
PHYSICAL REVIEW A 91, 023801 (2015)

Hybrid-order Poincaré sphere
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In this work, we develop a hybrid-order Poincaré sphere to describe the evolution of polarization states of wave
propagation in inhomogeneous anisotropic media. We extend the orbital Poincaré sphere and high-order Poincaré
sphere to a more general form. Polarization evolution in inhomogeneous anisotropic media with special geometry
can be conveniently described by state evolution along the longitude line on the hybrid-order Poincaré sphere.
Similar to that in previously proposed Poincaré spheres, the Berry curvature can be regarded as an effective
magnetic field with monopole centered at the origin of sphere and the Berry connection can be interpreted as
the vector potential. Both the Berry curvature and the Pancharatnam-Berry phase on the hybrid-order Poincaré
sphere are demonstrated to be proportional to the variation of total angular momentum. Our scheme provides a
convenient method to describe the spin-orbit interaction in inhomogeneous anisotropic media.
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Polarization and phase are two intrinsic features of elec-
tromagnetic waves [1]. Fundamental polarization states, such
as linear, circular, and elliptical polarizations, have a spatial
homogeneous distribution. In 1892, a prominent geometric
representation of polarization known as the Poincaré sphere
is proposed to describe the polarization state of light as a
point on the surface of a unit sphere [2]. The Poincaré sphere
unifies the fundamental polarizations, where the polarization
states represented by complex Jones vectors are mapped to the
sphere’s surface through the Stokes parameters in the sphere’s
Cartesian coordinates. This geometric characterization not
only greatly simplifies the calculations of geometric phase, but
also provides a deeper insight into physical mechanisms. As
a result, the representation of the Poincaré sphere has become
an important technique to deal with the polarization evolution
in different physical systems.

Recently, the orbital Poincaré sphere has been proposed
as a geometrical construction to represent the state evolution
in phase space [3]. In analogy to the space of polarization, the
north and south poles of the orbital Poincaré sphere correspond
to the Laguerre-Gaussian modes with opposite topological
charges. The points in the equator of the sphere correspond
to Hermite-Gaussian modes [4,5]. In the past several
years, high-order solutions with a spatial inhomogeneous
polarization and phase have drawn much attention [6]. More
recently, the high-order Poincaré sphere has been proposed
to describe the evolution of both polarization and phase [7,8].
The north and south poles of the high-order Poincaré sphere
represent the opposite spin states and orbital states. Any
state on the high-order Poincaré sphere, can be realized by a
superposition of the two orthogonal states [9–11]. However,
the high-order solutions on the high-order Poincaré sphere
are still confined to some special cases. Hence, it is necessary
for us to extend the orbital Poincaré sphere and high-order
Poincaré sphere to a more general form.

In this work, we develop a hybrid-order Poincaré sphere
to describe the evolution of phase and polarization of wave
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propagating in inhomogeneous anisotropic media. We find that
the representation of the polarization states in inhomogeneous
anisotropic media has a similar expression of polarization
states on the high-order Poincaré sphere [7,8] with only
the orbital states being different. This interesting property
motivates us to develop a hybrid-order Poincaré sphere to
describe the evolution of polarization states, and therefore
extending the high-order Poincaré sphere and orbital Poincaré
sphere to a more general form. It is known that the orbital
states in the two poles of orbital and high-order Poincaré
spheres have the same value but opposite signs. Unlike the
previously reported cases, the orbital states on the hybrid-order
Poincaré sphere should not be confined to this certain condition
and can be chosen arbitrarily. We show that the polarization
evolution in inhomogeneous anisotropic media with special
geometry can be conveniently described by state evolution
along the longitude line on the hybrid-order Poincaré sphere.
Furthermore, the Berry connection, the Berry curvature, and
the Pancharatnam-Berry phase associated with the evolution
of the polarization state are discussed.

I. HYBRID-ORDER POINCARÉ SPHERE

We now develop a hybrid-order Poincaré sphere to describe
the evolution of polarization and phase in inhomogeneous
anisotropic media. It is assumed that the media are composed
of local waveplates whose optical axis directions are specified
by a space-variant angle,

α(r,ϕ) = qϕ + α0, (1)

where r is the radial coordinate, ϕ is the azimuthal coordinate,
α0 is a constant angle specifying the initial orientation on the
axis x, and q is a constant specifying the topological charge.
The inhomogeneous birefringent elements having specified
geometry can be designated as q plates [12].

