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We theoretically study the laser cooling of optomechanical cavities when the mechanical resonance frequency
and damping depend on time. In the regime of weak optomechanical coupling we extend the theory of laser
cooling using an adiabatic approximation. We discuss the modifications of the cooling dynamics and compare it
with numerical simulations in a wide range of modulation frequencies.
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I. INTRODUCTION

Quantum cavity optomechanics [1] deals with the physics
of a mechanical element coupled to the light field of an
optical resonator by radiation forces in the quantum regime.
In the simplest and most commonly used model a single

mechanical harmonic oscillator is coupled to a single mode of
an optical cavity by radiation pressure, with the interaction
being proportional to the light intensity. The prototype of
an optomechanical setup is a Fabry-Pérot cavity with a
pendular end mirror, whose microfabricated realization [2]
and other implementations [3–6] have been developed in
laboratories worldwide. Optomechanical coupling allows for
optical control of the mechanical object, manifesting itself
in strongly modified mechanical properties that ultimately
can lead to laser cooling [7–9] towards the mechanical
ground state, which has been demonstrated in a certain setup
[10], marking a requisite milestone on the way to quantum
applications.

For typical realizations, the optomechanical coupling is
clearly smaller than the mechanical frequency. In such a
regime, laser cooling can be considered to be a consequence
of Raman scattering of photons with Stokes and anti-Stokes
events, where a single vibrational quantum is deposited by
or taken away with the scattered photon. These processes
play the central role in the cooling dynamics, similar as in
the Lamb-Dicke regime of laser cooling of atoms [11,12].
When anti-Stokes scattering prevails, the mechanical system is
cooled. The balance between Stokes and anti-Stokes scattering
can be adjusted by the laser parameters, and for resolved
sideband cooling, when the cavity’s linewidth is smaller
than the mechanical frequency ν, the pump laser optimally
has to be detuned to the red side of the cavity resonance
by ν.

The optomechanical coupling strength is typically so weak
that cooling with single photons turns out to be much too
slow to overcome the rethermalization rate due to the coupling
with the mechanical element’s environment at cryogenic
or even room temperature. To overcome this obstacle, in
many setups a strong pump laser is used to effectively
boost the optomechanical interaction. Beyond that, more
sophisticated cooling schemes are based on pulsed pump
schemes exploiting interference effects [13,14] or dynamically

controlled cavity dissipation [15] in order to improve the
cooling efficiency. Short optical pulses can also be used
for state preparation and reconstruction [16], and modulated
driving allows for the generation of squeezed quantum states
[17]. The modulation of the mechanical frequency was
investigated in Ref. [18], with the result that squeezing and
entanglement are enhanced in a resonant manner when the
modulation frequency is twice the mechanical frequency, while
the mean vibrational occupation number is simultaneously
increased.

In this work, we focus on the behavior of laser cooling
when the mechanical frequency and the mechanical damping
are varied in time. This investigation was motivated by a
recent experimental work [19] using dielectric membranes
oscillatingly mounted inside a Fabry-Pérot cavity. By locally
heating the membrane with the help of a laser beam, both
the resonance frequency of the vibrational mode and the
linewidth can be altered in a controlled way. We extend the
theory of optomechanical cooling to include modulations of
the mechanical frequency in an adiabatic way and compare the
predictions with numerical results. Moreover, we discuss how
the modulated damping rates influence the cooling behavior.
We find that in the resolved sideband limit and for strong
periodic modulations, additional cooling resonances appear.
For weaker modulations or larger cavity linewidths these
resonances overlap, and with the help of different pulse
shapes, the form of the resulting resonances can be influenced.
Moreover, we systematically scan a large range of modulation
parameters and discuss the cooling behavior in the various
regimes.

This article is set up as follows: We first provide a
theoretical description of the model in Sec. II by presenting
the master equation of the open quantum system and the
linearized model used for numerical calculations. In Sec. III
we extend the theory of optomechanical cooling by including
the temporal changes of the mechanical frequency in the
description using an adiabatic approximation. Moreover, we
point out the changes due to the modulation and compare them
with numerical calculations. In Sec. IV, we then focus on a
larger range of modulation frequencies and damping rates of
the mechanical oscillator. We discuss the numerical findings
and connect them to the theory of modulated cooling. Finally,
in Sec. V, we summarize and draw the conclusions.
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FIG. 1. An optomechanical setup, consisting of an optical cavity
coupled to a harmonically supported mechanical element by radiation
forces, experiences modulations of the mechanical properties, i.e.,
periodic changes of the mechanical frequency ν(t) and damping rate
γ (t). The cavity is pumped by an external laser at rate �, while
photons leak out of the cavity at rate 2κ . For certain parameters, the
light scattering leads to cooling of the mechanical motion, which is
influenced by the mechanical modulation.

