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A superconducting quantum interference device (SQUID) inserted in a superconducting waveguide resonator
imposes current and voltage boundary conditions that makes it suitable as a tuning element for the resonator
modes. If such a SQUID element is subject to a periodically varying magnetic flux, the resonator modes
acquire frequency sidebands. In this work we calculate the multifrequency eigenmodes of resonators coupled
to periodically driven SQUIDs and we use the Lagrange formalism to propose a theory for their quantization.
The elementary excitations of a multifrequency mode can couple resonantly to physical systems with different
transition frequencies and this makes the resonator an efficient quantum bus for state transfer and coherent
quantum operations in hybrid quantum systems. As an example of the application of our multifrequency modes,
we determine their coupling to transmon qubits with different frequencies and we present a bichromatic scheme
for entanglement and gate operations.
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I. INTRODUCTION

In the field of circuit quantum electrodynamics (QED)
the combination of superconducting resonators and Josephson
junctions [1] has been used to demonstrate fundamental quan-
tum interactions. Josephson junctions are also often combined
in loops to generate superconducting quantum interference
devices (SQUIDs), which allow more controllability in the
systems. The interactions demonstrated in circuit QED range
from the resonant coupling between two-level systems and a
harmonic oscillator [2–4] over the generation of nonclassical
states [5,6] to protocols where the resonator field serves
as a quantum bus to transfer quantum states and mediate
interactions between different systems [7–10]. To control the
interaction between the resonator mode and other physical
systems, one uses the ability to tune the frequencies (and
sometimes also the damping rates and nonlinearities) of the
resonator mode [7–9,11–13]. Furthermore, periodic modula-
tion of SQUID parameters is used in parametric amplifiers
[14] and parametric converters [15], where interactions appear
between the modes of the resonator [16].

While changing the frequency of a resonator allows tuning
of the photon energies to match energy differences in other
systems, the quantized field does not necessarily adiabatically
adjust to the change in frequency and the associated change
in mode function. Indeed, rapid motion of an optical mirror
has been predicted to lead to the creation of photons by the
so-called dynamical Casimir effect [17] and experiments in
circuit QED have addressed the microwave equivalent by rapid
modulation of a SQUID, altering the boundary conditions of
a waveguide with half open boundary conditions [18,19].

In this article we study a similar situation, with a peri-
odically modulated SQUID [see Fig. 1(a)] in a finite-size
waveguide with a discrete frequency spectrum. Our goal is
not to use the SQUID to drive excitations of the resonator field
and we will hence avoid driving at frequencies supported by
the waveguide. Instead we will investigate how the driving
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FIG. 1. (Color online) (a) Superconducting resonator, inter-
rupted by a SQUID at x = 0. The SQUID is modulated by an
external magnetic field �(t) yielding a time-dependent Josephson
energy EJ (t). (b) Circuit diagram of a resonator interrupted by an
inline SQUID. Here LT and CT denote, respectively, the inductance
and capacitance per length of the waveguide such that each inductor
(capacitor) has the inductance (capacitance) LT �x (CT �x). The
resonator is described in the limit of �x → 0. The inline SQUID is
characterized by the time-dependent Josephson energy EJ (t) and its
capacitance C.

leads to new, multifrequency modes and we will characterize
their frequency contents. We then determine how such modes
can be used to bridge frequency gaps and coherently couple
different physical systems.

Our work is inspired by [14–19] and mechanisms used
in atomic memories and light-matter interfaces [20], where
Raman processes use a laser field to dress atomic or molecular
levels such that the low-frequency transition of the system
can be driven and probed at optical frequencies. Similarly,
in optomechanics [21], weak optical fields impinging on
movable mirrors are coherently coupled to low-frequency
mirror vibrations via the intensity beat node with another field.
By constructing our scheme with circuit QED components,
our architecture and the nature of our frequency modulation
via changed boundary conditions rather than a nonlinear
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interaction term necessitate a detailed circuit analysis, which
we will build on the theory developed in [16,22,23].

