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Turbulent dynamics of an incoherently pumped passive optical fiber cavity:
Quasisolitons, dispersive waves, and extreme events
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We study numerically and experimentally the dynamics of an incoherently pumped passive optical fiber
ring cavity nearby the zero-dispersion wavelength of the fiber. We show that the cavity exhibits a quasisoliton
turbulence dynamics, whose properties are controlled by the degree of coherence of the injected pump wave: As
the coherence of the pump is degraded, the cavity exhibits a transition from the quasisoliton condensation regime
toward the weakly nonlinear turbulent regime characterized by short-lived rogue wave events. This behavior
is reminiscent of the corresponding dynamics obtained in the purely conservative (Hamiltonian) problem. We
report experimental results of an all-integrated incoherently pumped fiber cavity that provide some spectral and
temporal complementary signatures of the processes predicted numerically.
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I. INTRODUCTION

The dynamics of turbulent waves can be characterized
by the spontaneous emergence of short-lived high-amplitude
waves. These rogue wave events that “appear from nowhere
and disappear without a trace” [1] have been the subject of lot
of studies in these last years. Aside from the hydrodynamic
context [2–4], rogue waves have been recently identified in
various different fields, including optical waves [5,6], capillary
waves [7], superfluid helium [8], or microwaves [9]. Recent
optical and hydrodynamics studies suggest that rogue wave
events can be interpreted in the light of exact analytical
solutions of integrable nonlinear wave equations, the so-
called Akhmediev breathers [1,2,10], or more specifically
their limiting cases of infinite spatial and temporal periods,
the rational soliton solutions [11], such as the first-order
Peregrine solution of the one-dimensional (1D) integrable
nonlinear Schrödinger (NLS) equation [12]. From a more
general perspective, the common feature characterizing rogue
wave phenomena in the different systems is the observation of
deviations from the Gaussian statistics of the wave amplitude,
with long tails of the probability density function accounting
for the rather frequent emission of such giant waves. We
refer the reader to the following recent reviews for a detailed
discussion of this vast area of research [13–16].

An important question is to understand the formation
of rogue waves from a turbulent state of the wave sys-
tem [3,11,17–20]. In the particular context of optics, this
problem has been addressed in nonintegrable Hamiltonian
systems by considering the NLS equation in the presence of
third-order dispersion (TOD) [21,22]. This equation is known
to admit quasisoliton solutions, which can be defined as radia-
tively decaying soliton states. More precisely, a quasisoliton
is a nonlinear solution which satisfies the requirements of a
classical soliton including its spatial localization, except that
the structure decays very slowly during the propagation by
emitting a radiation of energy far away from the structure
itself [23–25]. In the problem considered here, the emission

of radiation originates in the TOD term of the NLS equation.
In this way, the standard soliton solution of the integrable
NLS equation slowly loses its power through the emission of
a radiation which is usually termed dispersive wave (DW) in
the literature [26,27].

A general idea concerning the emergence of extreme events
from a turbulent state is that the amount of incoherence in
the system tends to prevent the formation of large-amplitude
coherent wave structures in the long-term evolution of the
system [19]. The total energy of the wave, i.e., the conserved
Hamiltonian, plays a natural measure of the amount of
incoherence in the system. By increasing the value of the
Hamiltonian, different regimes were identified: the regime
characterized by persistent and coherent rogue quasisoliton,
then the regime in which rogue quasisolitons appear and
disappear erratically, and finally the regime characterized by
sporadic rogue waves events that emerge from turbulent fluc-
tuations as bursts of light. This latter regime is characterized
by a strong incoherence of the field and thus refers to the
weakly nonlinear regime, which can be described by means
of the wave turbulence theory [19,28,29], as discussed in
detail in [30]. This quasisoliton turbulence scenario can be
interpreted in analogy with standard wave condensation in the
defocusing regime [19,23,31–33], in the sense that, in both
cases, it is thermodynamically advantageous for the system
to generate a large-scale coherent structure [a (quasi)soliton
in the focusing regime or a plane wave in standard wave
condensation] in order to increase the amount of disorder in
the form of small-scale fluctuations. This analogy between
(quasi)soliton condensation and standard wave condensation
is also supported by a condensationlike curve: As the Hamilto-
nian increases, a transition occurs from the purely coherent and
deterministic quasisoliton regime toward the fully incoherent
turbulent regime [21].

This phenomenon of “quasisoliton condensation” has not
yet been observed experimentally. The main reason for this can
be ascribed to the presence of unavoidable linear or nonlinear
(e.g., Raman-type) losses during the propagation of the random
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wave, which prevent the establishment of quasiequilibrium
states in the long-term evolution of the system. Our aim in
this article is to discuss, both numerically and experimentally,
this phenomenon of quasisoliton turbulence in an optical fiber
ring cavity. We remark in this respect that optical cavities have
been considered in different circumstances to unveil interesting
analogies with the phenomenon of optical wave condensation
(see, e.g., Raman fiber lasers [34–36], mode-locked lasers [37],
or random lasers [38], which also raised important questions
such as the relation between lasing and Bose-Einstein conden-
sation of photons [39]). In this regard, the thermalization and
the Bose-Einstein condensation of a photon gas have been also
reported in an optical microcavity [40].

