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Maxwell stress on a small dielectric sphere in a dielectric
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Electrically induced normal pressure and tangential stress at the surface of a small dielectric sphere (or cavity)
in a dielectric are calculated using the Minkowski, Einstein-Laub, Abraham, and Lorentz forms of the Maxwell
stress tensor. Only the Lorentz tensor is in agreement with the following observations: (1) A spherical cavity in
a dielectric transforms into a sharp-edge plate perpendicular to the electric field; (2) a liquid drop placed in a
medium with a slightly lower refractive index is stretched along the electric field; and (3) there is a torque on a
small birefringent sphere. These phenomena cannot be explained by the conventional theory using the Minkowski
stress tensor. For example, the Minkowski stress tensor predicts lateral compression of a spherical cavity in a
dielectric.
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I. INTRODUCTION

Mechanical forces of light are important instruments of
modern science and technology. These forces are being used
in laser tweezers, optical spanners and stretchers, laser traps,
optomechanical devices, and systems of laser isotope separa-
tion. In laser fusion projects, a target has to be compressed
by laser beams. The pressure of sunlight should be taken into
account in global positioning systems. Even spacecrafts under
light-pressure sails have been proposed.

Calculation of the force acting on a dielectric body in
an electromagnetic field is among the fundamental physical
problems. This problem was addressed for the first time by
James Clerk Maxwell in his famous “Treatise on Electricity
and Magnetism” [1]. According to Maxwell, the time-averaged
force acting on a body is expressed through the integral over a
closed surface surrounding the body:

F =
∮

〈T〉 · n̂ dA, (1)

where n denotes the external unit vector normal to the surface,
T is the Maxwell stress tensor, and brackets denote averaging
over time. In the early twentieth century, Maxwell’s theory
was extended in order to describe the mechanical action of the
electromagnetic field in dielectric and magnetic media. The
following form of the Maxwell stress tensor was proposed by
Lorentz [2]:

Tij = ε0 Ei Ej + μ0 Hi Hj − 1
2 (ε0 E2 + μ0 H 2) δij . (2)

The following form was proposed by Einstein and Laub [3]:

Tij = Ei Dj + Hi Bj − 1
2 (ε0E

2 + μ0 H 2) δij . (3)

The following form was proposed by Minkovski [4]:

Tij = Ei Dj + Hi Bj − 1
2 (E D + H B) δij . (4)

The following form was proposed by Abraham [5]:

Tij = 1
2 (Ei Dj + Ej Di + Hi Bj + Hj Bi)

− 1
2 (E D + H B) δij . (5)

Here ε0 and μ0 are the electric and magnetic constants,
respectively, and δij is the Kronecker delta. In the microscopic
electromagnetic theory by Lorentz [2], the stress tensor of

Eq. (2) is a function only of the electric, E, and magnetic, H,
fields. Macroscopic approaches gave tensors of Eqs. (3)–(5)
in which D = ε ε0 E is the electric displacement, B = μμ0 H
is the magnetic induction, and ε and μ are the permittivity
and permeability of the medium, respectively. Most authors
replace H in Eq. (2) by μ−1

0 B and obtain the tensor called
the Amperian [6,7] or Maxwell [8–11] or Raabe-Welsch [12]
tensor. This tensor is the same as the Lorentz one if the medium
is nonmagnetic (μ = 1, as in the rest of this paper). Also there
is no difference between the Minkowski and Abraham stress
tensors if the medium is isotropic.

Many efforts have been made to establish the correct
form of the stress tensor [6,7,13–17]. At present, Eq. (4)
is the generally accepted definition of the Maxwell stress
tensor [8,18–31], which is sometimes called the Minkowski
stress tensor [7,9,10,12,15,16,32]. However, some researches
considered the arguments in its favor as unconvincing [33].
Situations in which different theoretical models give different
radiation forces are still being invented to test the theory
with experiments. For example, Stallinga used the Minkowski
and Amperian stress tensors and calculated different radiation
forces on a dielectric slab immersed in a dielectric [10].
Mansaripur and coworkers compared volume electromagnetic-
force distributions given by the Lorentz and Einstein-Laub
formulations in the cases of propagation of a Gaussian beam
through a transparent isotropic dielectric, dielectric slab, and
a water droplet [17]. In particular, it was found that the two
formulations predict different deformations of a liquid drop.