In Sec. II we present the physical system and we derive
the spatiotemporal solutions to the wave equations for the
resonator variables with time-dependent boundary conditions.
In Sec. III we present an effective approximate parametrization
of the solutions in terms of canonical conjugate variables and
we establish a quantum theory for the resonator modes; in
Sec. III A we discuss the interaction across frequency gaps.
In Sec. IV we show how our driven modes can establish an
effective bichromatic entanglement gate operation between
two transmon qubits with different transitions frequencies. In
Sec. V we present a conclusion and an outlook.

II. MULTIFREQUENCY RESONANCE MODES

To analyze the dynamics of a superconducting resonator
modulated by an inline SQUID we consider the circuit diagram
in Fig. 1(b). Here we represent the waveguide by a series of LC

circuits. Each waveguide segment of length �x is associated
with an inductor with inductance LT �x and a capacitor with
capacitance CT �x (LT and CT are defined respectively as the
inductance and capacitance per length of the waveguide). It
is convenient to introduce the phase degree of freedom that
at each node of the circuit equals the time integral of the
voltage potential. In the limit of �x → 0, this phase becomes
a function φ(x,t) of the continuous position variable x and
while its time derivative merely recovers the voltage, its spatial
derivative is proportional to the current in the waveguide (this
proportionality is obtained through the usual I -V relation for
the voltage drop over inductor elements V = LdI

dt
). The energy

stored in the capacitors and the inductors now takes the role
of kinetic and potential energy densities associated with the
voltage and current variations along the waveguide and the
Lagrangian of the system can thus be written in terms of
the temporal and spatial derivatives of φ(x,t).

At the center of the waveguide we introduce the inline
SQUID, which contributes a nonlinear inductance set by the
Josephson energy EJ (t) and a capacitance set by C. Since the
potential energy of a SQUID is readily given as a function of
the phase slip �φ across the device U (φ) = −EJ (t) cos 2π �φ

�0
,

with �0 = h/2e the magnetic flux quantum, we arrive at the
Lagrangian of the combined system

L =
∫ d

−d

{
CT

2
[∂tφ(x,t)]2 − 1

2LT

[∂xφ(x,t)]2

}
dx

+ C

2
[∂t�φ(xJ ,t)]2 + EJ (t) cos

2π�φ(xJ ,t)

�0
, (1)

from which the canonically quantized Hamiltonian can readily
be obtained [22]. In Eq. (1), �φ(xJ ,t) = φ(xJ+,t) − φ(xJ−,t)
denotes the change in the phase variable φ(x,t) imposed by
the discrete boundary conditions at the inline SQUID [16]. In
the following we expand the cosine term in (1) to second order
in �φ. If needed, the higher-order terms can be reintroduced
as a perturbation later in the analysis [see, e.g., Eq. (35)].

The Euler-Lagrange equation

∂x

∂L
∂[∂xφ(x,t)]

+ ∂t

∂L
∂[∂tφ(x,t)]

− ∂L
∂φ(x,t)

= 0 (2)

yields the wave equation for the phase variable along the
waveguide

−v2∂2
xφ(x,t) + ∂2

t φ(x,t) = 0, (3)

where v denotes the propagation speed of the wave. We assume
that our resonator obeys open boundary conditions at its ends
at x = ±d, while at xJ = 0 the SQUID defines boundary
conditions, parametrized by the time-dependent Josephson
energy EJ (t) and the capacitance C of the SQUID,

∂φ(x,t)

∂x

∣∣∣∣
x=±d

= 0, (4)

1

LT

∂φ(x,t)

∂x

∣∣∣∣
x=0±

= C
∂2�φ(0,t)

∂t2
+ (2π )2EJ (t)

�0
�φ(0,t).

(5)

Equations (3)–(5) define the time-dependent mode functions
of the circuit that we will first calculate and then use as the basis
for the quantum interaction with additional circuit elements.