From a different perspective, the condensation and the
thermalization of classical optical waves have been also
predicted to occur in an incoherently pumped passive optical
cavity [41]. In this work, the turbulent dynamics of a two-
dimensional (2D) spatial cavity filled with a defocusing non-
linear Kerr material was studied theoretically and numerically.
The analysis revealed that a very high finesse of the passive
cavity is required in order to achieve wave thermalization
and condensation. To increase the cavity finesse, we consider
in this article a fully integrated configuration of the optical
fiber ring cavity. Specifically, we consider the anomalous
dispersion regime (“focusing” regime) to study quasisoliton
turbulence in the temporal domain. The passive cavity is
pumped by an incoherent optical wave, whose time correlation
tc is much smaller than the round-trip time tR . In this way, the
optical beams from different cycles are mutually incoherent
with each others, which makes the optical cavity “nonreso-
nant.” In this incoherent regime, the cavity does not exhibit
the widely studied dynamics of pattern formation [42–46].
Instead, the dynamics of the cavity exhibits a turbulent
behavior which is reminiscent of the turbulent dynamics of
the purely Hamiltonian wave system considered in Ref. [21].
In this configuration, the degree of coherence of the injected
pump wave in the cavity plays a role analogous to the role
of the Hamiltonian in the purely conservative problem. It
remarkably turns out that, as the coherence of the pump is
degraded, the cavity exhibits a transition from the quasisoliton
regime to the weakly nonlinear turbulent regime. Because of
the limited finesse that has been reached in the experiment, the
turbulent dynamics of the incoherently pumped cavity exhibits
some distinguished features with respect to the conservative
Hamiltonian system. Here, we discuss in detail these aspects
and report experimental results that provide some spectral and
temporal complementary signatures of the processes predicted
numerically.

II. MODEL

We study the temporal dynamics of a partially coherent
wave that circulates in a passive optical fiber ring cavity
in the context of quasisoliton turbulence. To do so, the
wavelength of the incoherent wave has been chosen to lie in
the low anomalous dispersion regime of the fiber, β2 < 0, very
close to the zero-dispersion wavelength (ZDW) of the fiber.
Consequently, it is necessary to account for the contribution
of TOD in the NLS equation to accurately describe light

propagation. The governing equation then reads as

i∂zA = β2

2

∂2A

∂t2
+ i

β3

6

∂3A

∂t3
− γ |A|2A − iαA, (1)

where z (0 � z � L) denotes the longitudinal spatial coor-
dinate, L being the fiber length of the cavity. γ is the
nonlinear Kerr coefficient, α the propagation losses, and β2,3

refer to second- and third-order dispersion coefficients of the
fiber [47]. We remind that in the conservative limit (α = 0),
the NLS equation (1) conserves two important quantities, the
power of the optical field P = ∫ |A|2dt and the total energy
(Hamiltonian) H = E + U , which has a linear contribution
E = ∫

k(ω)|Ã|2(ω,z) dω, where k(ω) = − β2

2 ω2 − β3

6 ω3 is the
dispersion relation [Ã(ω,z) being the Fourier transform of
A(t,z)], and a nonlinear contribution U = γ

2

∫ |A|4(t,z) dt . In
the cavity configuration, the power and the Hamiltonian are no
longer conserved quantities, although these quantities will be
shown to reach some quasistationary values once the cavity
reaches a statistically stationary regime. In the following,
it proves convenient to analyze separately the contributions
of second- and third-order dispersion to the linear energy
E = E2 + E3.

In the numerical simulations, the cavity is pumped by an
incoherent optical wave. We denote by Fm(t) the amplitude of
the pump wave injected at the time t = mtR , where m is the
number of round trips. As discussed above, the time correlation
of the incoherent pump is much smaller than the round trip time
tc � tR , i.e., the longitudinal coherence length is much smaller
than the cavity length. In this way, the passive cavity does not
behave as a resonant “phase-sensitive interferometer” [42–46],
so that the temporal modes of the cavity do not play any key
role in the dynamics of the incoherent wave [41,48]. The wave
circulating in the cavity and the pump wave are thus mutually
incoherent with each others, and the boundary conditions are
not sensitive to the random relative phase among them:

Am+1(z = 0,t) = √
ρ Am(z = L,t) +

√
θ Fm(t), (2)

where Am(z,t) denotes the intracavity optical field after m

round trips (0 � z � L), while ρ and θ , respectively, refer to
the reflection and transmission coefficients of the field intensity
ρ + θ = 1. Since the time correlation (tc) of the pump is much
smaller than tR , the pump beam Fm(t) is uncorrelated with
itself at each round trip, 〈Fm(t) F ∗

p (t)〉 = δK
m,pPF , where PF

is the average power of the pump field and δK
m,p denotes the

Kronecker symbol. We also assume that the fluctuations of
the incoherent pump are statistically stationary in time, i.e.,
its spectrum is characterized by uncorrelated random spectral
phases and the average pump power PF does not depend on
t . The time correlation of the incoherent pump determines
the amount of kinetic energy EF = ∫

ω2〈|F̃ |2(ω)〉 dω. This
parameter will be shown to play a key role in the study of cavity
quasisoliton turbulence. Another fundamental parameter is the
finesse of the cavity F = 2π/�, where � = θ + 2αL denotes
the effective amount of losses per round trip. Intuitively, the
cavity finesse is related to the the “average lifetime that a
photon spends in the cavity” (1/� being the corresponding
average number of cavity round trips) or, equivalently, to
the time required to fill the cavity, the so-called injection
time tinj = tR/�. Once the cavity is filled, the average power
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of the intracavity optical wave reaches the stationary value
P st = PF θ/� [41].

