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Spontaneous decay rate of an excited molecule placed near a circular aperture in a perfectly
conducting screen: An analytical approach
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We have investigated theoretically the spontaneous decay rate of an excited molecule placed near a circular
aperture in a perfectly conducting infinitely thin plane screen. A quasistatic analytical solution for a molecule
with an arbitrary position near the aperture is found. In a case with a retardation, an exact analytical solution
expressed through spheroidal wave functions is obtained. Analytical results are in good agreement with numerical
simulations. The results may be useful in the design and development of optical nanodevices based on the control
of elementary quantum systems emission.
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I. INTRODUCTION

A hole is a fundamental geometry in many areas because
it concentrates any flows incident on it. Nowadays, different
kinds of scanning microscopes where an aperture is the main
part are basic tools for research of individual molecules [1–8]
[see Fig. 1(a) for a schematic of the operation principle of a
scanning near-field optical microscope]. Another important
application of nanoholes is the development of sensitive
detectors, sensors, and devices based on extraordinary light
transmission through nanoholes [9–13] [see the schematic of
such devices in Fig. 1(b)].

In these and other similar cases, the role of the hole in the
system is to localize the energy of the electromagnetic field,
allowing the effective interaction of light with single molecules
placed inside or near the aperture.

Despite the wide use of holes in such devices, the interpre-
tation of experimental data has not been a simple task until
now. The structure of the electromagnetic field near the hole is
complicated since the film in which a hole is perforated divides
the space into two parts, i.e., the topology of the problem
is significantly different from the topology of the scattering
problem for a finite-volume particle. It is a fact that there is
no simple model describing the field near the hole, whereas
there are a number of relatively simple solutions for finite-size
particles [14].

The impact of a hole on the radiation of a molecule is dual.
On one hand, the hole modifies the electromagnetic field of
the excitation field, and on the other hand, it modifies the
rate of spontaneous emission of the molecule (the Purcell
effect [15]). In this paper, we consider the problem of the
modification of the spontaneous emission rate of a molecule
placed near a circular hole in an infinitely thin and perfectly
conducting [perfect electric conductor (PEC)] plane screen.
A detailed description of the fluorescence of a molecule near
a nanoaperture will be presented in a separate paper [16].
Throughout the paper, we will approximate the molecule
radiation with the help of an oscillating point electric (or
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magnetic) dipole. Figure 2 illustrates the geometry of the
problem schematically.

In the case of weak interaction of the molecule with the
aperture, the molecule spontaneous decay rate in vacuum near
the opening can be calculated with the help of the solution of
the classical problem of field diffraction from the oscillating
dipole source (with an optical frequency ω0 and a dipole
momentum d0) on the aperture. In this case, the spontaneous
decay rate γ , which is proportional to the radiation power in
the classical case, can be represented as [17–20]

γ

γ0
= 3

2
Im

{
d0 · E(r0,r0,ω0)

k3
0 |d0|2

}

= 1 + 3

2
Im

{
d0 · E(1)(r0,r0,ω0)

k3
0 |d0|2

}
, (1)

where E(r,r0,ω0) is the total electric field of the dipole
placed at r0 in the presence of a hole and E(1) (r,r0,ω0) is
its scattered part. Both E(r,r0,ω0) and E(1) (r,r0,ω0) can be
found by solving Maxwell’s equations with a dipole source.
γ0 = (4k3

0/3�)|d0|2 stands for the rate of spontaneous emission
in vacuum, k0 = ω0/c0, c0 is the speed of light in vacuum,
and Im describes the imaginary part.

Equation (1) describes the total rate of emission, i.e., it
takes into account both processes of emitted photon absorption
by the scattering body and pure radiative processes in which
photons fly to infinity.

The radiative part of the spontaneous emission rate can be
expressed in terms of the energy flux at infinity [17],

γ

γ0
= 3

8πk4
0 |d0|2

Re

{∫
S

dS
(
E(r,r0,ω0)

× H∗(r,r0,ω0)
) · n

}
, (2)

where S is an infinitely distant closed surface, n is the outward
normal to the surface, E(r,r0,ω0) and H(r,r0,ω0) are the
electric and magnetic fields at the observation point r, the
asterisk denotes the complex conjugation, and Re describes
the real part. In the case of a screen without losses, the total
decay rate (1) and the rate of radiation (2) coincide. We will

1050-2947/2015/91(2)/023834(11) 023834-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.91.023834


KLIMOV, GUZATOV, AND TRESHIN PHYSICAL REVIEW A 91, 023834 (2015)

Illumination

0dAperture

Microscope
tip

Sample
(Molecule)

(a)

Fluorescence

Substrate
Metal film

Aperture

0d

Molecule

Excitation

Fluorescence

(b)

FIG. 1. (Color online) (a) A schematic of a scanning optical microscope and (b) a schematic of a plasmon biosensor based on a nanoaperture.

use both Eqs. (1) and (2) to check the calculation’s correctness
because in the case of a PEC screen there are no losses.

The rest of the paper is organized as follows. Section II
provides an analytical solution for an arbitrary position of a
molecule with an arbitrary orientation of the dipole momentum
near an aperture of the radius a within the quasistatic
approximation (r0, a � λ0, where λ0 is the wavelength of
the molecule radiation in vacuum). Section III presents an
analytical solution of Maxwell’s equations by taking into
account retardation effects in the case of a molecule located on
the symmetry axis of the aperture with an arbitrary orientation
of the dipole momentum. Section IV describes a numerical
simulation of molecule radiation near a nanoaperture within
the finite element method (COMSOL MULTIPHYSICS R©). In
Sec. V, we compare results obtained within numerical and
analytical approaches.