In this article we consider a periodically modulated mag-
netic flux �(t) through the SQUID leading to a harmonically
varying Josephson energy

EJ (t) = EJ,0 + δEJ cos ωdt. (6)

If the modulation were not too fast (ωd � ω), we could have
treated the SQUID as a quasistatic component and found the
eigenmodes of the system for each value of EJ (t). For not too
strong driving (δEJ � EJ,0) this would give rise to a vari-
ation in the eigenmode frequencies ω(t) = ω′ + δω′ cos ωdt ,
equivalent to the formation of a central frequency component
with sidebands at multiples of the modulation frequency ωd .
A natural ansatz for the quadrature operator associated with
excitation of the quantized resonator circuit would then be
given by

q̂ ≈ qZPF

(
1 + δω′

2ω′ cos ωdt

)
(â† + â), (7)

where â and â† are the corresponding annihilation and creation
operators and qZPF denotes the zero-point fluctuations of the
corresponding physical observable. While this approach may
constitute a good approximation if ωd and the modulation
amplitude δEJ were small, we also expect to find resonances in
the system with a central frequency and sideband components
when we modulate the SQUID more strongly and with high
frequency. A more careful approach is therefore needed to
calculate the modes and their frequencies for a larger range of
driving parameters and to subsequently quantize the system
dynamics.

We thus return to the original, linearized problem with
the time-dependent boundary condition and to exploit the
periodicity of the driving, we transform our fields into
frequency space

φ(x,ω) = 1√
2π

∫ ∞

−∞
φ(x,t)e−iωtdt. (8)

We rewrite the wave equation as

v2∂2
xφ(x,ω) + ω2φ(x,ω) = 0, (9)
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while the boundary conditions in frequency space become

∂φ(x,ω)

∂x

∣∣∣∣
x=0±

= LT Cω2�φ(0,ω)

+ LT

(2π )2

�0

EJ (ω) ⊗ �φ(0,ω)√
2π

, (10)

∂φ(x,ω)

∂x

∣∣∣∣
x=±d

= 0. (11)

In Eq. (10), EJ (ω) ⊗ �φ(0,ω) denotes the convolution prod-
uct, which is readily calculated since EJ (ω) = EJ,0δ(ω) +
δEJ

2 [δ(ω + ωd ) + δ(ω − ωd )],

EJ (ω) ⊗ �φ(0,ω)

= EJ,0�φ(0,ω) + δEJ

2
[�φ(0,ω +ωd ) + �φ(0,ω − ωd )].

(12)

Since the coupling to the SQUID in Eq. (1) cancels for even
modes [�φ(xJ ,t) = 0], we consider only odd solutions to
Eqs. (9) and (11), i.e., solutions in the form

φ(x,ω) =
{
φ(ω) cos[ω/v(d − x)] for x > 0
−φ(ω) cos[ω/v(−d − x)] for x < 0.

(13)

These functions display the discrete jump at x = xJ = 0
necessary to fulfill the boundary condition (10), which leads
to the equation

ω

v
d sin

(
ω

v
d

)
φ(ω)

= 2
LT d

LJ

cos

(
ω

v
d

)
φ(ω) + 2

LT d

δLJ

cos

(
ω + ωd

v
d

)

× φ(ω + ωd ) + 2
LT d

δLJ

cos

(
ω − ωd

v
d

)
φ(ω − ωd ),

(14)

where we have defined LJ = √
2π�0/4π2EJ and δLJ =

2
√

2π�0/4π2δEJ . We have neglected contributions from
the Josephson capacitance, assuming typical values obeying
Cω2 � LT /LJ [18].

Equation (14) can be solved numerically for the allowed
discrete values of ω and the corresponding vector of amplitude
strengths φ(ω + mωd ). For our purpose it is sufficient to
approximate the system and restrict ourselves to a dominant
frequency component ω and two sidebands ω ± ωd and ignore
coupling to further frequency components ω ± 2ωd, . . . . With
this approximation the carrier and sideband components of the
system eigenmodes have wave numbers that obey

kd = 2LT d

LJ

cos kd

sin kd
+ (2LT d/δLJ )2(cos kd/sin kd) cos k−d

(2LT d/LJ ) cos k−d + k−d sin k−d

+ (2LT d/δLJ )2(cos kd/sin kd) cos k+d

(2LT d/LJ ) cos k+d + k+d sin k+d
, (15)

where k = ω/v and k± = (ω ± ωd )/v. The amplitudes of the
sidebands are given by

φ(ω ± ωd ) = (2LT d/δLJ ) cos kd

(2LT d/LJ ) cos k±d + k±d sin k±d
φ(ω)

= A±φ(ω). (16)

We notice that to first order, the amplitude of the sidebands are
inversely proportional to δLJ and hence proportional to the
driving amplitude δEJ . This is reminiscent of the important
role played by the classical (pump) field amplitude in atom-
light interfaces [20] and in optomechanics [21].