III. NUMERICAL SIMULATIONS

We performed numerical simulations of the incoherently
pumped passive cavity by integrating the NLS equation (1) for
the field Am(z,t) from z = 0 to L. The field Am+1(z = 0,t)
is then computed by applying the boundary conditions given
by the cavity map (2) at each round trip. Note that, as usual,
a slow-time variable can also be introduced in units of the
round-trip time T = mtR . For convenience, we normalized
the problem with respect to the pump power PF , the lon-
gitudinal nonlinear length L0 = 1/(γPF ), and the “healing
time” τ0 = √|β2|L0 [19]. The dimensionless variables are
obtained through the transformations z/L0 → z; A/

√
PF →

A; F/
√

PF → F ; αL0 → α; L/L0 → L; t/τ0 → t ; and
T/τ0 → T .

A. High-finesse configuration

In the following, we present results of the numerical simula-
tions within two different configurations of the passive optical
cavity, namely, a high-finesse and a low-finesse configuration.
A remarkable result is that, contrarily to the 2D defocusing
cavity whose condensation process was shown to require
a very high finesse [41], here, the process of quasisoliton
condensation has been shown to occur even with a moderate
finesse of the cavity. A simple phenomenological explanation
of this fact will be discussed later.

We report in Fig. 1 the numerical results realized in the case
of a high-finesse cavity F � 500. This configuration typically
corresponds to a pump power PF = 250 mW injected in a
fiber of length L = 6L0, L0 = 2.95 km, with β2 = −6.68 ×
10−28 s 2/m, β3 = 1.15 × 10−40 s 3/m. The absorption param-
eter α = 1.4 × 10−7 m −1 and transmission coefficients θ =
0.01 have been chosen deliberately small so as to increase the
finesse of the cavity. The initial condition in the simulation is
an empty cavity which is exponentially filled by the incoherent
pump, with the time scale τinj = tR/� [41]. Once the cavity
is filled, the system reaches a statistically stationary regime,
as revealed by the evolution of the spectrum of the wave as a
function of the round-trip number (m) reported in Figs. 1(b)
and 1(c), corresponding to low and high kinetic energy values,
respectively.

1. Role of pump incoherence on “quasisoliton condensation”

The fundamental aspect to notice is that the properties
of this statistically stationary regime strongly depend on the
degree of coherence of the injected pump wave, i.e., its
kinetic energy EF . For relatively small values of EF (typically
EF < 10, see Fig. 1), quasisolitons coherent structures are
spontaneously generated, and then decay through the emission
of DWs, a feature which is clearly visible through the analysis
of the spectral evolution [Fig. 1(b)]. However, as the coherence
of the pump wave is degraded (EF is increased), the system
is no longer able to efficiently generate coherent quasisoliton
structures. In a loose sense, the system becomes “too hot” to
generate a coherent structure (note that a similar effect in which
the generation of coherent solitons was hindered by wave
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FIG. 1. (Color online) Numerical simulations of the incoherently
pumped passive optical cavity in the high-finesse regime F � 500.
(a) “Quasisoliton condensation curve” reporting the intensity maxima
of the optical wave vs kinetic energy of the pump EF once a
statistically stationary regime has been reached in the cavity. The
left and right columns refer to the points (green, 	) reported in (a) for
EF = 1 and EF = 40, respectively. (b), (c) Evolutions of the optical
wave spectrum vs number of round trips m corresponding to EF = 1
(b), EF = 40 (c), and corresponding spectral profiles recorded at
m = 5000 (d), (e). (f), (g) Evolutions of the contributions to the
total energy (nonconserved Hamiltonian) H̄ (T ) = Ē2 + Ē3 + Ū vs
the slow-time T (=mtR), where Ē2(T ) and Ē3(T ) refer to the second-
and third-order dispersion contributions to the kinetic energy Ē. The
dashed dark line in (f) denotes ∼ exp(−t/τinj) = exp(−m�): The
effective quasisoliton lifetimes in the cavity are mainly determined
by the injection time (see a zoom in the inset). Parameters are given
in the text (τ0 = 1.4 ps, Ē2,3 = E2,3/T0, Ū = U/T0 where T0 denotes
the size of the numerical temporal window T0 = 20τ0).

incoherence was pointed out in the context of supercontinuum
generation [49]).

As discussed above in the Introduction section, this
phenomenon signals the existence of a transition that can
be interpreted in analogy with wave condensation. Let us
briefly comment this analogy. Standard wave condensation is
driven by the natural relaxation toward the thermodynamic
Rayleigh-Jeans equilibrium spectrum [19,32]. The analogy
between such wave condensation in the defocusing regime
and (quasi)soliton condensation in the focusing regime can be
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drawn by remarking that, in both cases, the formation of a
large-scale coherent structure results from the thermalization
of the wave system, i.e., the natural tendency for the system to
increase the amount of disorder. In other terms, by generating
a large-scale coherent structure [a plane wave in the standard
defocusing regime, or a (quasi)soliton in the focusing regime],
the system can increase the amount of disorder in the form
of small-scale fluctuations. In our cavity system, this analogy
with wave condensation becomes more apparent through the
analysis of the maxima of the optical wave intensity for
different values of EF , keeping constant all other parameters,
in particular the pump power PF . The results are reported in
Fig. 1(a). We see that the average maximum of the quasisoliton
amplitude is divided by a factor 2 for kinetic energy values
larger than 10. As the kinetic energy of the pump is increased,
quasisoliton structures are no longer generated, a feature which
is confirmed by the spectral evolution of the incoherent wave
reported in Fig. 1(c), whose spectral DW signature becomes
irrelevant.