II. QUASISTATIC APPROXIMATION

Now, in most important applications of nanophotonics, the
size of a hole is much smaller than the wavelength (a �
λ0), and a quasistatic approach where retardation effects can
be neglected can be considered as a good approximation. In
this special case, the analytical solution of the problem of
spontaneous emission of a molecule near the nanohole can be
found (see also Ref. [21]). The quasistatic solution is important
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Z

X

y

FIG. 2. (Color online) Geometry of the problem: An oscillating
dipole with a dipole momentum d0 located near the nanoaperture of
the radius a in an infinitely thin PEC plane screen situated at z = 0.

both by itself and for checking of accuracy of calculations
performed by other methods (see Secs. III and IV).

To find the solution of dipole radiation near a circular
nanoaperture, we have used a toroidal coordinate system.
Cartesian coordinates (x, y, z) are related to the toroidal
(η, ξ, ϕ) (0 � η < ∞, 0 � ξ � 2π , 0 � ϕ � 2π ) through the
following relations [22]:

x = a
sinh η

cosh η − cos ξ
cos ϕ, y = a

sinh η

cosh η − cos ξ
sin ϕ,

z = a
sin ξ

cosh η − cos ξ
. (3)

Within these coordinates, the hole coincides with the coordi-
nate surface, allowing an analytical solution of the boundary
condition Etan = 0 on the perforated screen surface.

The expression for the potential of point charge near a
circular nanoaperture of radius a in a toroidal coordinate
system is known [21,23] and has the following form (the
coordinates of the source have subscript “0”):

ϕpoint charge(r,r0) =
√

(cosh η − cos ξ )(cosh η0 − cos ξ0)

πa
√

2

×
[

π
2 + arcsin

( cos[(ξ−ξ0)/2]
cosh(	/2)

)
√

cosh 	 − cos(ξ − ξ0)

−
π
2 + arcsin

( cos[(ξ+ξ0)/2]
cosh(	/2)

)
√

cosh 	 − cos(ξ + ξ0)

]
, (4)

where cosh 	 = cosh η cosh η0 − sinh η sinh η0 cos(ϕ − ϕ0).
The potential ϕdipole(r,r0) of the dipole source with charge
density ρdipole = (d0 · ∇0)δ(3)(r − r0)e−iω0t can be found from
Eq. (4) by differentiation,

ϕdipole(r,r0) = (d0 · ∇0)ϕpoint charge(r,r0). (5)

To describe the far-field radiation Eq. (2), one should
find the expressions for the potential at long distances r =√

x2 + y2 + z2 from the nanoaperture. The corresponding
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asymptotic expressions of Eq. (5) are

ϕdipole(r,r0) ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

az

π
√

2r3
(d0 · ∇0)f (+)(ξ0,η0) = zd

(+)
tot,z

r3
, z > 0

az

π
√

2r3
(d0 · ∇0)f (−)(ξ0,η0) = zd

(−)
tot,z

r3
, z < 0

(6)

where the function f (±)(ξ,η) has the form

f (±)(ξ,η) = ± 4 sin(ξ/2)√
cosh η − cos ξ

+ 2
√

2 sin(ξ ){π/2 ± arcsin[cos(ξ/2)/ cosh(η/2)]}
cosh η − cos ξ

. (7)

Expression (6) demonstrates that the potential has a dipolar character in both upper and lower half-spaces with only the
dipole-moment z component being nonzero. From Eq. (6), one can easily find the expressions for the dipole moments responsible
for the emission into the upper d

(+)
tot,z and lower d

(−)
tot,z half-spaces, respectively,

d
(±)
tot,z = a

π
√

2
(d0 · ∇)f (±)(ξ,η)

∣∣∣∣
ξ=ξ0,
η=η0

= (cosh η − cos ξ )

π
√

2

(
d0,ξ

∂

∂ξ
+ d0,η

∂

∂η

)
f (±)(ξ,η)

∣∣∣∣
ξ=ξ0,
η=η0

. (8)

It is interesting that the resulting expression does not depend
on the angular coordinate ϕ.

The dipolar character of the fields in both upper and lower
half-spaces Eq. (6) allows us to calculate energy flows in both
half-spaces easily. The total decay rate can be calculated as
a sum of decay rates in the corresponding half-space. As a
result, within the quasistatic approximation, we have obtained
the following expression for the spontaneous emission rate of
a molecule placed at the point (ξ0,η0):

γ

γ0
=
(

γ

γ0

)(+)

+
(

γ

γ0

)(−)

= 1

2

(
d

(+)
tot,z

|d0|
)2

+ 1

2

(
d

(−)
tot,z

|d0|
)2

. (9)

In Eq. (9), the first term (“+”) describes the emission into
the upper half-space (z > 0), which is characterized by a
dipole momentum d

(+)
tot,z. The second term (“–”) corresponds

to radiation into the lower half-space (z < 0), which is
characterized by a dipole momentum d

(−)
tot,z. It is interesting to

note that regardless of the orientation of the dipole momentum
d0, far-field radiation in the upper and lower half-spaces is
determined by the effective electric dipole, which has only
the z orientation! Values of the dipole momenta of the upper
and lower half-spaces are not equal (d (+)

tot,z �= d
(−)
tot,z). Thus, the

radiation of the whole system does not have a true dipole
character, despite an arbitrarily small size of the holes!