Now we transform our solution back into the time domain
where the solution to the wave equation attains the form

φ(x,t) = sgn(x) cos{k[sgn(x)d − x]} cos(ωt)φω

+ sgn(x) cos{k+[sgn(x)d − x]} cos(ω+t)φ+

+ sgn(x) cos{k−[sgn(x)d − x]} cos(ω−t)φ− (17)

= uω(x)φω(t) + u+(x)φ+(t) + u−(x)φ−(t). (18)

In the last line we have separated the terms into space-
dependent uj (x) with values exploring the range [−1,1],
while the amplitudes governed by (16) are included in the
time-dependent functions φj (t) = cos(ωj t)φj .

We show an example of the mode structure in Fig. 2,
where the solid line shows the carrier function uω(x) and
the dashed curves show the two associated sideband mode
functions u±(x). Notice that the sidebands have a much larger
relative discontinuity compared to the carrier function, but as
they are multiplied by the factors A±, their contributions to

xd

u
ω
(x

),
u
−

(x
),

u
+

(x
)

−1 −0.5 0 0.5 1

−0.5

0

0.5

1

−1

FIG. 2. (Color online) Mode functions when we modulate the
SQUID with a frequency ωd = 2π × 2.0 GHz and δEJ /EJ,0 = 0.4
for a mode with kd = 4.614 (ω = 2π × 7.343 GHz). The green solid
line shows the central frequency component uω(x), while the red
dashed and the blue dash-dotted lines show the sideband components
u−(x) and u+(x), respectively. The parameters of the resonator
are d = 1.2 cm, EJ,0/� = 2π × 715 GHz, v = 1.2 × 108 m/s, and
LT = 50 	/v. At x = 0 we have inserted a vertical line to elucidate
the discontinuities in the mode functions across the SQUID.
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FIG. 3. Classical resonances for the odd modes of a resonator
calculated by Eq. (15) with the same parameters as in Fig. 2. We
modulate the SQUID with varying strengths at a frequency ωd =
2π × 2.0 GHz. We show the variation of the central frequency of (a)
the first mode, (b) the third mode, and (c) the fifth mode. The even
modes are not considered since they do not experience the modulation
of the SQUID.

the phase jump of the full time-dependent mode (18) across
the SQUID are less dramatic. The solutions have three nodes
and correspond to the third mode of the resonator. Only odd
modes acquire sidebands due to the coupling to the SQUID
and in Fig. 3 we show how the solution of Eq. (15) for the
first, third, and fifth mode leads to eigenfrequencies that vary
with the modulation strength δEJ /EJ,0. In Fig. 3 we notice
a frequency shift of the order of 10 MHz, which is much
larger than typical bandwidths of superconducting resonators
and cannot be predicted without taking the full dynamics into
account.

To reach the solution (18), we assumed that the sidebands
at ω ± ωd in (14) are present and that the coupling to further
components at ω ± 2ωd is negligible. This assumption is
fulfilled for applications in this article, where we deal with
A± ∼ 10−2, significantly limiting higher sideband excitation.
When the system is externally driven on resonance with the
values of ω shown, or at the sidebands ω ± ωd , the modulation
of the SQUID at ωd causes the effective excitation of the
multifrequency solution (18). While (18) is derived under the
assumption of periodic driving, it also holds during transient
excitation of the system or coupling to other systems, as long

as the resulting evolution is slow with respect to the natural
frequencies.