2. Analysis of the energy contributions and the PDFs

These observations are corroborated by the analysis of the
energy contributions to the total Hamiltonian H (T ) = E2 +
E3 + U . Although the Hamiltonian is no longer a conserved
quantity in the cavity configuration, it tends to reach some
average constant value in the statistically stationary regime
of the cavity dynamics. Because of the underlying process
of DW emission, the formation of a quasisoliton structure
manifests itself by means of large-amplitude spikes in the
evolutions of the second- and third-order contributions to
the kinetic energy E2 and E3. It is interesting to note that
the pronounced spikes in the evolutions of E2 are almost
completely compensated by those of E3, while the nonlinear
energy contribution U is, in comparison, only slightly affected
by the formation of quasisoliton states, as illustrated in
Fig. 1(f). This analysis also reveals that robust and persistent
quasisoliton states are only generated for small values of pump
incoherence (EF typically small than 10), and in this regime
their effective lifetimes in the cavity is essentially determined
by the injection time τinj. This remarkable feature has been
observed for different values of the finesse of the cavity
[see the inset in Fig. 1(f)]. In this quasisoliton turbulence
regime, the corresponding probability density function (PDF)
of the intensity exhibits a strong deviation from Gaussian
statistics [fI (I ) = exp(−I ) in normalized units], as evidenced
in Fig. 2(a). Clearly, such a strong deviation is simply due
to the existence of permanent quasisoliton states, as illustrated
by the corresponding spatiotemporal intensity pattern reported
in Fig. 2(c). The persistence of the quasisoliton structures is
also corroborated by the PDF of the maxima of the intensity,
which exhibits an approximately symmetric Gaussian-type
shape [21,31], as illustrated by the inset of Fig. 2(a).

As the amount of pump incoherence EF is increased,
the processes of collisions and merging of quasisolitons
become strongly affected by the presence of large-amplitude
turbulent fluctuations, so that quasisolitons can be rapidly
generated or destroyed in an apparent random fashion. By
further increasing the pump incoherence EF , the generation of
robust quasisoliton is essentially inhibited by the presence of
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FIG. 2. (Color online) (a), (b) Intensity PDFs corresponding to
a pump kinetic energy EF = 1 (a), and EF = 30 (b) [see the
condensation curve in Fig. 1(a)]. The insets show the corresponding
PDFs of the maxima of the intensities. (c), (d) Corresponding space—
time intensity patterns: (c) For EF = 1 the cavity field self-organizes
into robust and persistent quasisoliton structures [whose typical
intensity is denoted by a red circle in (a)] that propagate in the midst of
small-scale fluctuations; (d) for EF = 30 the cavity field evolves in the
weakly nonlinear regime and exhibits short-lived extreme events [see
temporal intensity profile in (d), dark line] whose amplitudes deviate
from Gaussian statistics [see red circles in (d) and (b)]. Parameters of
the simulations are the same as those used in Fig. 1: τ0 = 1.4 ps, size
of the temporal numerical window T0 = 20τ0, the vertical coordinate
m in (c) and (d) denotes the number of round trips (see Fig. 1).

large-amplitude turbulent fluctuations. This refers to the
weakly nonlinear turbulent regime, in which linear dispersive
effects dominate nonlinear effects, as illustrated by the
comparison of linear and nonlinear contributions to the total
energy [see Fig. 1(g), |E2,3| � |U |] [19]. This regime
corresponds to the tail of the quasisoliton “condensation curve”
(EF typically greater than 20), which is characterized by short-
lived extreme waves events that emerge from the fluctuations
in a sporadic way. This is illustrated by the intensity PDF
in Fig. 2(b), which reflects Gaussian statistics, except for
the presence of rare large-amplitudes events. These extreme
events are no longer related to robust quasisoliton structures,
as clearly evidenced by the corresponding spatiotemporal
intensity pattern of the field reported in Fig. 2(d). This is
also illustrated by the corresponding PDF of the maxima
of the intensity reported in the inset of Fig. 2(b), whose
asymmetric shape denotes the nonpersistent character of the
fluctuations, which exhibit large deviations and tend to favor
the high-intensity tail of the maxima of the PDF. Also, note
that the average of this PDF decreases for the broader spectrum
[compare insets of Figs. 2(a) and 2(b)], a feature consistent
with the quasisoliton “condensation curve” in Fig. 1(a).