The aim of this paper is to compare predictions of different
forms of the stress tensor with experiments. We examine action
of a homogeneous electric field on a dielectric sphere. A similar
effect has the radiation pressure on a small sphere when the
electrostatic approximation is valid.

II. NORMAL PRESSURE AND TANGENTIAL STRESS

We consider the situation when the electric field is homoge-
neous inside the sphere, so the divergence of the stress tensor
vanishes. In this case, the integral in Eq. (1) over any closed
surface inside the sphere is zero. The value of F is hence
determined by surface forces which are measured in Pascals
and are expressed through the difference of the Maxwell stress
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tensors in two media:

Fj (rS) = 〈
T

(2)
jn (rS)

〉 − 〈
T

(1)
jn (rS)

〉
, (6)

where rS is the radius vector of a point at the surface of
the body. The normal component of FFF is called the normal
pressure,P = FFF n̂. The tangential component is the tangential
stress S:

FFF = P n̂ + S. (7)

The quantity S is not widely known since it is zero if there
are no surface charges σ and the Minkowski, Abraham, or
Einstein-Laub tensors are applied.

The components P and S of the surface force are readily
found using the boundary conditions for the tangential com-
ponents of E and H and normal components of D and B. If a
sphere with the center at the origin of the system of spherical
coordinates r, ϑ, φ is placed in a constant electric field with
E = E0 ẑ, then at σ = 0 we get from Eqs. (4) and (5) that

Pr = ε1 C (sin2 ϑ + ε cos2 ϑ), (8a)

S = 0, (8b)

where ε = ε2/ε1, ε2 is the permittivity of the sphere, ε1 is the
permittivity of the surrounding medium, and C = 9 (ε−1)

(ε+2)2
ε0
2 E2

0 .

At the same time, the Lorentz tensor gives

Pr = (ε + 1) C cos2 ϑ, (9a)

Sϑ = −C sin 2 ϑ, Sφ = 0. (9b)

For a time-harmonic field E = E0 cos(ωt) ẑ the pressure and
stress at the surface of a small dielectric sphere are determined
by more complicated formulas. However, if ε1 and ε2 are real,
then Eqs. (8) and (9) are still valid but with the parameter C

divided by 2 (because of time averaging).

III. SPHERICAL CAVITY IN A DIELECTRIC

The surface forces calculated with the stress tensors of
Eqs. (2)–(5) can be very different. For example, Fig. 1 shows
the forces at the surface of a small spherical cavity in an
isotropic nonmagnetic dielectric medium. The top row of the
theoretical part of Fig. 1 presents the forces acting on an air
bulb in water when ε1 = 80.1,ε2 = 1. The bottom row was
drawn for the relative permittivity ε = 0.44 which corresponds
to the experiment [34] with liquid drops in immiscible liquid.
The same value of ε is obtained for an empty cavity in a
medium with a refractive index of 1.5, the refractive index of
many optical materials. There are striking differences between
the theoretical columns of Fig. 1. According to Eqs. (8), the
electric field pushes the surface of the spherical cavity in the
equatorial part. Consequently, the sphere should transform into
a prolate spheroid. At very high pressure, it should look like
a cylinder or even split into two smaller cavities. Both the
Einstein-Laub and Lorentz tensors predict flattering of
the spherical cavity. According to the Einstein-Laub model,
the electric field pushes the boundaries in the polar regions
not affecting the equatorial ones. Therefore, the sphere has to
transform into an oblate spheroid and have rounded edges. At
very high pressures it tends to be a torus. According to the
Lorenz (or Amperian) model, the push of the polar regions of
the sphere is concomitant with the tangential pull at the equator
of the cavity. These actions could transform the sphere into a
plate with sharp edges.