II. MODULATED OPTOMECHANICAL SETUP

A. Model

We consider an optomechanical setup consisting of a single
mechanical oscillator of effective mass M coupled by radiation
forces to a single driven mode of an optical cavity with
frequency ωcav (see Fig. 1). The Hamiltonian for such a setup
in the frame rotating with the frequency ωP of the pump laser
reads

H (t) = Hcav + Hmec(t) + Hrad + W, (1)

where

Hcav = −�δa†a, (2)

Hmec(t) = p2

2M
+ 1

2
Mν(t)2x2 (3)

are the unperturbed Hamiltonians of the cavity mode with
detuning δ = ωpump − ωcav and the mechanical oscillator with
time-dependent frequency ν(t), respectively. The annihilation
operator a of a single photon in the cavity obeys [a,a†] = 1.
The mechanical oscillator’s position and momentum operators
x and p are connected to the time-independent annihilation
operator by

b0 = 1

2ξ0
x + i

ξ0

�
p, (4)

where we introduced the harmonic oscillator’s length scale

ξ0 =
√

�

2Mν0
, (5)

with the time-averaged oscillator frequency ν0 = 1
T

∫ T

0 ν(t)dt

over one period T of the modulation. The optical and
mechanical degrees of freedom are coupled by radiation forces
of the form

Hrad = −�ga†a x

= −�χ0a
†a[b0 + b

†
0]. (6)

Here, �χ0/ξ0 = �g can be interpreted as the time-independent
radiation force a single photon exerts on the unmodulated

mechanical oscillator. In a Fabry-Pérot setup like in Fig. 1,
χ0 = ωC ξ0/L, where L denotes the static cavity length. For the
membrane in the middle setup, an additional factor including
the membrane’s electric field reflectivity and its position
within the unperturbed mode function of the cavity has to be
included [20,21]. The pump of the cavity is taken into account
by

W = �
�

2
(a + a†). (7)

With the Hamiltonian H , Eq. (1), we can write down the
master equation,

∂ρ

∂t
= 1

i�
[H (t),ρ] + Lκρ + Lγ (t)ρ, (8)

where

Lκρ = κD[a]ρ (9)

describes cavity losses with decay rate κ . We approximately
describe the damping of the oscillator with a time-dependent
damping rate γ (t) by

Lγ (t)ρ = γ (t)

2
(m̄ + 1)D[b0]ρ + γ (t)

2
m̄D[b†0]ρ (10)

using the time-independent operators b0, b
†
0, leading to a

reasonable description for moderate modulations strengths
[22]. The temperature T of the environment thermalizes
the oscillator towards a mean vibrational quantum number
m̄ = [exp(�ν0/kBT ) − 1]−1 in the unmodulated case. We have
used the short notation D[X]ρ = 2XρX† − {X†X,ρ} for a
Lindblad-form term.

B. Displaced frame

In order to eliminate the pump, we unitarily transform ρ =
Uρ ′U † with the help of

U = Da(α(t))Db0 (β(t)), (11)

which consists of the displacement operators Da(α) =
exp[αa† − α∗a] for the cavity and Db0 (β) = exp[βb

†
0 −

β∗b0] for the mechanical oscillator. In the displaced
picture, the master equation reads (primes following ρ

omitted)

∂ρ

∂t
= Lρ

= 1

i�
[H ′

cav + Hmec(t) + H ′
rad,ρ] + Lκρ + Lγ ρ (12)

if the parameters α(t) and β(t) are chosen such that they fulfill
the differential equations

α̇(t) = {i[δ + 2χ0Reβ(t)] − κ}α(t) − i
�

2
, (13a)

β̇(t) = −
{

γ (t)

2
+ iν+(t)

}
β(t) + iβ∗ν−(t) + iχ0|α(t)|2,

(13b)

together with their complex conjugated counterparts
and ν±(t) = [ν0 ± ν2(t)/ν0]/2. Then, the transformed
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Hamiltonians take on the form

H ′
cav = −�δ′(t)a†a, (14)

H ′
rad = −�χ0[a†a + α(t)a† + α∗(t)a](b0 + b

†
0), (15)

with δ′ = δ + 2χ0Reβ(t). We assume that the cavity is strongly
driven, such that |α| � 1, in that way boosting the linear
optomechanical coupling.