An important feature of this approach is the fact that in
the case of ϕ orientation of the molecule dipole momentum,
the spontaneous emission is significantly suppressed at any
position of the molecule and can be described by terms on
the order of (k0a)2. It corresponds to magnetic dipole and
quadrupole radiation and is of a higher order of smallness
compared with Eq. (9).

Thus, within the quasistatic approximation the spontaneous
emission of a molecule located near the nanoaperture can be
described by relatively simple analytical Eq. (9) containing
only elementary functions.

In special cases, Eq. (9) become very simple. For example,
in the case of a molecule located on the symmetry axis (z
axis) at z = z0 the radiation is only possible for the dipole

momentum oriented along the z axis. In this case, the total
dipole momenta describing the radiation into the upper and
lower half-spaces are of the form

d
(±)
tot,z

|d0| = 1 ± 2

π

[
az0

a2 + z2
0

+ arctan

(
z0

a

)]
(z orientation).

(10)

When the molecule is situated at the center of the aperture
z0 = 0, we obtain d

(+)
tot,z/|d0| = d

(−)
tot,z/|d0| = 1, that is for a

molecule in the center of the hole it emits as it radiates in
free space. It is an expected result because for such a position
a molecule does not feel the aperture due to the symmetry
of its electric and magnetic fields. When z0 	 a, we have
d

(+)
tot,z/|d0| = 2, d

(−)
tot,z/|d0| = 0, and the system radiates with a

double dipole momentum into the upper half-space. Note that
within the limit of the quasistatic approximation, the condition
z0 	 a means only λ0 	 z0 	 a .

Now, let us consider the decay rate for a molecule with the z

orientation of the dipole momentum and situated in the plane
of the screen z = 0. In this situation, the decay rate of the
molecule inside the hole does not change in comparison with
the case of free space at any position d

(+)
tot,z/|d0| = d

(−)
tot,z/|d0| =

1. For a molecule located near the screen plane (z0 → +0),
the dipole momenta describing the emission into the upper and
lower half-spaces look like

d
(±)
tot,z

|d0|

=

⎧⎪⎪⎨
⎪⎪⎩

1, ρ0 � a

1 ± 2

π

⎡
⎣ a√

ρ2
0 − a2

+ arcsin

⎛
⎝
√

ρ2
0 − a2

ρ0

⎞
⎠
⎤
⎦ , ρ0 > a

(z orientation), (11)

where ρ0 =
√

x2
0 + y2

0 .
From Eq. (11), one can see that near the rim of the hole

there is a significant (infinite) enhancement of the decay rate,
and the molecule radiates both in the upper and in the lower
half-spaces. When taking into account finite thickness of the
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screen and its finite permittivity, the spontaneous decay rate of
a molecule near the rim of the hole becomes finite.

In the case of a molecule with x orientation of the dipole
momentum and placed in the plane z = 0, from Eqs. (7) and
(8) one can easily find that the dipole momenta describing the
fields in the upper and lower half-spaces will have the form

d
(±)
tot,z

|d0| =

⎧⎪⎨
⎪⎩

∓ 2

π

ρ0√
a2 − ρ2

0

cos ϕ, ρ0 < a

0, ρ0 � a

(x orientation).

(12)

Outside the hole ρ0 � a, the total dipole momentum is
equal to zero due to the PEC boundary conditions. From
Eq. (12), one can see that near the rim of the aperture, there
is a significant (infinite) enhancement of the decay rate and
the radiation propagates both into the upper and into the
lower half-spaces. Taking into account the finite thickness of
the screen and its finite permittivity, the spontaneous decay
rate near the rim of the hole becomes limited again. For the
y-oriented dipole momentum in the plane z = 0, there is a
similar expression. The difference is in the angular dependence
(in the x-orientation case, there is the cos ϕ factor, whereas in
the y-orientation case there is the sin ϕ factor).

If the molecule is situated far from the aperture (z0 	
λ0), the nanoaperture ceases to affect the emission, and one
should use the expression for the spontaneous decay rate in
the presence of a PEC plane screen without holes [18,19],

γ

γ0
= 1 − 3

(
cos x

x2
− sin x

x3

)∣∣∣∣
x=2k0z0

(for the vertical dipole), (13)

γ

γ0
= 1 − 3

2

(
sin x

x
+ cos x

x2
− sin x

x3

)∣∣∣∣
x=2k0z0

(for the horizontal dipole). (14)

Thus, the above-presented analytical expressions allow
one to relatively easily estimate the spontaneous decay rate
of a molecule (or other quantum emitter) placed near the

nanoaperture with small losses and to interpret results of
the single molecule observations with the help of near-field
scanning microscopes.

III. RETARDATION EFFECTS

Expressions of Sec. II are valid in the limit of a small hole
only (a, z0 � λ0) where one can neglect retardation effects.
For finite-size apertures, it is important to understand the
significance of retardation effects. Therefore, in this section
we present an exact solution for diffraction of an oscillating
electric dipole field on a hole in a PEC plane screen.