The trend predicted by the Lorentz tensor is in excellent
agreement with the experimental data. First, the electric field
exerted on a drop placed in immiscible liquid transformed
the sphere into a disk [34]. Second, there are a lot of data
showing formation of subwavelength structures at the surfaces
of transparent dielectrics, semiconductors, and metals under
the influence of femtosecond laser pulses [35–37]. If light is
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FIG. 1. (Color online) The surface forces calculated with the Minkowski (first column), Einstein-Laub (second column), and Lorentz (third
column) stress tensors. The upper row of the theoretical figures (a–c) demonstrates action of a constant electric field on an air bulb in water.
The fourth column shows the photographs of a drop of silicon oil in castor oil in constant electric fields [34]. The forces calculated for this
experiment are presented in the bottom row of the theoretical figures (d–f). These figures are also for the pressure of light at the surface of an
empty spherical cavity in a dielectric with ε1 = 2.27. In all cases, the electric-field vector is directed vertically.
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linearly polarized then in most cases grooves are formed in
the direction perpendicular to E. This phenomenon can be
explained by the action of light on nanocavities in a solid [36]
if the Lorentz or Einstein-Laub stress tensors are used. The
explanation cannot be given when the Minkowski or Abraham
stress tensors are applied since they predict formation of
channels parallel to E.

The above analysis is rather qualitative. The shape of a drop
(or bubble) in liquid in a constant electric field is unlikely to be
the same as the shape of a void created by femtosecond laser
pulses in a solid. To establish these shapes, further efforts are
needed. Theoretical estimates of Appendices A and B show
that for the parameters specified in the caption to Fig. 1 the
deformed sphere is indeed prolate according to the Minkowski
stress tensor and oblate according to the Einstein-Laub and
Lorentz ones.

IV. DIELECTRIC SPHERE IN A MEDIUM
WITH A SIMILAR REFRACTIVE INDEX

Let us consider the forces acting on a dielectric sphere in a
medium with a slightly lower refractive index. Figures 2(a)–
2(c) show the forces at the surface of a small water droplet in
a CO2 laser field. The forces were calculated neglecting the
imaginary part of the refractive index of water n = 1.173 +
i 0.061 [38] at an emission wavelength of 10.6 μm and using
Eqs. (8) and (9). According to Fig. 2(a), the pressure found
with the Minkowski stress tensor is almost independent of the
direction of E0. In contrast, the Einstein-Laub and Lorentz
models predict stretching of the droplet along E0 with slightly
different directions of the forces. In experiment [39], Kwok,
Wood, and Chang observed distortion, ejection, shattering,
and propulsion of water and ethanol 50-μm-radius droplets
irradiated by a CO2 laser pulse. Because of strong absorption of
the CO2-laser emission, water droplets moved in the direction
of the laser beam propagation (x direction) and exploded.
After explosion, the width of the cloud in the direction of E0

(z direction) was larger than the diameter 2a of the droplet
before explosion by a factor of 2.5. Meanwhile, the width of
the water cloud in the x direction remained the same as 2a

and was independent of the z coordinate. These features are in
agreement with Fig. 2(c), i.e., the Lorentz stress model.
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FIG. 2. (Color online) Pressure of CO2 laser emission on a water
droplet calculated with the Minkowski (a), Einstein-Laub (b), and
Lorentz (c) stress tensors.

V. BIREFRINGENT SPHERE IN A HOMOGENEOUS
ELECTRIC FIELD

The concept of the surface stress can be used to calculate the
torque N on a small birefringent sphere by using the following
definition:

N =
∮

r=a

[r × S] dA. (10)

For simplicity, let us consider a sphere with the relative
permittivity

ε =
⎛
⎝εo 0 0

0 εo 0
0 0 εe

⎞
⎠ (11)

and take

E0 = E0 sin 	 x̂ + E0 cos 	 ẑ. (12)

The results of the calculations are presented in Table I. This
table compares the surface contribution to N found from
Eq. (10) with the volume contribution:

N =
∮

r=a

[r × 〈T〉] · n̂ dA, (13)

where 〈T〉 is calculated at the internal surface of the sphere.
The parameter N0 in Table I denotes

N0 = 6πa3 ε0 E2
0 sin(2 	)

εe − εo

(2 + εe)(2 + εo)
ŷ. (14)

This value should be divided by 2 for a small sphere in a time-
harmonic electric field with the amplitude (12), in accordance
with the comment to Eqs. (9). The Lorentz tensor gives the
value of N recommended by the textbook by Landau, Lifshitz,
and Pitaevskii [19]. In Ref. [19], the torque was calculated
without using any stress tensor as a cross product of the electric
dipole moment of the polarized sphere and the electric-field
vector E defined at r � a. The bottom row of Table I presents
the value that was found with the Minkowski stress tensor,
defined outside the sphere, and the small-particle limit of an
extended Lorentz-Mie theory of light scattering [25]. Though
the force on any element of the sphere’s volume is zero, the
Minkowski and Einstein-Laub stress tensors give the senseless
volume contributions to N. According to Schwinger et al, these
tensors should be rejected since they do not satisfy condition
Tij = Tji , “required for the existence of a local conservation
law of angular momentum” [20].