C. Linearized interaction

If the cavity is sufficiently strongly pumped, the mean field
α becomes much larger than the field fluctuations, and the term
proportional to a†a in the interaction Hamiltonian (15) can be
omitted [23]. The master equation (12) can then brought into
a quadratic form [21]

∂ρ

∂t
= 1

i�
[ �RTĤ �R,ρ] +

3∑
k=1

γk

2
D[ �Lk

�R]ρ, (16)

where the vector operator �R = (xc,pc,xm,pm)T contains the
dimensionless position and momentum operators xm = (b0 +
b
†
0)/

√
2 and pm = (b0 − b

†
0)/

√
2i and the corresponding ex-

pressions for xc, pc associated with the cavity field mode.
The expectation values of position and momentum and the
covariances of the state ρ are contained in the expressions

�r = 〈 �R〉, (17)

(Ĉ)ij = 1
2 〈RiRj + RjRi〉 − 〈Ri〉〈Rj 〉. (18)

They fulfill the dynamical equations

∂

∂t
�r(t) = Ĥeff�r(t), (19)

∂

∂t
Ĉ(t) = ĤeffĈ(t) + Ĉ(t)Ĥ T

eff + Ĵ (20)

following from Eq. (16). Here, Ĥeff = 2σ̂ [Ĥ + Im�̂] and Ĵ =
2σ̂ [Re�̂]σ̂ T, where the matrix �̂ incorporates the dissipative
dynamics and is defined in terms of the quantities �Lk in
Appendix A. Moreover, we introduced the symplectic form
σ̂ij = [Ri,Rj ]/i. Equations (19) and (20) together with the
solution of Eq. (13) are used for a numerical propagation of an
initial thermal (Gaussian) state with mean vibrational number
m̄ towards the quasistationary solution in a stable parameter
regime. The mean phonon number

〈m〉(t) = 1
2 [C33(t) + C44(t) − 1] (21)

can then be extracted from the propagated covariance
matrix Ĉ.

III. COOLING THE MECHANICAL MOTION

In this section we study the cooling of the mechanical
object with modulated frequency and damping in different
parameter regimes. Throughout this work we consider a weak
optomechanical interaction, such that |α|χ0/ν 	 1. Cooling
and heating are then achieved by light scattering at the

cavity into the anti-Stokes and Stokes components, which
are associated with the annihilation and creation of a single
vibrational quantum. If the cooling rate A−, i.e., the rate of
anti-Stokes scattering, is larger than the heating rate A+ of
Stokes scattered light, the mechanical oscillator converges
to the stationary state of laser cooling. In the following we
develop a theoretical description of the stationary state of
cooling for a modulated oscillator.

A. Perturbation theory and adiabatic approximation

In order to get insight into the dynamics when the
mechanical element’s properties periodically depend on time,
we derive an effective master equation for the determination
of the stationary state. The applied procedure relies on the
weak mechanical coupling, expressed by η = |α|χ0/ν 	 1.
As a consequence, the dynamics splits into a hierarchy of time
scales [23]: a fast time scale given by the free evolution of
cavity and oscillator and a slower time scale on which the
optomechanical interaction takes place. We also assume here
that the time scale of the modulation is fast, i.e., of the order
of the mechanical frequency ν. We expand the Liouvillian L
from Eq. (12) according to

L = L0 + L1 (22)

into different orders in the small parameter χ0/ν, with

L0(t)ρ = Lc + Lm(t)

=
(

1

i�
[Hcav,ρ] + Lκρ

)
+ 1

i�
[Hmec(t),ρ], (23)

L1ρ = 1

i�
[H ′

rad,ρ], (24)

where we neglect the small correction of the cavity detuning
and omit the damping of the high-Q oscillator momentarily.

At the lowest order in η, the optical and mechanical degrees
of freedom are decoupled; that is, both degrees of freedom
evolve independently. The Liouvillian depends explicitly on
time due to the modulation of the mechanical frequency. In
Sec. B 1 we introduce its spectral decomposition

L0(t) =
∑

λ

λ(t)Pλ
0 (b0,b

†
0), (25)

with the eigenvalues

λ0(t) = λc + λm(t), (26)

which are a sum of the eigenvalues of Lc and Lm, where
λm(t) = ikν(t) with integer k. In Eq. (25) we neglected the
time dependence of the projectors Pλ

0 and use the projectors
of the unmodulated oscillator: This is an adiabatic approxima-
tion that is valid as long as transitions between subspaces
belonging to different λ can be neglected during the time
evolution. One can estimate the condition (〈m〉 + 1) ν̇

4ν2 	 1
for this approximation to be valid by considering the overlap
between energy eigenstates and their derivative with respect
to time.

At the lowest order of perturbation theory, all projectors
on mechanical-energy eigenstates are quasistationary states
since their eigenvalues λm vanish. At higher order in the
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optomechanical interaction, this degeneracy is lifted, thereby
singling out the unique asymptotic state of laser cooling.