Let us consider a molecule with an electric dipole momen-
tum d0 located on the positive part of the Cartesian z axis at
a distance z0 > 0 from a circular aperture of the radius a in a
PEC infinitely thin screen (situated at z = 0, see Fig. 2).

To solve this problem, we have used an oblate spheroidal
coordinates system [24] in which, as is known, variables in
the Helmholtz equation can be separated [25]. A solution of
Maxwell’s equations in this coordinate system can be built by
a standard but tedious way of expansion of the solution over
spheroidal functions and determination of unknown expansion
coefficients from PEC boundary conditions at the perforated
screen surface. For brevity, we will omit long algebraic
calculations here and present only final expressions.

To calculate the spontaneous decay rate of a molecule, we
use the definition (2); in doing so, we need an asymptotic
behavior of the field at long distances from the origin. On
the basis of Babinet’s principle [26,27] and according to
Refs. [28–31], we have found an exact expression for the
transversal (θ and ϕ) component of the far fields in a spherical
coordinate system (r, θ, ϕ) [0 � r < ∞,0 � θ � π,0 � ϕ <

2π , the polar axis of the spherical coordinate system coincides
with the symmetry axis of the hole (see Fig. 2)]. These
components define energy flow to infinity and decrease with
the distance as ∼1/r , where r =

√
x2 + y2 + z2.

In the case of the z orientation of the dipole momentum
(d0 || z), the asymptotic behavior of fields in the upper (z > 0)
and lower (z < 0) half-spaces can be described by the following
expressions:

E
(+)
θ = H (+)

ϕ = −k2
0d0,z

eik0r

r

∞∑
n=1,3,5,...

(
Cn

∂Pn(cos θ )

∂θ
+ DnS

(1)
1n (−ik0a, cos θ )

)
, E(+)

ϕ = H
(+)
θ = 0, (15)

and

E
(−)
θ = H (−)

ϕ = k2
0d0,z

eik0r

r

∞∑
n=1,3,5,...

DnS
(1)
1n (−ik0a, cos θ), E(−)

ϕ = H
(−)
θ = 0, (16)

respectively.
The coefficients Cn and Dn in Eqs. (15) and (16) are of the form

Cn = 2in+1(2n + 1)
ψn(k0z0)

(k0z0)2 , Dn = 4in+1σ1n(−ik0a)R(1)
1n (−ik0a,i0)

k0

√
z2

0 + a2N1n(−ik0a)R(3)
1n (−ik0a,i0)

R
(3)
1n

(
−ik0a,i

z0

a

)
, (17)

where ψn(k0z0) = (πk0z0/2)1/2Jn+1/2(k0z0), Jn+1/2(k0z0) is the Bessel function [30], and (m = 0,1,2, . . . ,n).

Nmn(−ik0a) =
∫ 1

−1
dξ
[
S(1)

mn(−ik0a,ξ )
]2

, σmn(−ik0a) = lim
ξ→1

S(1)
mn(−ik0a,ξ )

(1 − ξ 2)m/2 . (18)
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In Eqs. (15)–(18) and below, S(1)
mn(−ik0a, cos θ ) are the angular spheroidal functions of the first kind, and R

(j )
mn(−ik0a,iz0/a)

are the radial spheroidal functions of the j th kind (j = 1,3) [30]; P m
n (cos θ ) stands for the associated Legendre function

[Pn(cos θ ) = P 0
n (cos θ )] [30].

In the case of the tangential orientation of the dipole momentum (d0 || x) for the asymptotic fields in the upper (z > 0) and
lower (z < 0) half-spaces we have the following expressions:

E
(+)
θ = H (+)

ϕ = −k2
0d0,x

eik0r

r

∞∑
n=1,3,5,...

[
Fn+1

∂P 1
n+1(cos θ)

∂θ
− Gn

P 1
n (cos θ )

sin θ

−AnS
(1)
0n (−ik0a, cos θ ) cos θ + BnS

(1)
1n (−ik0a, cos θ ) sin θ

]
cos ϕ,

(19)

E(+)
ϕ = −H

(+)
θ = k2

0d0,x

eik0r

r

∞∑
n=1,3,5,...

[
Fn+1

P 1
n+1(cos θ )

sin θ
− Gn

∂P 1
n (cos θ )

∂θ
− AnS

(1)
0n (−ik0a, cos θ )

]
sin ϕ,

and

E
(−)
θ = H (−)

ϕ = −k2
0d0,x

eik0r

r

∞∑
n=1,3,5,...

[
AnS

(1)
0n (−ik0a, cos θ ) cos θ − BnS

(1)
1n (−ik0a, cos θ ) sin θ

]
cos ϕ,

(20)

E(−)
ϕ = −H

(−)
θ = k2

0d0,x

eik0r

r

∞∑
n=1,3,5,...