Besides the different dependences of N on ε1, the Lorentz
and Abraham stress tensors give different distributions of the
surface forceFFF . Thus, Fig. 3 presentsFFF calculated for a small

TABLE I. Torque on a small birefringent sphere.

Contribution

Tensor Surface Volume

Lorentz N0 0
Minkowski 0 ε1 N0

Einstein-Laub 0 ε1 N0

Abraham ε1 N0 0
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FIG. 3. (Color online) Forces at the surface of a small E44 liquid-
crystal sphere in water calculated using the Abraham (a) and Lorentz
(b) stress tensors.

E44 liquid crystal (LC) sphere in water. In order to compare
the theory with an experiment by Murazawa et al. [40] we
took λ = 1.064 nm, for which n1 = 1.33 [38], no = 1.52, and
ne = 1.68 [41]. The angle 	 between the LC optical axes
and a linearly polarized electric field E was set equal to π/4.

Figure 3(b) predicts the possibility of deformation of the sphere
that is in a qualitative agreement with the experiment [40] in
which a E44 LC drop with a diameter from 1.8 to 3.1 μm
was rotated with laser tweezers. Murazawa et al. reduced the
surface tension of the droplet by adding a small amount of a
surfactant to LC. The decrease in the surface tension resulted
in a deceleration of the drop rotations that could be explained
by “shape modifications of spinning microspheres” [40].

VI. CONCLUSION

In this paper, several forms of the Maxwell stress tensor,
known from the early twentieth century, have been used to
determine the forces acting on a small dielectric sphere and a
spherical cavity in a dielectric. We have considered situations
in which different forms of the stress tensors give contradictory
results. The agreement between the theory and experiment is
excellent for the microscopic (Lorentz) approach and poor for
the conventional macroscopic (Minkowski) one. We therefore
conclude that the conventional Maxwell-Minkowski theory
should not be used to determine deformation or explosion
of a dielectric sphere or cavity in an electric field. Thus,
we see a failure of the macroscopic electrodynamics. More
comparisons of the theory with experiments are badly needed
in order to confirm or refute this conclusion.
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APPENDIX A: SMALL DEFORMATION OF A SPHERE
IN A HOMOGENEOUS ELECTRIC FIELD

Deformation of a liquid sphere can be easily evaluated
using the theory of capillary phenomena elaborated by Lord
Rayleigh many years ago [42]. This theory explains deviations
of the surface of a fluid from a cylindrical or spherical form.

TABLE II. Coefficient q2 divided by 2
3 C.

Tensor 3
2 q2/C

Lorentz ε + 1
Minkowski, Abraham (ε − 1) ε1

Einstein-Laub 2ε2 − ε − 1

The model of Ref. [42] was very successful even though it
considered only small deformations, for example, those of the
spherical surface:

r = a +
∞∑

n=0

αn Pn(cos ϑ), αn � a, (A1)

where a is the radius of the unperturbed sphere and Pn

are Legendre’s polynomials. Here, it is sufficient to assume
that deformations are symmetrical about the z axis. Surface
curvatures described by Eq. (A1) render the pressure [43]:

Ps = 2σ

a
− σ

a2
(2 + ϑ,φ)

∞∑
n=0

αn Pn(cos ϑ), (A2)

where σ is the superficial tension and ϑ,φ denotes
1

sin ϑ
∂

∂ϑ
(sin ϑ ∂

∂ϑ
) + 1

sin2 ϑ
∂2

∂φ2 . The action of the operator ϑ,φ

on Pn reduces to the following:

ϑ,φ Pn(cos ϑ) = − n (n + 1) Pn(cos ϑ), (A3)

so that

Ps = 2σ

a
+ σ

a2

∞∑
n=0

αn (n − 1) (n + 2) Pn(cos ϑ). (A4)

In equilibrium, there is a balance between the pressures P1

and P2 in two media, the surface tension pressure Ps, and the
electric-field pressure Pr :