The cavity and oscillator degrees of freedom are coupled in
first order by the LiouvillianL1. InL1 we can replace α(t) with
the solution of Eqs. (13) at the lowest order in χ0/ν, which is
the constant [24]

α0 = �/2

δ + iκ
. (27)

Using the annihilation and creation operators of the unmodu-
lated oscillator, b and b†, the interaction term of the Liouvillian
reads

L1 = 1

i�
[Fx,ρ]. (28)

In the last step we defined the operator

F = −�g[a†a + α0a
† + α∗

0a], (29)

which acts only on cavity states. The further calculations
follow the standard theory of optomechanical laser cooling
[23] and are summarized in Sec. B 2.

To proceed, we consider the slowly evolving subspace
belonging to the eigenvalue λ = 0, whose degeneracy is lifted
in second-order perturbation theory, hence determining the
unique final state of laser cooling. The dynamics in this
subspace selected by P = Pλ=0

0 is governed by the master
equation

P ρ̇(t) =
∑
λ 
=0

PL1Kλ(t)L1Pρ(t), (30)

with the superoperator

Kλ(t) =
∫ ∞

0
dτ eλcτ

{
e
∫ t

t−τ
dt ′λm(t ′)

}
Pλ

0 . (31)

In the following we evaluate the latter expression for specific
modulations of the mechanical frequency.

B. Periodic modulations

We assume that the frequency of the mechanical oscillator
ν(t) is changed periodically in time, that is,

ν(t) = ν0 + f (t), (32)

with a real-valued periodic function f (t + T ) = f (t) =∑∞
l=−∞ cle

ilωt , where ω = 2π/T . We further assume that the
time-averaged function 〈f (t)〉t = 0 vanishes. This can always
be achieved if a nonvanishing mean value is incorporated into
ν0. Then, the term in the curly brackets in Eq. (31) is also
periodic in t with period T and can be represented as a Fourier
series

∑
� K

λm
� (t) exp[i�ωt]. After performing the τ integral,

one finds

Kλ(t) =
∑

�

K
λm
� (t)

−Pλ
0

λc + λm + i�ω
. (33)

The evaluation of Eq. (30) using the form (33) again goes
along the lines of laser cooling theory and is reported in
Sec. B 3. The resulting master equation of cooling contains
the heating and cooling rates

A± =
∑

�

〈K�〉t 2κχ2
0 |α0|2

(δ ∓ [ν0 + �ω])2 + κ2
, (34)

which are already time averaged over one period T , with

〈Kl〉t =
(

1

2π

)2
∣∣∣∣∣
∫ 2π

0
e−ilτ exp

[∑
m

cm

mω
eimτ

]
dτ

∣∣∣∣∣
2

. (35)

The time averaging is justified when the modulation frequency
belongs to the fast time scales of L0 but is still slow enough to
fulfill the adiabaticity condition. Equation (34) is the central
result of this work. The rates of heating and cooling considered
as a function of δ are a superposition of Lorentzians, centered
at ±(ν + �ω) and weighted by the time-averaged Fourier
coefficients 〈Kl〉t . In the resolved sideband limit where
κ 	 ν,ω, the Lorentzians are resolved and lead to several
resonances in the cooling and heating of the mechanical
element. In the case of sinusoidal modulation,

f (t) = ν̂ sin(ωt), (36)

the coefficients K
λm
l (t) are, up to a time-dependent phase, given

by Bessel functions of order l,

K
λm
l (t) = e−i kν̂

ω
cos ωte−ilωt ilJl(kν̂/ω), (37)

with the index k determining the mechanical eigenvalue λm =
ikν0 of the unmodulated oscillator. Time averaging leads to

〈Kl〉t = Jl(ν̂/ω)2 (38)

at the rates A±.
Figure 2 illustrates the dependency of the rates A±, Eq. (34),

on the detuning � [colored (gray) curves]. Moreover, the rates
before time averaging, using Eq. (37), for a sine modulation
(black curves) are shown. In Fig. 2(a) a fast modulation
ω = ν/2 was chosen. The time-dependent curves show rapid
oscillations of sideband peaks that can even become negative.
The cooling dynamics cannot follow these rapid oscillations,
but after time averaging, positive sidebands at ±ω around the
main resonances at ±ν survive, which influences the final
state of laser cooling. On the contrary, for slow modulations
ω = 0.01ν presented in Fig. 2(b), the sidebands overlap and
lead to a periodically moving, positive resonance. In the
resolved sideband limit κ 	 ν, the optimal detuning is given
by the maximum of A−, which sweeps through different values
of �.

C. Stationary state

We calculate the time-averaged stationary state of the
mirror’s motion from the rates (34), which gives

μst =
(

1 − A−
A+

) (
A−
A+

)b
†
0b0

, (39)

with the mean vibrational occupation number

〈m〉 = Tr[b†0b0μst ] = A+
A− − A+

, (40)

which corresponds to the temperature at the end of the cooling
procedure. The average cooling rate is given by

� = A− − A+ (41)

and estimates the time scale on which the stationary state is
reached.

