techniques [44]. Since the laser
propagation direction (z axis) is parallel to the detector,
the plane that contains the 2D electric field created by the
two-color circularly polarized field is perpendicular to the
detector. This means that the VMI spectrometer can only
collect information in one dimension of the laser field (y axis),
whereas information in the other dimension (x axis) cannot be
directly obtained.

Fortunately, one of the unique aspects of circularly polar-
ized laser fields produced by combining the fundamental and
second harmonic fields is that the electric field distribution can
be rotated in the laboratory frame simply by changing the time
delay between the two laser pulses [45]. Normalized sinograms
were created through three data processing steps. First, each
time-delay step was averaged over the laser propagation
direction. Second, in order to compensate for changes in the
total photoelectron yield due to the cross correlation of the laser
pulses, each time step is divided by its mean value. Finally,
the non-rotating component of the distributions consisting of
electrons generated in regions where the pulses do not overlap
was subtracted out to better highlight the oscillatory features
of the distributions.

These normalized sinograms show that for counter-rotating
fields [Fig. 2(c)], the three-lobed distribution rotates 120◦ in
one cycle of the second harmonic (1.3 fs). For co-rotating
fields [Fig. 2(d)], the single-lobed distribution makes one full
revolution for every cycle of the second harmonic. In both
cases, the photoelectron distribution returns to a point of

FIG. 3. (Color online) (a),(b) The experimental 3D photoelectron
distribution for both counter- and co-rotating fields. (c)–(f) 2D
projections of the 3D photoelectron distribution are compared to
2D SFA calculations. While the co-rotating data (d) is adequately
reproduced by the SFA calculations (f), the counter-rotating case
(c) exhibits low-energy structures that do not appear in the SFA
model (e).

symmetry every 1.3 fs, as is seen in the experimental data
[Figs. 2(c) and 2(d)]. These oscillating distributions can be
modeled by weighting the final drift momentum by the tunnel-
ionization rate [29] over a number of different relative time
delays of the two laser pulses [Figs. 2(e) and 2(f)]. This ability
to arbitrarily rotate the photoelectron distribution allows for
the reconstruction of the 3D photoelectron distribution using
tomographic reconstruction techniques [40–43]. By applying
the inverse Radon transform [46] to each slice in the laser
propagation (z) direction, a complete 3D reconstruction of the
photoelectron distribution is obtained [Figs. 3(a) and 3(b)]. The
photoelectron distribution resulting from the counter-rotating
case manifests as a three-lobed shape with significant electron
density near zero kinetic energy.

By examining 2D projections of the 3D photoelectron
distributions, we can easily observe additional features that
are indicative of the continuum dynamics of laser driven
electrons. We compare the experimental photoelectron
distributions [Figs. 3(c) and 3(d)] with the distributions
predicted using the SFA [Figs. 3(e) and 3(f)], which ignores
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FIG. 4. (Color online) Time-dependent Schrödinger equation
(TDSE) simulations investigating the effects of the Coulomb poten-
tial. (a) The electron-nuclear potentials used in the TDSE calculations.
(b)–(d) For the counter-rotating case, the low-energy structures
disappear as the screening factor for the Coulomb potential is
increased, confirming that the low-energy structures are due to strong
electron-ion rescattering. (e)–(g) In the co-rotating case there is no
change as the screening factor is varied, indicating the absence of
rescattering.

any effect of the Coulomb potential of the parent ion. The SFA
adequately reproduces the co-rotating case. However, for the
counter-rotating case, the SFA model matches the symmetry
and the kinetic energy of the experimental photoelectron

distributions, but there is a significant difference: the
experimental photoelectron distribution has a low-energy
structure that is not captured by the simple model. The
absence of this structure from the model suggests that it is a
result of the interaction between the Coulomb potential of the
parent ion and the returning electrons.

To further understand how the low-energy structures depend
on the Coulomb potential, the 3D time-dependent Schrödinger
equation (TDSE) is solved using a generalized pseudospectral
method [47,48]. To isolate the effect of the Coulomb potential,
we “turned off” the influence of the long-range Coulomb
potential by adding a Debye screening factor starting at an
electron-ion distance of r = 10 atomic units of the form
exp[−(r − 10)/ra]. The screening factor ra was set at ∞,
10, and 5 atomic units, which corresponds to an unscreened
Coulomb potential, a weakly screened Coulomb potential,
and a strongly screened Coulomb potential, respectively
[Fig. 4(a)]. The simulations assume an intensity of 5 ×
1013 W cm−2 for each color.

The simulated photoelectron distributions are in very
good agreement with the experimental data, reproducing the
energies, symmetries, and general shape of the photoelectron
distributions for both the co- and counter-rotating fields. In
the case of the co-rotating fields [Figs. 4(e)–4(g)], there
is little effect observed from varying the screening of the
Coulomb potential, indicating that the tunnel-ionized electrons
are not driven back near the parent ion. However, for the
counter-rotating field [Figs. 4(b)–4(d)], the inner structures are
strongly influenced by the presence of the Coulomb potential,
confirming that the laser field drives the electrons in close
proximity to the ion.

In summary, we made observations of the 3D photoelectron
distributions resulting from the strong-field ionization by two-
color circularly polarized laser fields, providing experimental
validation for the theory of high-harmonic generation in
this important regime. We found that the general shape and
symmetry of the photoelectron distributions is well explained
by a simple strong-field model, which ignores the Coulomb
potential of the ion. However, in the case of counter-rotating
two-color fields, we observed low-energy structures in the pho-
toelectron distribution, indicating the presence of electron-ion
rescattering. Numerical simulations using the time-dependent
Schrödinger equation confirm that the Coulomb potential is
responsible for the appearance of the low-energy electrons.
Importantly, both the experiment and theory indicate that
the rescattered electrons are well separated in energy from
those electrons that do not re-encounter the ion, indicating
that strong-field ionization using these complex polarization-
shaped fields may lead to breakthrough techniques for studying
atomic and molecular dynamics.
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APPENDIX: TIME-DELAY TDSE SIMULATIONS

In order to confirm the experimentally observed time-
dependent photoelectron distributions [Figs. 2(c) and 2(d)],
we undertook TDSE simulations [47,48] using various time
delays of the laser pulses. The photoelectron distributions from
the TDSE simulations were obtained using two different con-
ditions: (1) a 60-fs scan with 0.5-fs steps [Figs. 5(a) and 5(b)]
and (2) a 3.2-fs scan with 0.1-fs steps [Figs. 5(c) and 5(d)]. The
60-fs scan reveals the change in the photoelectron yield due to
the cross-correlations between the two laser pulses, and both
cases reveal oscillations every 1.33 fs. In the co-rotating case,
a majority of the photoelectrons in the co-rotating case are
driven to higher-kinetic energies, whereas the counter-rotating
fields produce significantly lower energy electrons. This agrees
well with the experimental data shown in Figs. 2(c) and 2(d).

FIG. 5. (Color online) (a),(b) Coarse time step TDSE simulations
reveal the change in the photoelectron yield due to the cross-
correlations between the two laser pulses, and oscillations every
1.33 fs. In the co-rotating case, most of the electrons are driven
to higher-kinetic energies, whereas a large number of low-energy
electrons can be seen in the counter-rotating case. (c),(d) Fine time-
step TDSE simulations show good agreement with the experimentally
observed sinograms presented in Figs. 2(c) and 2(d).
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