AnS
(1)
0n (−ik0a, cos θ ) sin ϕ,

respectively.
In Eqs. (19) and (20), the coefficients are of the form

Fn+1 = −2in
2n + 3

(n + 1)(n + 2)

1

k0z0

d

dx
ψn+1(x)

∣∣∣∣
x=k0z0

, Gn = 2in+1 2n + 1

n(n + 1)

ψn(k0z0)

k0z0
,

An = 2inS
(1)
0n (−ik0a,1)R(1)

0n

′
(−ik0a,i0)

N0n(−ik0a)R(3)
0n

′
(−ik0a,i0)

R
(3)
0n

(
−ik0a,i

z0

a

)
+ 2in+1Cd0n

1 (−ik0a)

k0aN0n(−ik0a)R(3)
0n

′
(−ik0a,i0)

, (21)

Bn = 4in+1Cd1n
0 (−ik0a)

k0aN1n(−ik0a)R(3)
1n (−ik0a,i0)

,

where (−1)mdmn
r (−ik0a) is the expansion coefficient of the angular spheroidal function in a series of associated Legendre

functions [24,29],

C = 1

T

∞∑
n=1,3,5,...

S
(1)
0n (−ik0a,1)S(1)

0n

′
(−ik0a,0)

N0n(−ik0a)R(3)
0n

′
(−ik0a,i0)

R
(3)
0n

(
−ik0a,i

z0

a

)
,

(22)

T =
∞∑

n=1,3,5,...

{
d0n

1 (−ik0a)S(1)
0n

′
(−ik0a,0)R(3)

0n (−ik0a,i0)

N0n(−ik0a)R(3)
0n

′
(−ik0a,i0)

−2d1n
0 (−ik0a)S(1)

1n (−ik0a,0)R(3)
1n

′
(−ik0a,i0)

N1n(−ik0a)R(3)
1n (−ik0a,i0)

}
,

and where (j = 1,3)

R(j )′
mn (−ik0a,iη0) = d

dη
R(j )

mn(−ik0a,iη)

∣∣∣∣
η=η0

, S(1)′
mn (−ik0a,ξ0) = d

dξ
S(1)

mn(−ik0a,ξ )

∣∣∣∣
ξ=ξ0

. (23)

If z0 = 0 for the coefficients An and Bn, we have expressions [29],

An|z0=0 = − 2in+1S
(1)
0n (−ik0a,1)

k0aN0n(−ik0a)R(3)
0n

′
(−ik0a,i0)

+ 2in+1Dd0n
1 (−ik0a)

(k0a)3N0n(−ik0a)R(3)
0n

′
(−ik0a,i0)

,

(24)

Bn|z0=0 = 4in+1Dd1n
0 (−ik0a)

(k0a)3N1n(−ik0a)R(3)
1n (−ik0a,i0)

,
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where

D = 1

L

∞∑
n=1,3,5,...

in
d0n

1 (−ik0a)S(1)
0n (−ik0a,1)

N0n(−ik0a)R(3)
0n

′
(−ik0a,i0)

,

L =
∞∑

n=1,3,5,...

{
in

S
(1)
0n (−ik0a,1)S(1)

0n

′
(−ik0a,1)

N0n(−ik0a)R(3)
0n

′
(−ik0a,i0)

+ 2Md1n
0 (−ik0a)σ1n(−ik0a)R(3)

1n

′
(−ik0a,i0)

N1n(−ik0a)R(3)
1n (−ik0a,i0)

−Md0n
1 (−ik0a)

[
S

(1)
0n

′
(−ik0a,1) − (k0a)2S

(1)
0n (−ik0a,1)

]
R

(3)
0n (−ik0a,i0)

N0n(−ik0a)R(3)
0n

′
(−ik0a,i0)

}
,

M = 1

T

∞∑
n=1,3,5,...

in
S

(1)
0n (−ik0a,1)S(1)

0n

′
(−ik0a,0)

N0n(−ik0a)R(3)
0n

′
(−ik0a,i0)

. (25)

Knowing the fields in the upper and lower half-spaces, it is possible to calculate the spontaneous emission rate by the formula,

γ

γ0
=
(

γ

γ0

)(+)

+
(

γ

γ0

)(−)

, (26)

where (
γ

γ0

)(+)

= 3

8πk4
0 |d0|2

∫ π/2

0
dθ sin θ

∫ 2π

0
dϕ r2

(∣∣E(+)
θ

∣∣2 + ∣∣E(+)
ϕ

∣∣2),
(27)(

γ

γ0

)(−)

= 3

8πk4
0 |d0|2

∫ π

π/2
dθ sin θ

∫ 2π

0
dϕ r2

(∣∣E(−)
θ

∣∣2 + ∣∣E(−)
ϕ

∣∣2)
are the spontaneous decay rates of a molecule in the upper and lower half-spaces, respectively.

Using these expressions, we can find the asymptotic formula for the spontaneous decay rate in the case of the nanoaperture
(k0a → 0) and for specific positions of the dipole near the aperture. These asymptotes should correspond to the quasistatic results
of Sec. II.