P2 − P1 + Pr = Ps. (A5)

If deformations are small, the pressure Pr can be approx-
imated by a value obtained for a sphere of an ideal spherical
shape. All the considered stress tensors give Pr of the same
form,

Pr = q0 + q2 P2(cos ϑ), (A6)

but with different coefficients q0 and q2. The latter is presented
in Table II. Then, each coefficient αn can be found from
Eq. (A5) owing to the orthogonality of the spherical functions.
The coefficient α0 should be determined together with the
pressure P2 inside the sphere which depends on the volume of
the particle:

V � 4

3
π (a + α0)3 + 4πa

∞∑
n=1

α2
n

2n + 1
. (A7)

However, if the medium is inextensible and αn are small,
we can take α0 � 0. There is only one nonzero coefficient
in Eq. (A1):

α2 = q2 a2

4σ
, (A8)
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which determines deformation of the surface. From Eqs. (A8)
and (A1), and Table II we find in the particular case of ε < 1
the sphere to be prolate (at ε1 > 0) according to the Minkowski
and Abraham stress tensors or oblate according to the Lorentz
stress tensor. The sphere should be prolate at ε > 2ε2 − 1 or
oblate at ε < 2ε2 − 1 according to the Einstein-Laub stress
tensor.

APPENDIX B: POSITION-BASED SIMULATION OF SHAPE
DEFORMATION OF ELASTIC DIELECTRIC BODIES

In order to establish shape deformation of a dielectric body
by the surface forces we applied a position-based computation
method [44,45]. The position-based approach was combined
with the shape matching [45] algorithm. Some details of the
calculations are given below. In the simulation, a nonrigid
object should be represented by a set of vertices and a set
of constraints. We used 642 vertices to model the surface of
a sphere. Each vertex has three attributes, namely, the mass,
position, and velocity. The two latter attributes are changing
due to an external force. In our case, there are 1920 stretch
constraints on the distances between vertices within a mesh
triangle and one volume constraint. Each constraint is defined
through a scalar constraint function which depends on the po-
sitions of the definite number (2 or 642) of the vertices (called
the cardinality of the constraint) and a stiffness parameter.

Within the position-based approach, calculations are typ-
ically executed in two steps. First, a simple explicit forward
Euler integration step defines velocities and positions of the
vertices. These positions are used only as predictions. Based
on these predictions nonpermanent external constraints are
generated. Then, the predicted vertex positions are corrected
to satisfy constraints. Finally, the corrected positions are used
to update the positions and velocities. A static form of the
nonrigid object deformed by a steady force is settled down
after a number of integration steps.

This method was extended with the shape matching
procedure. This approach allows one to simulate dynamics of

FIG. 4. (Color online) Deformation of a spherical cavity in an
elastic dielectric in a homogeneous electric field calculated with the
Minkowski (a), Einstein-Laub (b), and Lorentz (c) stress tensors.
The insets show the surfaces defined by Eq. (A1) with one nonzero
coefficient α2 equal to 0.1 (a), −0.1 (b), and −0.2 (c).

elastic deformations. In the simulation, the initial configuration
of the deformable object should be stored. In each Euler
integration step, the predicted positions and velocities of the
particles are computed allowing for external forces. Before
using internal constraints, goal positions are determined by
matching the initial shape with the deformed configuration.
The shape matching consists in the search of the best rigid
transformation (translation and rotation) that matches initial
and predicted positions. Then, each predicted vertex position
is pulled toward its goal position using the stiffness parameter.
Since the shape matching was used, the stretch constraints were
neglected. When calculating the surface forces, we assumed
that the electric field is uniform inside the cavity. This approach
is rigorous if the cavity has a form of ellipsoid [19].

Results of numeric calculations are presented in Fig. 4,
which shows the surface of a deformed cavity in a dielectric
as a set of mesh triangles. In each figure, the body axis
of rotational symmetry and the electric field are directed
vertically. The computed shapes in Figs. 4(a) and 4(b) turned
out to be the same as predicted by Eq. (A1) with α2 = 0.1
and −0.1, respectively. In Fig. 4(c) the equatorial part of the
cavity is more elongated than that expected from Eq. (A1).
When the electric field is increased, cups are formed at the
poles of the cavity according to the Einstein-Laub stress
tensor.
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