B. Low-finesse configuration

Let us now discuss a more realistic experimental configura-
tion characterized by a significantly reduced finesse F � 22,
i.e., an average photon lifetime of ∼3.5 round trips. This
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FIG. 3. (Color online) Numerical simulations of the incoherently
pumped passive optical cavity in a low-finesse regime F � 22.
(a) Quasisoliton condensation curve reporting the intensity maxima
of the optical wave vs kinetic energy of the pump EF once a
statistically stationary regime has been reached. (b), (c) Evolutions of
the optical wave spectrum vs number of round trips m corresponding
to EF = 0.33 (b), EF = 22.7 (c), and corresponding spectral profiles
recorded at m = 1000 (d), (e). (f), (g) Evolutions of the contributions
to the total energy (nonconserved Hamiltonian) H̄ = Ē2 + Ē3 + Ū

vs the slow time T (=mtR), where Ē2(T ) and Ē3(T ) refer to the
second- and third-order dispersion contributions to the kinetic energy
Ē. The green diamonds in (a) correspond to the value of EF used.
The dashed dark line in (f) denotes ∼ exp(−t/τinj) = exp(−m�): the
effective quasisoliton lifetimes in the cavity is mainly determined by
the injection time (see a zoom in the inset). Parameters are given
in the text (τ0 = 1.19 ps, Ē2,3 = E2,3/T0, Ū = U/T0 where T0

denotes the size of the numerical temporal window T0 = 320τ0).

configuration typically corresponds to the experiment that will
be discussed in the next Sec. IV. Here, we briefly compare
the numerical simulations of this configuration with those
discussed in the high-finesse case discussed above. This low-
finesse configuration corresponds to a pump power of PF =
600 mW, a fiber length L = L0, L0 = 2.95 km, with β2 =
−4.84 × 10−28 s2/m, β3 = 1.15 × 10−40 s3/m. The significant
reduction of the finesse is due to the choice of a more realistic
absorption parameter α = 4.61 × 10−5 m−1(=0.2 dB/km)
and transmission coefficient θ = 0.095.

The remarkable and unexpected result is that, despite
the small value of the finesse, the dynamics of the cavity
exhibits properties similar to those discussed in the high-
finesse configuration, as revealed by the comparison of Figs. 3
and 1(a). In particular, despite the low finesse, the cavity
exhibits an efficient process of quasisoliton “condensation”
[see Figs. 3(a)–1(a)]. As already commented above, this is in
contrast with 2D cavity condensation in a defocusing Kerr
medium, which can only occur in the presence of a very
high finesse [41]. Let us briefly comment on this unexpected
result. In a defocusing medium, wave condensation manifests
itself by the spontaneous formation of a plane wave [29,32].
A distinguished feature with respect to quasisoliton con-
densation is that the formation of a plane-wave condensate
requires a background of thermalized small-scale fluctuations
(because wave condensation is driven by the divergence of
the equilibrium Rayleigh-Jeans distribution [32]). In contrast,
a (quasi)soliton is inherently a localized structure that can
be generated locally in space, its robustness ensuring some
long-time persistence. Accordingly, because of their localized
character, quasisoliton structures are less sensitive to the
boundary conditions of the system. This can provide a simple
interpretation of the fact that condensation curves reported for
high and low values of the finesse exhibit similar properties
[see Figs. 1(a) and 3(a)].

Note, however, that, despite such similar properties of the
corresponding condensation curves, the actual dynamics of
the incoherent wave is significantly affected by the finesse of
the cavity. Notice in particular that the effective lifetime of
quasisolitons is significantly reduced in the low-finesse cavity
case since the lifetime is essentially determined by the injection
time τinj = tR/�, as illustrated in Fig. 3(f). As a consequence,
the spectral signature associated to the emission of DWs
becomes less pronounced in the low-finesse case, so that
quasisoliton collisions play a minor role as compared to
the high-finesse case considered in Fig. 1. Remark that the
higher spectral resolution of simulations performed in Fig. 3
as compared to Fig. 1 is due to the larger temporal numerical
window T0 (see the figure captions), which has been chosen
in such a way to keep almost the same ratio T0/τinj in both
low- and high-finesse cases. Finally, note that the PDFs of the
low-finesse configuration of the intracavity optical field will
be analyzed later in relation with the experimental results.

IV. EXPERIMENTAL SETUP

The experimental setup is displayed in Fig. 4. This
experimental configuration has to fulfill two stringent and
nonobvious requirements. The first issue is to provide a widely
tunable incoherent signal whose spectral bandwidth can be
adjusted from 10 GHz to 1 THz without significantly altering
its spectral profile. To this aim, a 23-dBm erbium-based
amplified spontaneous noise emission source (ASE) centered
in the C-band is first polarized. In order to increase the peak
power at the amplification stage and also to trig the monitoring
process at the receiver on the real-time oscilloscope, the initial
signal is segmented in the time domain by means of a LiNbO3

Mach-Zehnder modulator driven by a programmable pulse
pattern generator (PPG). The final temporal signal consists
in a burst of 1.5 ns of incoherent waves at a repetition rate of
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FIG. 4. (Color online) Experimental setup. ASE: amplified spon-
taneous emission; PPG: pulse pattern generator; Pol: polarizer; IM:
intensity modulator; SS: spectral shaper; SF: spectral filter; EDFA:
erbium-doped fiber amplifier; OSA: optical spectrum analyzer; Att:
attenuator; PC: polarization controller.