A. Dipole with vertical orientation (d0 || z)

To find the long wavelength asymptote of Eq. (26) (k0z0 ∼ k0a � 1), one should take into account that the main contribution
to the expression will be from the first terms in a series with the index n = 1. Using the following approximate expression
[29,31]:

N11(−ik0a) ≈ 4

3
, σ11(−ik0a) ≈ 1, R

(1)
11 (−ik0a,i0) ≈ k0a

3
, R

(3)
11 (−ik0a,i0) ≈ k0a

3
− 3iπ

4(k0a)2 ,

(28)

R
(3)
11

(
−ik0a,i

z0

a

)
≈ 1

3
k0

√
z2

0 + a2 −
3iπ

√
z2

0 + a2

4a(k0a)2

(
1 − 2z0a

π
(
z2

0 + a2
) − 2

π
arctan

z0

a

)
,

from Eq. (28) we find for the coefficients (17),

C1 ≈ −2, D1 ≈ −1 + 2z0a

π
(
z2

0 + a2
) + 2

π
arctan

z0

a
. (29)

As a result, the asymptotic expressions for the fields Eqs. (15) and (16) take the form [S(1)
11 (−ik0a, cos θ ) ≈ sin θ],

E
(±)
θ = H (±)

ϕ ≈ −k2
0d0,z

[
1 ± 2

π

(
z0a

z2
0 + a2

+ arctan
z0

a

)]
eik0r

r
sin θ, E(±)

ϕ = H
(±)
θ = 0. (30)

Substituting Eq. (30) into Eq. (27), we obtain the following
expression for the decay rate in this approximation:(

γ

γ0

)(±)

≈ 1

2

[
1 ± 2

π

(
z0a

z2
0 + a2

+ arctan
z0

a

)]2

, (31)

which coincides with the result obtained in Sec. II within
the quasistatic approximation [see Eqs. (9) and (10)] and

confirms the correctness of the calculations in the retardation
case.

B. Dipole with a horizontal orientation (d0 || x)

In the case of the horizontal dipole, it is very difficult
to derive asymptotic expressions for the fields since the
coefficients of Eqs. (22) and (25) are presented in the form
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of a complicated series. Thus, to obtain satisfactory values, it
is necessary to sum many terms of the series.

In what follows, we consider only the tangential dipole
located on the plane of the aperture (z0 = 0) . In this case,
the main contribution to the asymptotic behavior of the fields
Eqs. (19) and (20) will be determined by the terms with the
index n = 1.

Our calculations show that a reasonably accurate value of
the coefficient D [see Eq. (25)] obtained by the summation of
the series is of the form D ≈ − 1

3 (k0a)2. Using this expression,
together with Eq. (28) and approximate expressions from [29]

N01(−ik0a) ≈ 2

3
, d01

1 (−ik0a) ≈ d11
0 (−ik0a) ≈ 1,

(32)

S
(1)
01 (−ik0a,1) ≈ 1, R

(3)′
01 (−ik0a,i0) ≈ k0a

3
+ 3iπ

2(k0a)2 ,

one can find asymptotic expressions for the coefficients (24)
as follows:

A1|z0=0 ≈ −i
8k0a

3π
, B1|z0=0 ≈ i

4k0a

3π
. (33)

Substituting Eq. (33) into Eqs. (19) and (20), we find
the asymptotic behavior of the fields [F2|z0=0 = G1|z0=0 = 0,
S

(1)
01 (−ik0a, cos θ ) ≈ cos θ, S

(1)
11 (−ik0a, cos θ ) ≈ sin θ ],

E
(±)
θ = H (±)

ϕ ≈ ∓ik2
0d0,x

4k0a

3π

eik0r

r
(2 − sin2 θ) cos ϕ,

(34)

E(±)
ϕ = −H

(±)
θ ≈ ±ik2

0d0,x

8k0a

3π

eik0r

r
cos θ sin ϕ.

The resulting expressions (34) coincide with the expres-
sions [28], that can be obtained from the fields’ asymptotes of
the problem of a magnetic dipole placed near a PEC plane disk
[28] and Babinet’s principle. Found expressions suggest that
the horizontal dipole radiation on the plane of the aperture is
not a pure dipole one. Substituting Eq. (34) into Eq. (27) and
making use of Eq. (26), we find the asymptotic behavior (see
also Ref. [14]),

γ

γ0
≈ 64

15π2
(k0a)2. (35)

Thus, this section presents analytical expressions for the
spontaneous decay rate of the molecule located on the sym-
metry axis of the hole by taking into account the retardation
effects. In the quasistatic limit, these expressions coincide with
the results of Sec. II. This coincidence confirms the validity of
the results of this section which take retardation effects into
account.

IV. NUMERICAL SIMULATION

A complete analytical solution of the problem of spon-
taneous emission of a molecule near the hole, presented in
Sec. III, is based on the use of spheroidal functions. Calculation
of these functions is still not an easy task. Therefore, this
section provides a description of a numerical method for
calculation of the molecule spontaneous emission rate. The
method is based on the numerical solution of Maxwell’s
equations by the finite element method. We use a commercial
realization of the finite element method in the software product
COMSOL MULTIPHYSICS R©.

The geometries of the numerical simulations are shown
in Fig. 3. The geometry of Fig. 3(a) describes the direct
solution for a radiating electric dipole, whereas the geometry
of Fig. 3(b) describes the auxiliary problem of radiation of
a magnetic dipole near the disk, which is used to find the
spontaneous decay rate of an electric dipole near the hole
using Babinet’s principle [26].