III. QUANTIZATION OF THE
MULTIFREQUENCY MODES

Following the normal procedures of second quantization
we would have first expanded a general solution φ(x,t) on sta-
tionary eigenmodes of the unmodulated system and we would
have replaced the mode amplitudes by operators satisfying
canonical commutation relations. The time-varying SQUID
would then be introduced as a driving term that transfers
excitation among the quantized modes and parametrically
drives pair excitation of the modes (cf. [24–26]). We have
deviated from that procedure here because the time-varying
SQUID modifies the boundary conditions for the resonator
modes and it is clear from Fig. 2. that a large number of the
eigenmodes calculated in the absence of the SQUID would be
needed to represent the discontinuous jumps in the function
φ(x,t) across the SQUID. Our time-dependent mode functions
already obey the boundary condition in the presence of the
driving. For the finite waveguide, these modes have discrete
and well-separated frequencies and we may disregard coupling
between them and restrict our analysis to their individual
excitation dynamics and their resonant coupling to other
systems with transition frequencies at ω or ω ± ωd . To treat the
time-dependent mode quantum mechanically, we observe that
the central frequency amplitude φω(t) oscillates at frequency
ω, consistent with the quadratic Lagrangian

L = Cω

2
φ̇ω(t)2 − 1

2Lω

φω(t)2, (19)

where Cω is conveniently represented by the parts of (1) that
depend on φ̇ω(t),

Cω = 2
∫ d

0
CT cos2 k(d−x) dx + C cos2 kd

= CT d

(
1 + sin 2kd

2kd

)
+ C cos2 kd. (20)

The full Lagrangian indeed depends on φ̇ω(t) also via the
sideband components, but by setting Lω = 1/Cωω2 in (19), we
ensure the right evolution frequency of the amplitude variable.
The error that we make by assigning the approximate values
of Cω and Lω will only cause relative changes of order A± or
A2

± in the coupling strengths used later in the article.
Introducing the canonical conjugate pair of variables φ =

φω(t) and q = ∂L/∂φ̇ω(t) = Cωφ̇ω(t), we obtain the effective
harmonic-oscillator Hamiltonian for the mode

H = 1

2Cω

q2 + 1

2Lω

φ2. (21)

Applying usual canonical quantization, we impose [q,φ] = i�

and define annihilation and creation operators

q =
√

�Cωω

2
(a† + a), (22)

φ = i

√
�

2Cωω
(a† − a), (23)
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which obey [a,a†] = 1 and allow rewriting of the quantum
mechanical Hamiltonian in the well-known form

H = �ω
(
a†a + 1

2

)
. (24)

By construction, this Hamiltonian yields the dynamics of the
amplitude of the central frequency component of the driven ω

mode and Eqs. (16) and (18) account for the physical circuit
observables that oscillate at ω and ω±.

Our Eqs. (22) and (23) differ from similar expansions in
[16,27] where the mode function u(x) and thus the canonical
quantum variables are normalized in terms of the total
capacitance C
 = 2CT d + C instead of Cω. Our approach,
similar to that of [23,28], gives simpler expressions for our
applications.

The validity of the quantization of individual time-
dependent modes with no mutual couplings relies on the
same assumption as we applied to justify the expansion of the
classical circuit variables on the multifrequency eigenmodes.
In particular, changes in the excitation of the mode must be
slow compared to the frequency separation to other modes.

A. Coupling physical systems across frequency gaps

Our quantization of the multifrequency mode suggests the
operator form of the positive and negative frequency parts

φ̂(x,t) = − i

2

√
�

2Cωω
a(t)[uω(x) + A+e−iωd tu+(x)

+ A−eiωd tu−(x)] + H.c., (25)

where a(t) is given in the Heisenberg picture and therefore
φ̂(x,t), due to (24), acquires oscillations at the frequencies ω

and ω ± ωd . From φ̂(x,t) we can express all other variable
of interest such as the voltage and charge distribution. As an
example we can consider the voltage operator

V̂ (x,t) = ∂φ̂(x,t)

∂t
(26)

= 1

2

√
�

2Cωω
a(t)[ωuω(x) + ω+A+e−iωd tu+(x)

+ ω−A−eiωd tu−(x)] + H.c. (27)

Electric charges and dipoles couple to the voltage along
the waveguide and the expression (27) implies that the driving
of the inline SQUID allows one to bridge the frequency gap
between the quantized circuit degrees of freedom and auxiliary
quantum systems if they have transition frequencies equal to
any one of the frequencies ω and ω ± ωd , in the same way
that a pump laser field may assist a quantized optical probe in
the driving of atomic Raman transitions and optomechanical
motion.