33.3 MHz corresponding exactly to the 656th of the cavity ring
harmonics, therefore enabling the temporal synchronization of
the incoming energy with the incoherent recirculating burst.
As discussed above, contrary to resonant cavities [44,46], the
incoherent nature of the wave under study does not require us
to implement an active and accurate cavity length stabilization
feedback loop. It is important to note that the temporal duration
of the recirculating bursts as well as their temporal separation
are long enough to ensure the validity of a continuously inci-
dent incoherent wave approximation. The amplification stage
consists in two consecutive erbium-doped fiber amplifiers
(EDFA) associated to two programmable liquid-crystal-based
optical filters, which allow us to compensate for the gain
flatness imperfections on more than 1 THz of amplification
band and also to remove the out-band spontaneous noise
emission. A tunable bandwidth optical filter, centered on
1550 nm, allows us to adjust the incoherent nature of the
incident signal incoming into the cavity and a polarization
controller was included before injection so as to optimize the
polarization state of the light injected in the ring cavity.

The second challenging requirement of this experimental
setup is to reduce the level of optical losses experienced over
a round trip and to operate in the vicinity of the ZDW. We
achieved these points by taking advantage of telecom-grade
fibers and components. Specifically, the cavity is made of
a 2.95-km-long dispersion shifted fiber (DSF) characterized
by a Kerr coefficient γ = 1.7 W −1km −1, a chromatic dis-
persion coefficient at 1550 nm β2 = −4.84 × 10−28 s 2/m,
a third-order dispersion β3 = 1.1 × 10−40 s 3/m and losses
of 0.2 dB/km. A 10:90 coupler is used to both inject the
incoherent wave into the system as well as to close the cavity
ring. A second 1:99 coupler was inserted within the loop in
order to extract and monitor the propagating signal. In order to
minimize the overall losses, all the fiber components have been
very carefully spliced. Taking into account the whole losses of
the fiber ring, we estimate the effective lifetime of the photons
circulating in the cavity to around four round trips. At the
output of the system, an optical spectrum analyzer was plugged
in the 1% control port of the cavity in order to characterize

the recirculating signal in the spectral domain while for the
temporal measurements, detection was also performed thanks
to a 50-GHz photodiode connected to a 36-GHz bandwidth
real-time oscilloscope provided by Teledine Lecroy LabMaster
10 Zi. We finally note that there are typically five orders of
magnitudes between the round-trip time tR(∼15 μs) and the
coherence time tc (which varies between 50 ps and 500 fs),
so that the considered cavity clearly operates in a nonresonant
incoherent regime.

V. EXPERIMENTAL RESULTS

A. Results by varying the pump wavelength

We have first checked that the “closed fiber ring” play an
important role in the incoherently pumped cavity since no
spectral signature of the DW has been identified experimen-
tally for an “open cavity,” i.e., for a single passage of the
incoherent pump through the fiber. To further validate the
dynamical behavior of the cavity, we have studied the influence
of the pump wavelength on the generation of quasisolitons
by monitoring the corresponding DW spectral profile. The
spectral bandwidth of the incoherent pump was fixed to 10 GHz
for an average power of 893 mW (the average power means
here a temporal average over a temporal window much larger
than the time correlation of the pump). Figure 5(a) summarizes
the experimental results of the wave spectrum, which have
been compared with the corresponding numerical simulations
realized with the experimental parameters [see Fig. 5(b)].
For pump wavelengths slightly larger than the fiber ZDW

FIG. 5. (Color online) (a) Experimental spectra recorded by
varying the wavelength of the incoherent pump injected in the cavity,
and (b) corresponding numerical NLS simulations of Eqs. (1) and (2)
realized with the experimental parameters. The average power of
the incoherent pump is kept fixed to 893 mW, while its spectral
bandwidth to 10 GHz (see the text for all experimental parameters of
the incoherently pumped passive optical cavity). Note the satisfactory
qualitative agreement between the experimental results and the
numerical results obtained with the experimental parameters given
in Sec. IV.
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(1545 nm), we can observe an efficient generation of DWs
which provides an indirect spectral evidence of the presence
of quasisoliton structures in the cavity. The efficiency of the
generation of DWs rapidly drops as the pump wavelength is in-
creased. The reduction of the DW spectral line is due to the fact
that, by increasing the pump wavelength (i.e., by increasing the
ratio |β2/β3|), the optical wave frequency moves away from the
ZDW of the fiber, so that the generation of DWs is significantly
reduced because of the increasing phase mismatch between
the quasisoliton and the associated DW. We have also checked
in the output spectrum of the cavity that no pump depletion
occurred due to the Raman effect. This experimental study
allowed us to control the dynamics of the incoherently pumped
cavity. In particular, a good qualitative agreement has been
obtained between the experimental results and the numerical
simulations of NLS equations (1) and (2), which thus validates
our model of the incoherently pumped passive cavity.

We finally note that the experimental spectra recorded here
refer to averaged spectra, i.e., monitored by means of an
optical spectrum analyzer. Even if new methods have recently
emerged in order to record the evolution of the spectrum in real
time at each round trip [6] and to experimentally reconstruct
maps such as that reported in Fig. 1(b), it is worth noting that
such methods cannot be implemented here because of the ns
duration of the optical bursts and the very low level of the
signal extracted from the cavity (a few mW).