An expression for the total spontaneous decay rate for the
direct problem is described by the formula (1). In the case of
the geometry of Fig. 3(b), the expression (1) can be rewritten
with the help of Babinet’s principle as

γ

γ0
= 1 + 3

2
Im

(d0 · E(1)
plate(r0,r0,ω0)

k3
0 |d0|2

)

+ 3

2
Im

(
d0 · H(1)

disk(r0,r0,ω0)

k3
0 |d0|2

)
, (36)

where E(1)
plate is the scattered field in the problem of the “electric

dipole near the PEC plane without a hole,” H(1)
disk is the scattered

magnetic field in the problem of the “oscillating magnetic
dipole with magnetic momentum d0 near the PEC disk.”

dh

0

0m

dh

0

0m

(b) Z

Z < 0

Z > 0

Z = 0

2a

0dph

0

(a)

0dphp

0

(a)

Z > 0

Z < 0

Z

2a

FIG. 3. (Color online) Schematic of the geometry of the numerical simulation. (a) An electric dipole with the dipole momentum d0 is
located in vacuum on the symmetry axis of the hole in a PEC plane screen. The thickness of the screen is hp = 10 nm. The aperture radius is
a. (b) A magnetic dipole with the dipole momentum m0 = d0 is located in vacuum on the symmetry axis of a PEC plane disk with a thickness
of hd = 10 nm. The disk radius is a.

023834-7



KLIMOV, GUZATOV, AND TRESHIN PHYSICAL REVIEW A 91, 023834 (2015)

Taking into account the expression for the decay rate of the
molecule near the PEC surface (13) and (14), we obtain

γ

γ0
= 1 − 3

(
cos x

x2
− sin x

x3

)∣∣∣∣
x=2k0z0

+ 3

2
Im

(
d0 · H(1)

disk(r0,r0,ω0)

k3
0 |d0|2

)
(37)

for a vertical dipole and

γ

γ0
= 1 − 3

2

(
sin x

x
+ cos x

x2
− sin x

x3

)∣∣∣∣
x=2k0z0

+ 3

2
Im

(
d0 · H(1)

disk(r0,r0,ω0)

k3
0 |d0|2

)
(38)

for a horizontal dipole.
Equations (37) and (38) have been used to find the

spontaneous decay rate of a molecule near the hole based
on the calculation of the problem of a magnetic dipole near
a circular PEC plane disk. Additional calculations within the
geometry Fig. 3(b) have been used to verify the numerical
results within the geometry Fig. 3(a) as well as to improve
them. When using the numerical finite element method, an
infinitely thin PEC screen or a disk has been approximated by
a screen or a disk of a finite thickness (hp = hd = 10 nm).
As a result of such an approximation, the decay rate of the
z-oriented dipole placed near the hole rim tends to zero, and it
does not correspond to its behavior near the infinitely thin PEC
screen. When considering the problem of the magnetic dipole
near the disk, such a problem does not occur, and calculations
become more accurate.

V. ANALYSIS OF THE RESULTS AND GRAPHIC
ILLUSTRATIONS

Let us now consider what the proposed approaches predict
and how their results agree with each other. In Fig. 4,
the spontaneous decay rates of a molecule with a vertical
orientation of the dipole momentum and located on the
symmetry axis of the system are shown as functions of distance
from the center of the hole for different ratios of the radius a

and the wavelength λ0.
From Fig. 4, it is clear that by moving the molecule from

the center of the hole at a distance greater than 3a, the effect
of the hole becomes very small. In this case, for calculation
of the spontaneous decay rate of the molecule the simple
Eq. (13), describing the emission of a molecule near a PEC
plane screen without holes, works well. If the distance is less
than the radius a, the quasistatic approximation discussed in
Sec. II describes the process well. For the description of the
molecular emission in the intermediate interval from a to 3a,
one should either use an exact calculation using spheroidal
functions or carry out numerical simulations. With increasing
of the wavelength for the fixed hole diameter, the combination
of the quasistatic solution and the solution near the plane
without the hole becomes more and more accurate. However,
numerical modeling of an electric dipole near the aperture
gives decay rates that are smaller than analytical results due to
the finite thickness of the screen. Computations that make use

0 2 4 6 8 10
0.8

1.0

1.2

1.4

1.6

1.8

2.0

The decay rate near
the PEC plane
without hole

Numerical
calculations

Quasi-static
approximation

γ /
γ 0

z
0
 / a

FIG. 4. (Color online) The decay rate γ /γ0 of the molecule,
located on the symmetry axis of the hole (the aperture radius is
a = 50 nm; the wavelength is λ0 = 1000 nm, z-oriented dipole).
The solid black curve is a quasistatic approximation; the black curve
with dots is a direct numerical calculation for the electric dipole; the
magenta curve with dots is the numerical calculations using Babinet’s
principle; the red curve with dots is an analytical calculation; the
orange curve is the decay rate near the PEC plane without holes.

of Babinet’s principle are in good agreement with analytical
results.

Note that for any parameters of the hole, the molecule with
a vertical dipole momentum located in the center of the hole
does not feel the hole and its decay rate is equal to the decay
rate in vacuum.

Analytical calculations for a molecule with a horizontal
dipole momentum are much more difficult in this case,
and expressions for decay rates beyond the quasistatic

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Quasi-static
approximation

The decay rate near
the PEC plane
without hole

Numerical
calculations

γ/
γ 0

z
0
 / a

FIG. 5. (Color online) The decay rate γ /γ0 of a molecule located
on the symmetry axis of the aperture as a function of the distance z0

to the aperture (the aperture radius is a = 50 nm; the wavelength is
λ0 = 1000 nm, horizontal dipole momentum). The big black point is
a quasistatic approximation (35); the black curve with dots is a direct
numerical calculation; the magenta curve with dots is the numerical
calculations using Babinet’s principle; the orange curve is the decay
rate near the PEC plane without holes.
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0.5

1.0
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2.5

Analytical
solution

Quasi-static
approximation

γ/
γ 0

k
0
a

FIG. 6. (Color online) The decay rate γ /γ0 of the molecule with
a horizontal dipole momentum located in the center of the hole as
a function of the hole radius a. The black curve is a quasistatic
approximation, the red curve with dots is an analytical calculation,
and the black squares are a numerical calculation.

approximation can be obtained only for a molecule located
in the center of the hole.