023818-4



OPTOMECHANICAL LASER COOLING WITH MECHANICAL . . . PHYSICAL REVIEW A 91, 023818 (2015)

1.0 0.0 1.0

1.0 0.0 1.0

(a)

(b)

FIG. 2. (Color online) The rates A± for a sinusoidal modulation.
The blue (dark gray) and red (light gray) lines represent the time
averages A− and A+, Eq. (34), respectively. The black curves show
the same rates before averaging at different times t = 0, T/4, T/2,
and 3T/4 of a modulation period. (a) The fast modulation ω = ν/2
generates rapidly oscillating sidebands displaced by multiples of
ω from the main resonance at � = ±ν. The sidebands have a
nonvanishing temporal mean as shown by the colored curves. (b)
Slow modulations with ω = ν/100 essentially move the resonance
peaks along the momentary oscillator frequency. Other parameters
are ν̂ = 0.2ν, κ = 0.05ν.

In Fig. 3 we show the mean vibrational occupation number
〈m〉, Eq. (40), at the end of the cooling procedure (curve)
and compare it with numerical solutions (dots) obtained from
Eq. (21). Low phonon numbers are found whenever the
detuning coincides with a resonance of A− in this resolved
sideband limit. Small deviations are found at the sideband
minima, which we attribute to the adiabatic approximation
performed in the theory. In the inset, the numerically calculated
time dependency of the mean phonon number, starting from
an initial state with 〈m〉(t = 0) = 3, is shown for different
detunings. The decay rate of the curve corresponds to �,
Eq. (41), and one finds indeed that the stationary state is
approached faster close to a cooling resonance, where A−
has a maximum.

Up to this point, the presented treatment has ignored the
thermalization of the mechanical oscillator due to coupling to
its environment, which takes place with the rate γ . For high-Q
oscillators, γ can be considered to be the slowest time scale
involved in the dynamics. If this is the case, the final vibrational

FIG. 3. Comparison between the analytic approximation
[Eq. (40), solid line] and numerical results (points) for sinusoidal
modulation. In the inset, the numerically calculated time curve
〈m〉(t) is shown for selected values of �. Parameters are ν̂ = 0.1ν,
κ = 0.05ν, ω = ν/2, γ = 0, m̄ = 0.

occupation number is

〈m〉 = 〈m〉�cool + m̄γ

�cool + γ
. (42)

In the adiabatic limit, �cool = �, Eq. (41) can be calculated
directly from A±.

If the damping rate becomes comparable to the cooling
rate, the damping should be incorporated into L1, but since
Lγ does not couple the P and 1 − P subspaces, the theory
predicts no interplay between damping and optomechanical
interactions. For even stronger damping, apart from the fact
that the description in Eq. (10) becomes questionable, the laser
cooling would take place on a much slower time scale, meaning
that the mechanical element would take on a stationary state
close to the thermal state.

D. Influence of pulse shape

The strength of the sidebands in the rates A±, Eq. (34), is
determined by the coefficients 〈Kl〉, which in turn depend on
the Fourier coefficients cm of the pulse f (t) and can therefore
be manipulated by altering the pulse form. By modifying the
modulation parameters or using higher harmonics in f (t) it
is hence possible to shape the resonances of A±. However,
suppressing resonances in the heating rate A+ for efficient
cooling cannot be achieved since all 〈Kl〉t are non-negative.

Figure 4 shows an example using the first ten Fourier
coefficients of a rectangular-shaped pulse, leading to f (t) as
shown in inset (a). The modulation frequency is chosen here
to be smaller, ω = ν/6, such that with κ = 0.07ν, adjacent
resonances in rates A± start to overlap. In this way it is possible
to broaden the cooling resonance and form a plateau-like
behavior of 〈m〉(�) around the lowest temperature. This can
be achieved at the cost of increased minimal temperature, as
the curves in the logarithmic scale of inset (b) clearly show.
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t/T

FIG. 4. Mean phonon number 〈m〉, Eq. (40), for a pulse f (t),
shown in inset (a), comprising several harmonics. It is compared
to the unmodulated case (dashed curve). Inset (b) displays the
mean vibrational occupation on a logarithmic scale, showing that
the modulation increases the minimal achievable temperature. The
parameters are ν̂ = 0.5ν, κ = 0.07ν, γ = 0, m̄ = 0, ω = ν/6.

IV. NUMERICAL RESULTS AND DISCUSSION

In order to extend the analysis beyond the theoretical
treatment, we proceed with a numerical simulation of the
optomechanical dynamics. We will analyze a large parameter
regime of modulation frequencies and incorporate the damping
of the mechanical element.