The coupling may have different forms, but if a quantum
system S is detuned by a small amount δ, from one of the
multimode frequency components, the joint system dynamics
is given by a Hamiltonian, which in the interaction picture
takes the form

H = �δa†a + �G(a†b + b†a), (28)

where the coupling strength G depends on the physical
coupling mechanism and b (b†) is the lowering (raising)
operator of excitations in S. This Hamiltonian is known as
a beam-splitter interaction, which adiabatically transfers the
quantum state of S to the resonator. For the application of
the resonator as a quantum bus, this is the desired interaction.
For a physical component with excitation frequency ωS ∼
ω ± ωd , situated at x = xt and coupled to the local value of
V̂ (x,t), we obtain G± ∝ (ω ± ωd )A±u±(xt ), while the value
G ∝ ωuω(xt ) is obtained when ωS ∼ ω. We will write this
coupling for the former case as

G± = gω±A±
4
√

�Cωω
u±(xt ), (29)

where g is determined by the auxiliary system observables.
As a simple example we consider a superconducting qubit

capacitively coupled to the resonator at position xt . The
so-called transmon qubit consists of a Josephson junction
shunted with a large capacitor. It is by design less sensitive to
charge noise and offers longer coherence times than, e.g., the
Cooper-pair box superconducting qubits [29]. The transmon
has quantized charge and phase variables n̂ and ψ̂ such that
its Hamiltonian is given by Ht = 4EC(n̂ − ng)2 − EJ,t cos ψ̂ ,
while it couples to the resonator with

HI = 2eβn̂V̂ (xt ), (30)

where β = Cc/C
 denotes the ratio between the coupling
capacitor and the total capacitance of the transmon. In the
limit of EJ,t � EC , the transmon can be approximated as
a two-level system with the charge operator given by Pauli
transition operators between its eigenstates

n̂ = i

(
EJ,t

8EC

)1/4 1√
2

(σ † − σ ). (31)

The coupling constant g between the system states in (29) thus
becomes [29]

g = 2eβ〈1|n̂|0〉 =
√

2ieβ

(
EJ,t

8EC

)1/4

. (32)

For realistic transmon and resonator parameters, the coupling
strength G− to the lower sideband of the first mode of a
short resonator is shown in Fig. 4 for different values of ωd .
Characteristic resonant coupling strengths of transmon qubits
to coplanar waveguides are a few hundred MHz [30] and we
expect, within the validity of our approximations, to obtain few
MHz coupling strengths between transmons and waveguides
when a GHz frequency separation between them is bridged
by the modulated SQUID. We indeed observe such values
in the figure and we also observe the expected increase of
the coupling strength with the modulation amplitude δEJ .
Due to the factor of ω− in the expression for G, we obtain
a lower value when we modulate with a higher frequency.
In the figure we have also included a calculation using the
simplified approach presented in the beginning of Sec. II. This
quasistatic approach yields a coupling that is independent
of the modulation frequency and in the regime of small
modulation frequency and amplitude it matches our more
precise calculation.

023828-5



CHRISTIAN KRAGLUND ANDERSEN AND KLAUS MØLMER PHYSICAL REVIEW A 91, 023828 (2015)

0 0.1 0.2 0.3 0.4
δEJ
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FIG. 4. (Color online) Coupling strength of the two lowest states
of a transmon to the resonator mode. The frequencies are such that
ω10 = ω− = ω − ωd , where ω is the frequency of the first mode
in a resonator with d = 0.25 cm and ω = 2π × 10.82 GHz in the
absence of modulation. The transmon is located at xt = 0.1d and
has EJ /EC = 80 and β = 2/3. The thick (green) line is calculated
by Eq. (29) for the modulation frequency set to ωd = 2π × 6 GHz,
while the thin (blue) line shows Eq. (29) for ωd = 2π × 0.5 GHz. The
dashed (red) line shows the result of the quasistatic approximation
(7), which is independent of the modulation frequency.