Figure 5 show results of the calculation of the spontaneous
decay rate of a molecule with a horizontal dipole momentum
located on the symmetry axis of the hole as a function of the
distance to the aperture center.

From Fig. 5, one can see that, as well as for a molecule
with a vertical dipole moment, when moving a molecule with
a horizontal dipole moment at a distance of more than 3a,
the hole influence becomes negligible and the system can be
described well by the approach of “a molecule near a PEC
plane without a hole.”

Figure 6 shows the results of analytical and numerical
calculations of the decay rate of a molecule with a horizontal
dipole momentum, located in the center of the hole as a
function of the aperture radius (k0a).

From Fig. 6, one can see that the molecule with a horizontal
dipole momentum situated in the center of the hole has a sig-
nificant impact from the hole, and even a small hole (k0a ∼ 1)
increases the decay rate by more than two times.

50 200 350 500 650 800 950 0 100 200 300 400 500
0.75

1
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1.75

z0 (nm)D0 (nm)

/
0

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

FIG. 7. (Color online) The decay rate γ /γ0 of the molecule with
vertical orientation of the electric dipole momentum and located on
the axis of the aperture as a function of the coordinate z0 and the
hole diameter D0. Babinet’s principle has been used [see Eq. (37)
and Fig. 3(b)]. The wavelength is λ0 = 500 nm. The thickness of the
complementary disk is hd = 10 nm.

50200350500650800950 0100200300400500
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1

1.5

2

FIG. 8. (Color online) The decay rate γ /γ0 of a molecule with
horizontal orientation of the electric dipole momentum and located
on the aperture axis as a function of the coordinate z0 and the hole
diameter D0. The wavelength is λ0 = 500 nm. The thickness of the
screen is hp = 10 nm.

Figure 6 also shows that the decay rate of the molecule
placed in the center of the hole found by numerical methods
is in good agreement with pure analytical calculations.

Below, we demonstrate the decay rate of the molecule as a
function of its position on the axis and the diameter aperture
D0 = 2a. The wavelength λ0 is equal to 500 nm.

In Fig. 7, one can see the case of a molecule with vertical
orientation of the dipole momentum. Here, the decay rate has
its maximum when the diameter is equal to 50–250 nm and
the molecule is placed at a distance of ∼100 nm from the
plate. The decay rate decreases monotonically as the aperture
diameter increases. By increasing the diameter or the distance,
the influence of the hole becomes small, and the decay rate
goes to a value of 1 as in the case of vacuum.

Figure 8 shows the total decay rate of the molecule as a
function of the hole diameter and the molecule position on the
hole axis for the case of a horizontal orientation of the dipole
momentum.

From Fig. 8, one can see that when the molecule is located
near the center of a hole with a diameter of about 200 nm, the
spontaneous decay rate has the maximum γ /γ0 ≈ 2.1, that is
greater than for a plane without a hole (see also Fig. 6).

Until now, we have analyzed a molecule situated on the
axis of symmetry. However, the most substantial enhancement
of the decay rate one can observe is near the hole rim. This
enhancement is due to the rim sharpness and can be described
well by a quasistatic solution. In Figs. 9 and 10, the dependence

FIG. 9. (Color online) The decay rate of a molecule with the z-
oriented dipole momentum as a function of the x and y coordinates on
the plane z = 5 nm (quasistatic approximation). The hole diameter
is 100 nm.
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FIG. 10. (Color online) The decay rate of molecule with an
x-oriented dipole momentum as a function of x and y coordinates on
the plane z = 5 nm (quasistatic approximation). The diameter of the
hole is 100 nm.

of decay rates of a molecule with different orientations are
shown as a function of its position in the plane z = 5 nm.

From these figures, one can see that indeed near the hole
rim the decay rates become very large due the rim sharpness.
In real situations with smoothed hole rims, these infinites are
reduced in value, but the general picture remains the same.

VI. CONCLUSION

This paper presents a detailed theoretical analysis of the
spontaneous emission of a molecule located near a circular
hole in a PEC infinitely thin screen. We have found explicit

analytical descriptions both within a quasistatic approximation
and within a full system of Maxwell’s equations by taking
into account all retardation effects. Our analytical results
give a clear picture of the spontaneous emission rate near
nanoapertures and can be used both for testing numerical
simulation algorithms for more complicated cases and for a
fast preliminary analysis of experimental data.

In this study, we have examined the influence of the
nanoaperture on the rate of spontaneous emission of molecules
in its vicinity. However, the fluorescence of the molecules near
the hole is determined not only by the spontaneous emission
rate, but also by the excitation field intensity at the location
of the molecule. Investigation of the molecule fluorescence
taking into account both these factors will be presented in a
separate paper [16] where it will be shown that the image of
the molecule scanning microscope depends significantly not
only on the orientation and position of the molecule, but also
on the intensity of the excitation beam.
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