For the treatment discussed here, we focus again on a
sinusoidal modulation

ν(t) = ν0 + ν̂ sin(ωt) , (43)

γ (t) = γ0 + γ̂ sin(ωt) , (44)

and we first solve numerically the coupled differential equa-
tions (13). By means of the behavior of the mean values
α(t) and β(t) we are able to exclude parameter regimes
showing optomechanical instability [25] or in which the
system becomes unstable due to parametric amplification, as is
found at resonances ω = ν and especially around ω = 2ν. The
time-dependent mean values are used in the linearized equation
(20) in order to calculate the time-averaged value of the mean
vibrational occupation number 〈m〉 in the quasistationary,
oscillatory regime at the final stage of the cooling. We also
extract the cooling rate from the numerical data by fitting an
exponential decay to 〈m〉(t), calculated from Eq. (21). For
the rest of this section we investigate the behavior of 〈m〉 and
�cool for a wide range of modulation frequencies and dampings
γ0. The results are depicted in Fig. 5(a), where we show the
minimal value of the time-averaged occupation number 〈m〉
after scanning through the detuning � as a function of ω and
γ0 in the quasistationary regime.

For ω in the vicinity of zero, the vibrational occupation
number increases rapidly as ω increases. The change in the
oscillator frequency makes it impossible for the external field
to stay tuned to the optimal cooling frequency when κ 	 ν,
explaining the sudden drop-off. This can be compared to the
case depicted in Fig. 2(b): The oscillatory moving resonance

0 0.5 1.0 1.5
2.0 2

4
6

8

0.5

1

1.5

2

(a)

ω/ν

γ0/ν

×10−3

m

(b)

Γ
co

o
l/

ν

×10−2

ω/ν

×10−3

γ0/ν

FIG. 5. (a) Mean vibrational occupation number as a function of
the modulation frequency ω and damping γ . For each point, the
detuning was optimized in order to find the minimal occupation
number. Missing lines between the points mark regions where the
system is instable. (b) Same as in (a), but showing the cooling rate
�cool. Parameters are ν̂ = 0.2ν, γ̂ = 0.2γ0, κ = 0.1ν, and η = 0.25
at resonance.

curve (black lines) sweeps through the constant laser frequency
such that a fixed resonance condition is lost. When the
modulation frequency ω becomes larger, the time-averaged
resonance curve, i.e., the colored (gray) curves in Fig. 2(b),
becomes relevant, and the temperature decreases again, until
it stays for a small range of the modulation frequency on
a plateau-like level with barely visible small resonances,
terminated by a final distinct resonance peak at ω ≈ 0.15ν.
Similar to the smaller peaks, the final peak can be explained
by the zeros of the Bessel functions in the time-averaged
rates A±, Eqs. (34) and (38). This becomes clear when we
recall that the rates A± can be decomposed into Lorentzian
peaks with an intensity proportional to Jl(ν̂/ω), with l = 0
marking the central peak. For growing ω the argument of
the Bessel function decreases, and from a certain modulation
frequency on, the Bessel function passes through its last
zero and monotonically increases afterwards. This modulation
frequency marks the point after which the strength of the
central peak only grows. When it overtops the lateral peaks,
it uniquely defines the lowest temperature, and this is the
point where the final maximum of the plateau-like structure in
Fig. 5(a) is situated. From here on, the optimal detuning for the
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lowest temperature is � = ν, and the temperature falls off for
larger values of ω. Another increase of the temperature cannot
be observed before ω = ν in Fig. 5(a) due to a resonance with
the vibrational frequency. At ω = 2ν a strong increase in the
temperature occurs. This is the parameter regime discussed in
detail in Ref. [18], where squeezing of the oscillator’s state and
increased entanglement between the optical and mechanical
degrees of freedom emerge. The increase in temperature at the
resonance ω = 2ν can qualitatively also be understood from
the rates A±: The first red sideband of the rate of heating A+
coincides at this resonance with the central peak of the rate of
cooling A−.

Within the parameter range used here, no significant
influence stemming from the modulation of γ (t) was found
that could not be reproduced by replacing γ (t) with its
average value γ0 for all considered time-averaged observables.
The dependency of 〈m〉 on γ0 mainly leads to an overall
increase in the vibrational occupation due to the stronger
coupling to the environmental heat bath. Apart from this
overall behavior, the course of 〈m〉 for small ω shows a much
stronger initial increase in the temperature, and the plateau-like
behavior is intensified, especially for midlevel values of γ0.
Also a counterbalancing of the fluctuation of 〈m〉 around
the resonance at ω = ν can be observed. Apart from these
details, one has to conclude that the damping of the modulated
oscillator does not show beneficial effects for cooling and
behaves as expected from a stronger coupling to the heat bath.