We have chosen parameters to ensure a large free spectral
range for the transmon qubits since close to a resonance a cross
Kerr effect between the transmon and the resonator mode of
strength

χ = G2
ω

α

��(�� + α)
(33)

may alter the dynamics. In Eq. (33), � = ω10 − ω, Gω is the
coupling strength to the center frequency, and α = −EC is the
anharmonicity of the transmon [29]. For the parameters used
for the thick green line in Fig. 4 χ ≈ 2π × 0.2 MHz and it is
independent of the modulation frequency amplitude.

Since the same mode may be simultaneously coupled to
different systems via its different frequency components, it
may serve to transfer quantum states coherently between
systems whose frequencies differ by ωd or 2ωd . Since we may
apply a more complicated signal to the inline SQUID, we may
also modulate it at different frequencies and thus establish side-
bands, which can interact selectively with different systems.
In the next section we couple the multifrequency mode to two
different transmon qubits and obtain a bichromatic two-qubit
entangling gate, similar to gates applied in ion traps.

IV. MULTIFREQUENCY MODULATION AND
MULTIQUBIT GATES

Trapped ions can be excited by laser fields at a frequency
sideband that excites their collective vibrational motion
and a bichromatic scheme, using laser frequencies detuned
symmetrically around the internal state transition frequency,
can be used to entangle the internal state of two or more
ions [31–33]. In this section we develop a scheme that uses

the multifrequency resonator modes to accomplish a similar
entangling operation among transmon qubits. If the central
frequency component of the quantized field has frequency ω

and the qubits have frequency 	, driving the SQUID at ωt =
ω − 	 makes the transfer of excitation between the qubits and
the lower multifrequency sideband almost resonant. If, at the
same time, the SQUID is driven at ωp = ω + 	, a parametric
interaction, leading to the joint excitation (and deexcitation)
of the resonator mode and the transmons, becomes resonant.
Detuning of these two driving terms by a small amount δ leads
in the interaction picture with respect to the transmon and
single-mode Hamiltonian to the near-resonant coupling of the
transmons and resonator field operators

HI = �G
∑
n=1,2

(ae−iδt + a†eiδt )(σ+,n + σ−,n). (34)

Unlike the ion trap implementation, where laser frequencies
differing by a relatively small amount are applied to the
ion qubits, our driving fields are applied to the resonator
system and their frequencies differ strongly (by twice the
qubit transition frequency ωp − ωt ∼ 2	). The interaction
Hamiltonian, however, is the same and the analysis in [33]
applies for both the trapped ions and the superconducting
qubit system. We can hence use the scheme to accomplish
a two-qubit entangling gate as part of a universal gate set and
with more transmon qubits, we may also prepare multiqubit
entangled states.

Before passing to an example with realistic interaction
and damping parameters, we note that transmon qubits are
likely to have different transition frequencies. If these are well
separated, we merely have to modulate the inline SQUID by
separate pairs of modulation frequencies ωt,n = ω − δ − 	n

and ωp,n = ω − δ + 	n and strengths, in which case we
can recover Eq. (34). In Fig. 5 we illustrate a coplanar
waveguide resonator coupled to two transmon qubits with
different transition frequencies 	1 = 2π × 6.0 GHz and
	2 = 2π × 6.5 GHz. We modulate the SQUID at fre-
quencies {ωt,1,ωp,1,ωt,2,ωp,2} = 2π × {4.366,17.366,4.866,

16.866} GHz and with the amplitudes {δEJ,t1,δEJ,p1,

δEJ,t2,δEJ,p2}/EJ,0 = {0.1581,−0.1584,0.1682,−0.1687},
leading to the Hamiltonian (34), with G = 2π × 2.5 MHz
and δ = 2π × 10 MHz. With these parameters, an entangling
gate has the duration τ = 2π/δ = 100 ns [33], as indicated in
Fig. 5(b) by the time evolution of the two-qubit density-matrix
elements. The three matrix elements shown in Fig. 5 are,
in the ideal case, the only nonzero matrix elements of the
two-qubit density matrix and thus the concurrence can be
expressed as 2 Im(ρee,gg). In the calculation, we have taken
the finite coherence and excitation lifetimes of the qubit and
of the resonator into account and we obtain a maximally
entangled state with a fidelity F = 95%.