B. Results by varying the pump coherence

In a second series of measurements, we have investigated
the influence of pump incoherence on the efficiency of
quasisoliton generation and the associated process of DW
emission. Note that, to properly study the impact of pump
incoherence, the bandwidth of the incoherent pump has been
varied by keeping constant its average power, as it was
discussed above through the analysis of the condensation
curve. Typical examples of the recorded experimental spectra
are reported in Fig. 6 for two different bandwidths of the
incoherent pump, 10 GHz and 1 THz, and the same average
power, 893 mW. Note that the central wavelength of the
incoherent pump is kept fixed to 1549.85 nm. As expected
from the previous numerical study reported through Figs. 1–3,
the impact of pump incoherence is to reduce the efficiency of
quasisoliton generation, which in turn entails a reduction of
the DW spectral line. These experimental results are confirmed
by the numerical simulations of the NLS equations (1) and (2)
realized with the experimental parameters [Fig. 6 (red line)].
Unfortunately, we have not been able to observe the complete
suppression of the DW spectral signature of quasisoliton
generation predicted numerically through the quasisoliton
condensation curve (Figs. 1–3) because such regime requires
too broad spectral bandwidths of the injected incoherent pump
[estimated around 3.5–4 THz according to Fig. 3(a)].

C. Experimental and numerical analysis of probability
density functions

In this section, we corroborate the previous study of the
spectral properties of the cavity dynamics by a study of its
temporal dynamics through the analysis of the PDFs of the
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FIG. 6. (Color online) Experimental (solid blue curve) and nu-
merical (dashed-dotted red curve) spectral profiles of the intracavity
optical wave corresponding to an injected incoherent pump of spectral
bandwidth 10 GHz (a) and 1 THz (b) for a fixed value of the pump
intensity (893 mW): The DW spectral signature that evidences the
presence of quasisolitons is reduced as the coherence of the pump
is degraded. The spectrum of the injected incoherent pump wave
is reported in dashed dark line. The numerical NLS simulations
of Eqs. (1) and (2) have been performed with the experimental
parameters given in the text (see Sec. IV).

optical wave intensity. Considering the short-time correlation
which characterizes the optical wave (ps range) and the limited
bandwidth of the oscilloscope (36 GHz), the experimental
recording necessarily leads to a significant smoothing of the
temporal intensity profile, which in turn significantly affects
the corresponding intensity PDF. We thus start our study by
discussing the properties of the PDFs computed by performing
numerical simulations realized with the experimental param-
eters. We report in Fig. 7 the PDFs of the intensity, and of
the corresponding maxima, calculated with the three different
incoherent pump spectra discussed above in the experiment
in Sec. V B. As discussed above through Fig. 2, the PDF of
the intensity exhibits a significant deviation from Gaussian
statistics, a feature which is due to the presence of quasisoliton
coherent structures in the dynamics of the incoherent wave.
Also note that the PDFs corresponding to pump spectral widths
of 0.01 and 0.1 THz exhibit very similar properties. This is due
to the fact that the time correlation of the narrower spectrum
(0.01 THz) is much larger than the MI period (∼5 ps). In
this way, each individual fluctuation of the incoherent wave
develops its own MI, which rapidly brings the dynamics in
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FIG. 7. (Color online) PDFs of the intensity (a), and of the
maxima of the intensity (b), computed numerically by solving the
NLS equations (1) and (2), with three different pumps of spectral
widths 0.01 THz (red), 0.1 THz (green), and 1 THz (blue) (in log
scale). The dashed line in (a) stands for Gaussian statistics of the field
amplitude, i.e., exponential PDF for the intensity. The incoherence of
the pump wave significantly reduces the efficiency of generation of
high-amplitude coherent quasisoliton structures.

a regime similar to that obtained with a pump-spectral width
of 0.1 THz. On the other hand, the deviation from Gaussian
statistics for these two pump waves is larger than that reported
with the broader spectral width of 1 THz (note that in this latter
case, MI is essentially suppressed by pump incoherence [50]).
This results from the fact that the incoherence of the broader
spectral pump (1 THz) is sufficient to significantly reduce the
generation of quasisolitons, as discussed in detail through the
analysis of the quasisoliton condensation curve [Fig. 3(a)].
Note, however that, as discussed above through Fig. 6, a
complete suppression of quasisoliton generation requires a
spectral bandwidth of the incoherent pump broader than 1
THz, which explains why there is still a significant deviation
of the PDF from Gaussian statistics.

The corresponding PDFs of the maxima of the intensity
are reported in Fig. 7(b). As expected from the condensation
curve discussed above in Figs. 1–3, the maximum of the PDF
decreases for the broader spectrum (1 THz) as compared to
the two narrow spectra (0.01 and 0.1 THz), simply because
the broader spectrum significantly reduce the quasisoliton
average amplitudes. Also notice that, as already commented
through the high-finesse cavity configuration in Fig. 2, the

PDF gets asymmetric for the broader spectrum, a feature
that reflects the nonpersistent character of the quasisoliton
structure, whose significant fluctuations tend to favor the high
intensity tail of the PDF. It is important to remark that the
PDFs properties discussed here exhibit properties very similar
to those discussed in the purely conservative (Hamiltonian)
problem (see [21]), despite the fact that the cavity considered
in these simulations corresponds to the realistic low-finesse
experimental configuration.