In Fig. 5(b) we plot the cooling rate �cool as a function
of ω and γ0. The cooling rate shows an overall reciprocal
behavior compared to the final temperature in Fig. 5(b), as
Eq. (41) suggests. The cooling rate increases almost linearly
with larger γ , without significantly changing the shape with
respect to ω. For very small modulations, the cooling rate
falls off strongly. Moreover, the resonance at ω = ν is hardly
visible, but at ω = 2ν we find again that efficient cooling
breaks down in favor of increased nonclassical properties of
the optomechanical system.

We finally remark that for larger values of κ the fine
structure of the curves in Fig. 5 is washed out due to the
stronger overlapping sidebands in A±.

V. CONCLUSIONS

We studied in detail the effect of laser cooling when the
frequency of the harmonically supported mechanical element
ν(t) and its dissipation rate γ (t) depend on time. We obtained
analytic approximations valid in the adiabatic limit when
ν̇(t)/ν2 	 1. When ω ≈ ν or larger and when the setup is in
the resolved sideband regime, several cooling resonances can
be found, whose relative strengths depend on the pulse shape.
The form of the periodic modulation pulses allows one to shape
the cooling resonances as a function of the laser frequency to
a certain extent. With the help of simple expressions for the
time-averaged rates of heating and cooling, a physical picture
for the temporal behavior of the cooling process could be
provided.

We complemented the analysis of cooling a modulated
optomechanical setup by numerical investigations covering a
larger range of parameters, whose results generally confirm
the analytic predictions. At least qualitatively, the insight

provided by the theoretical model allows us to explain most
of the numerical findings. Moreover, we found that the time
dependence of γ (t) does not alter qualitatively either the final
temperature or the decay rates of the cooling process. If our
interest is only in the time-averaged behavior, the modulation
of the damping can even be ignored. The analysis of this work
provides deeper insight into the cooling dynamics when the
properties of the mechanical oscillator are modulated and can
serve as a guide for current experiments when the temporal
behavior of the mechanical element is controllable in time.
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APPENDIX A: ELEMENTS OF THE LINEARIZED
MASTER EQUATIONS

The explicit forms of the matrices and vectors appearing
in Eqs. (16) follow directly from the master equation (12) in
the linearized form, i.e., after omitting the term proportional
to a†a in the optomechanical interaction. One finds

Ĥ=�

⎛⎜⎜⎝
−�

2 0 −χ0

2 (α + α∗) 0
0 −�

2 − iχ0

2 (α∗ − α) 0
−χ0

2 (α + α∗)− iχ0

2 (α∗ − α) ν
2 0

0 0 0 ν
2

⎞⎟⎟⎠,

(A1)

and for the jump vectors

�L1 = 1√
2

⎛⎜⎝1
i

0
0

⎞⎟⎠, �L2 = 1√
2

⎛⎜⎝0
0
1
i

⎞⎟⎠, �L3 = 1√
2

⎛⎜⎝ 0
0
1
−i

⎞⎟⎠. (A2)

Furthermore, we defined

γ1 = 2κ, γ2 = γ (m̄ + 1), γ3 = γ m̄. (A3)

The matrix (�̂)mn = ∑
k γk( �Lk)∗m( �Lk)n is needed for the time

evolution, Eq. (20), of the covariance matrix Ĉ. It has the
explicit form

� = 1

2

⎛⎜⎜⎝
κ iκ 0 0

−iκ κ 0 0
0 0 γ

2 (2m̄ + 1) i
2γ

0 0 − i
2γ

γ

2 (2m̄ + 1)

⎞⎟⎟⎠. (A4)

With these quantities the time evolution of Gaussian states can
be written in the compact notation given in Sec. II C.
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APPENDIX B: DERIVATION OF THE EFFECTIVE
MASTER EQUATION

1. Spectral decomposition of L0

In this section we discuss the eigensystem of L0 = Lc +
Lm(t), Eq. (24). To this end we introduce the eigenelements
ρ̂λ(t) and ρ̌λ(t), which are elements of the operator space and
fulfill instantaneously the eigenvalue equations

L0(t)ρ̂λ(t) = λ(t)ρ̂λ(t), (B1)

ρ̌λ†L0(t) = λ(t)ρ̌λ†(t). (B2)

These eigenelements are orthogonal Tr{(ρ̌λ)†ρ̂λ′ } = δλ,λ′ with
respect to the scalar product (A,B) = Tr[A†B]. The projectors
Pλ

0 = ρ̌λ ⊗ ρ̂λ project an arbitrary operator X onto the
subspace belonging to λ according to Pλ

0 X = ρ̂λTr[ρ̌λ†X].
If the eigensystem of L0 is complete, the projectors fulfill∑

λ

Pλ
0 = 1. (B3)

Since in lowest-order perturbation theory L0 is a sum of the
cavity and mechanical part without interaction, the eigensys-
tem can be decomposed into

ρ̂λ(t) = ρ̂λ
c ρ̂λ

m(t), ρ̌λ†(t) = ρ̂λ†
c ρ̂λ†

m (t), (B4)