Our proposal is competitive with the achievements of
other entanglement gates in circuit QED [34–38] and it may
offer some advantages. (i) Using the SQUID to modulate the
resonator frequency, there is no need for additional control
lines to the qubits and we avoid the dephasing associated with
the conventional frequency tuning of qubits. (ii) When our
qubits are idle, they are far detuned with respect to each other
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FIG. 5. (Color online) (a) Setup with two transmon qubits placed
at xI = 0.1d and −0.1d . (b) Time evolution of two-qubit density-
matrix elements obtained by a simulation of the master equation
with the Hamiltonian in Eq. (34), a resonator decay rate of κ =
2π × 0.2 MHz, and transmon decay and dephasing lifetimes T1 = 10
μs and T2 = 5 μs. The transmon qubits have different excitation
frequencies 	1 = 2π × 6.0 GHz and 	2 = 2π × 6.5 GHz and the
resonator frequency is 2π × 10.82GHz. For the parameters described
in the text we obtain the Hamiltonian (34) with G = 2π × 2.5 MHz
and δ = 2π × 10 MHz. In the simulation we have also included a
Kerr term with magnitude given in Eq. (33).

and to the resonator and hence they are immune to crosstalk
and Purcell-enhanced decay.

V. CONCLUSION AND OUTLOOK

In conclusion, we have identified the resonant modes
of a superconducting resonator with periodically modulated
boundary conditions. The resulting modes consist of a carrier
and two weak sideband components at frequencies that are
separated by the modulation frequency [see Eq. (18) and
Fig. 2]. The classical sideband amplitudes are proportional to
the carrier amplitude and assuming that this proportionality is
maintained, the dynamics is described by a simple harmonic-
oscillator Hamiltonian, which we take as the starting point
for our quantum analysis. Elementary excitations of the
system thus contain three frequency components and can
exploit the sidebands to couple different physical system

separated by large frequency gaps. Our sideband-mediated
transfer of excitation between two systems with very different
frequencies can also be viewed as a transition between two
energy eigenstates of the joint system, driven resonantly by
the oscillating magnetic flux applied to the inline SQUID. The
rapid modification of SQUID parameters is already routinely
accomplished for rapid tuning in laboratories and the harmonic
driving is used in parametric amplifiers [14] and parametric
converters [15]. We hence believe that our proposal can be
implemented with devices that can be readily constructed,
while modulation of tuning elements to form sidebands rather
than static frequency shifts may be employed in resonators that
are already in use.

The multifrequency modes were calculated using a lin-
earized Lagrangian. Treating the nonlinearity of the Josephson
Hamiltonian as a perturbation on the single-mode Hamilto-
nian, we obtain the Kerr nonlinearity [16,28]

Hnl = −EJ,0

4

(
2π

√
�/2Cωω

�0

)
cos4 kda†a†aa. (35)

This term is small for the parameters used in this paper, but
in combination with the ability to couple systems at very
different frequencies, its application, e.g., for the generation
of nonclassical states of the oscillator mode, may be useful.

Finally, we discussed the application of the quantized
multifrequency oscillator mode to mediate an entangling gate
between two transmon qubits and by simulation we showed
that a Bell state with a fidelity of 95% may be achieved
using realistic parameters. This analysis readily generalizes to
multiqubit systems, where the frequency control of the SQUID
modulation may be used to control one- and two-qubit gates
as well as multiqubit entanglement operations on any qubits
in the resonator.

A bulk acoustic wave modulator has been recently proposed
to modulate the capacitance of a superconducting LC circuit
[39] and hence mediate the frequency difference between the
quantized high-frequency excitations of the circuit and the
slow motion of a trapped atomic ion. That proposal relies in a
similar way to ours on the frequency modulation of a quantized
field degree of freedom and due to the modulated capacitance
it couples more strongly to low-frequency motion than our
oscillating voltage (27), which carries prefactors proportional
to the low frequency.
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