This general discussion is confirmed by the experimental
recordings of the intensity PDFs reported in Fig. 8(a). The
intensity PDFs have been captured at the output of the passive
cavity for the three different bandwidths of the incoherent
pump (10 GHz, 100 GHz, and 1 THz) and for a constant aver-
age power of the incoherent pump 893 mW, as well as a fixed
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FIG. 8. (Color online) (a) PDFs of the intensity recorded experi-
mentally with an oscilloscope of spectral bandwidth 36 GHz, for three
different pumps of spectral widths 0.01 THz (red), 0.1 THz (green),
and 1 THz (blue), with a constant average power of the incoherent
pump, 893 mW. (b) Corresponding PDFs obtained by numerical
simulations of Eqs. (1) and (2) with the experimental parameters,
in which the limited spectral bandwidth of the oscilloscope has been
modeled by a square-shaped (super-Gaussian, n = 8) spectral filter
of 36 GHz. The inset shows a typical temporal intensity profile of the
NLS simulation (solid blue curve) and the corresponding smoothed
profile (dashed red curve). A qualitative agreement is obtained
between the numerical results and the PDFs recorded experimentally,
thus confirming that the main impact of pump incoherence is to
significantly reduce the efficiency of generation of quasisoliton
structures.
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central pump wavelength of 1549.85 nm. These experimental
results corroborate the results anticipated by the numerical
simulations in the sense that we can observe a significant
reduction of the tail of the intensity PDFs as the incoherence of
the pump is increased. In particular, the PDF tail corresponding
to 1-THz pump bandwidth is dramatically reduced, thus
confirming that MI and the associated process of quasisoliton
generation are reduced in a substantial way by pump incoher-
ence. However, it is worth noting that there are important qual-
itative differences between the experimental PDFs reported in
Fig. 8(a) and the corresponding numerical simulations reported
in Fig. 7(a), in particular as regard the presence of the offsets in
the experimental PDFs. Such important differences are due to
the limited bandwidth of our real-time oscilloscope detection
whose spectral bandwidth is 36 GHz. This interpretation is
clearly confirmed by the numerical simulations of Eqs. (1)
and (2) reported in Fig. 8(b). The PDFs reported in this figure
actually refer to those reported in Fig. 7(a), except that the role
of the limited bandwidth of the oscilloscope has been taken into
account by means of a super-Gaussian spectral filtering pro-
cess. The essential role of the limited bandwidth of the oscil-
loscope detection is clearly illustrated in the inset of Fig. 8(b),
which shows a typical temporal intensity profile of the NLS
simulation (blue) and the corresponding smoothed profile (red)
due to the spectral filtering process of the oscilloscope.

The spectral filtering process due to the limited bandwidth
of the detection can be modeled as a convolution in the
temporal domain: The filtered intensity is related to the original
intensity by If (t) = I (t) ∗ h(t), where the Fourier transform
of h(t) refers to the spectral bandwidth of the oscilloscope,
here 36 GHz. We can discretize the convolution integral with
a time step of the order of the time correlation of I (t), so
that If (t) can be considered as a sum of independent random
variables, which, according to the central limit theorem, leads
to a Gaussian PDF for If (t). This should merely explain why
the intensity PDF for the high incoherent pump (1 THz),
for which the smoothing process is the more effective, turns
to be essentially Gaussian shaped by the filtering process
(see blue curve in Fig. 8). We note that the impact of the
limited bandwidth of laboratory equipment on the analysis
of PDF properties of stochastic signals has been recently
considered in Ref. [51]. In spite of this significant smoothing of
large-amplitude temporal fluctuations due to the experimental
detection, the experimental setup allows us to identify the
impact of pump incoherence on the generation of coherent
quasisoliton structures.

VI. CONCLUSION

We have reported an experimental and numerical study
of an incoherently pumped passive optical fiber ring cavity.

The dynamics of the optical cavity has been shown to be
essentially characterized by a quasisoliton turbulence process.
More specifically, the generation of quasisolitons is controlled
by the degree of coherence of the injected pump wave:
As the coherence of the pump is degraded, the system
undergoes a transition from the quasisoliton turbulence regime
toward the highly incoherent (weakly nonlinear) turbulent
regime characterized by short-lived and large-amplitude rare
events, a transition that can be interpreted in analogy with
quasisoliton condensation. We have realized an all-integrated
incoherently pumped passive optical cavity, whose dynamics
has been characterized by means of complementary spectral
and temporal PDF measurements.

A remarkable unexpected result of our study is that
quasisoliton condensation can take place efficiently, even in
the presence of a low finesse of the cavity, in contrast with
wave condensation in 2D defocusing media, which was shown
to require a high-cavity finesse [41]. We have interpreted
this result as a consequence of the fact that the process of
thermalization of an optical wave constitutes a prerequisite
for the phenomenon of wave condensation in a defocusing
medium, while wave thermalization is known to require a
high-cavity finesse. There is another important difference
which distinguishes wave condensation and (quasi)soliton
condensation. Wave condensation is known to exhibit a
property of long-range order and coherence [52], in the sense
that the correlation function of the field amplitude does not
decay at infinity, lim|r−r ′|→∞〈A(r) A∗(r ′)〉 �= 0, a property
which is consistent with the intuitive idea that, ideally, the
coherence length of a plane wave diverges to infinity [32].
This is in contrast with the spatial localized character of a
(quasi)soliton, which naturally limits the range of coherence to
the characteristic spatial width of the (quasi)soliton structure.
In other terms, wave condensation appears to be more sensitive
to the “boundary conditions” of the system, and thus results
less robust than (quasi)soliton condensation when considered
in an optical cavity system. The understanding of this aspect
will be the subject of future investigations, by also including
a spatial [53] or temporal [54] nonlocal response of the
nonlinearity which is known to introduce a different turbulent
behavior of the system.
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