Pλ
0 (t) = Pλ

c Pλ
m(t), (B5)

and

λ0(t) = λc + λm(t). (B6)

The explicit form of the cavity eigenelements can be found in
Ref. [26], with the corresponding eigenvalues

λc(k,n) = ik� − (2n + |k|)κ, (B7)

where k are integers and n are non-negative integers. The
mechanical eigenelements can be constructed from the in-
stantaneous eigenstates |m(t)〉 of Hmec(t) and have the simple
form

ρ̂λ
m(t ; n,l) =

{|n〉〈n + l| l � 0,

|n + |l|〉〈n| l < 0,
(B8)

with λm(t ; n,l) = ilν(t) and ρ̌λm
m = ρ̂λm

m . These eigenelements
are infinitely degenerate in the index n.

2. Effective master equation of cooling

We start with the Liouvillian from Eq. (22) and define the
time-independent projectors

P = Pλc=0
c Pλm=0

m , (B9)

Q = 1 − P (B10)

in the adiabatic approximation discussed in the main text. The
goal is to find an effective master equation in the subspace
selected by P valid up to second order in the parameter η char-
acterizing the optomechanical coupling strength. We project
the master equation ρ̇ = Lρ onto the subspaces belonging to

P and Q, insert 1 = P + Q, and use the expansion (22) of L,
which yields

P ρ̇(t) = PL1Qρ(t), (B11)

Qρ̇(t) = QL1Pρ(t) + QL0Qρ(t). (B12)

In the last step we exploited the facts that PL0 = L0P = 0
with the approximated L0 from Eq. (25) and that L1 does not
couple states inP; hence,PL1P = 0. Moreover, we neglected
L1 in the last term of the second equation since it would lead to
higher-order correction. The second equation can be formally
integrated, leading to

Qρ(t) = e
∫ t

t0
dt ′QL0(t ′)

Qρ(t0) + e
∫ t

t0
dt ′QL0(t ′)

×
∫ t

t0

dt ′e− ∫ t ′
t0

dt ′′QL0(t ′′)QL1Pρ(t ′). (B13)

The integration interval �t = t − t0 is assumed here to be
large for the fast time scale of zeroth order and short
for the time scale of interaction: The first term thus dies
off rapidly, whereas in the second term one can replace
Pρ(t ′) by Pρ(t). Plugging this result into Eq. (B11) and
inserting the completeness relation

∑
λ Pλ = 1 yield the

closed master equation of the main text, Eq. (30), where we
further used Eq. (B6) and set �t → ∞ in the limits of the τ

integral.

3. Cooling and heating rates

Inserting Eq. (33) into the effective master equation (30)
and tracing over the cavity degrees of freedom yield

μ̇ =
∑
λ 
=0

∑
l

K
λm
l

λc + λm + ilω
Trc

{
PL1Pλ

0L1�cμ
}
, (B14)

with the density operator μ = TrcPρ and the stationary
state �c = |0〉〈0| of the cavity, fullfilling Lc�c = 0. The
coefficients fulfill K

λm
l (t) = K

−λm∗
−l (t). The trace is calculated

using Eq. (28), and after separating operators belonging to the
oscillator and cavity degrees of freedom, the trace term reads

Trc{· · · } = T1(λc)P0
m

[
x,Pλm

m xμ
] − T2(λc)P0

m

[
x,Pλm

m μx
]
,

(B15)

where

T1(λc) = Trc
{
FPλc

c F�st
} = �

2g2|α0|2δλc,iδ−κ , (B16)

T2(λc) = Trc
{
FPλc

c �stF
} = �

2g2|α0|2δλc,−iδ−κ . (B17)

The mechanical expressions

P0
m

[
x,Pλm

m xμ
] = ξ 2

0 {(b0b
†
0 − b

†
0μb0)δλm,−iν

+ (b†0b0μ − b0μb
†
0)δλm,iν}, (B18)

P0
m

[
x,Pλm

m μx
] = ξ 2

0 {(b0μb
†
0 − μb

†
0b0)δλm,−iν

+ (b†0μb0 − μb0b
†
0)δλm,iν} (B19)

are calculated with x = ξ0(b0 + b
†
0). After we plug Eqs. (B16)–

(B19) into Eq. (B14) and perform the time averaging with
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〈Kl〉t ≡ 〈Kλm=iν
l 〉 = 〈Kλm=−iν

−l 〉, the master equation can be
cast into the form

μ̇ = 1

i�
[H̃ ,μ] + A−

2
D[b0]μ + A+

2
D[b†0]μ (B20)

of a damped harmonic oscillator with the rates A± given by
Eq. (34) and a small correction H̃ ∝ b

†
0b0 to the Hamiltonian

of the mechanical oscillator, which is neglected in the main
text.
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