Let us consider that the q plate is illuminated by a circularly
polarized vortex wave |ψ〉 = √

2/2(êx + iσ êy) exp(ilϕ) with
spin angular momentum (SAM) σ� [13] and orbit angular
momentum (OAM) l� [14], where σ = +1 for the left-handed
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circular (LHC) polarization and σ = −1 for the right-handed
circular (RHC) one. The evolution of the optical field in the
inhomogeneous medium can be obtained in Appendix A as

|ψl,m〉= cos
δ

2

√
2

2
(êx + iσ êy) exp(ilϕ) + sin

δ

2

√
2

2

× (êx − iσ êy) exp(imϕ) exp

[
i

(
2σα0 − π

2

)]
. (2)

Here, m = l + 2σq. It should be noted that diffraction inside
the q plate is neglected, so that only evolution of polarization
and phase is taking place. This is valid as long as the
thickness of the medium is small as compared with a Rayleigh
diffraction length. The field in the q plate can be regarded as a
superposition of a first wave that has the same SAM and OAM
as the input one, and a second wave having reversed SAM
and a modified OAM given by m�. It means that the input
wave only partially occurs spin-to-orbital angular momentum
conversion [15]. The field amplitudes of the two components of
the field depend on the birefringent retardation δ, and are given
by cos δ/2 and sin δ/2, respectively. In addition, a singularity
should be generated around the central region of the q plate.

We note that the field represented by Eq. (2) has a similar
expression to the field represented by the high-order Poincaré
sphere [7,8] with only the orbital states being different. It
inspires us to develop a hybrid-order Poincaré sphere to
describe the evolution of phase and polarization. The field
for a monochromatic paraxial light beam can be expressed as
a two-dimensional Jones vector:

|ψl,m〉 = ψl
N |Nl〉 + ψm

S |Sm〉, (3)

where

|Nl〉 =
√

2

2
(êx + iσ êy) exp(ilϕ), (4)

|Sm〉 =
√

2

2
(êx − iσ êy) exp(imϕ). (5)

Here, |Nl〉 and |Sm〉 with different topological charges con-
struct an orthogonal polarization basis. Any polarization state
on hybrid-order Poincaré can be described as a superposition
of the orthogonal bases with coefficients ψl

N and ψm
S , respec-

tively.
We now map the polarization states on the hybrid-order

Poincaré sphere by representing the Stokes parameters in the
sphere’s Cartesian coordinates. According to Eqs. (4) and (5),
we redefine the Stokes parameters as [1]

S
l,m
0 = ∣∣ψl

N

∣∣2 + ∣∣ψm
S

∣∣2
, (6)

S
l,m
1 = 2

∣∣ψl
N

∣∣∣∣ψm
S

∣∣ cos �, (7)

S
l,m
2 = 2

∣∣ψl
N

∣∣∣∣ψm
S

∣∣ sin �, (8)

S
l,m
3 = ∣∣ψl

N

∣∣2 − ∣∣ψm
S

∣∣2
, (9)

where � = arg(ψl
N ) − arg(ψm

S ), |ψl
N |2, and |ψm

S |2 are the
intensities of |Nl〉 and |Sm〉, respectively. Using S

l,m
1 , S

l,m
2 ,

and S
l,m
3 as the sphere’s Cartesian coordinates, we construct a

new Poincaré sphere with S
l,m
0 the unit radius. Equations (4)

and (5) denote the states on two poles with orthogonal circular

polarizations. It is worth noting that |Nl〉 and |Sm〉 generally
have different topological charges, i.e., l �= m. Therefore, we
term the new Poincaré sphere as the hybrid-order Poincaré
sphere.

Generally, the equatorial points on the hybrid-order
Poincaré sphere represent a superposition of equal intensities
of the two orthogonal states. The horizontal and vertical
polarization basis (|Hl,m〉, |Vl,m〉) can be obtained through the
relations |Hl,m〉 = (|Nl〉 + |Sm〉)/2 and |Vl,m〉 = −i(|Nl〉 −
|Sm〉)/2, then we have

|Hl,m〉 = exp
i(l + m)ϕ

2

[
cos

(l − m)ϕ

2
êx + sin

(l−m)ϕ

2
êy

]
,

(10)

|Vl,m〉 = exp
i(l + m)ϕ

2

[
cos

(
l − m

2
ϕ + π

2

)
ˆ̂ex

+ sin

(
l − m

2
ϕ + π

2

)
ˆ̂ey

]
, (11)

with coefficients ψ
l,m
H = (ψl

N + ψm
S )/

√
2 and ψ

l,m
V = i(ψl

N −
ψm

S )/
√

2. Similarly, the diagonal and antidiagonal polarization
basis |Dl,m〉 and |Al,m〉 can be obtained through the rela-
tions |Dl,m〉 = (|Hl,m〉 + |Vl,m〉)/√2 and |Al,m〉 = (|Hl,m〉 −
|Vl,m〉)/√2, respectively, and we have

|Dl,m〉 = exp
i(l + m)ϕ

2

[
cos

(
l − m

2
ϕ + π

4

)
êx

+ sin

(
l − m

2
ϕ + π

4

)
êy

]
, (12)

|Al,m〉 = exp
i(l + m)ϕ

2

[
cos

(
l − m

2
ϕ + 3π

4

)
êx

+ sin

(
l − m

2
ϕ + 3π

4

)
êy

]
, (13)

FIG. 1. (Color online) Schematic illustration of the evolution of
phase and polarization on hybrid-order Poincaré sphere. Insets (a)–(c)
show the the phase for points A, B, and C, respectively. Insets (a′)−(c′)
show the polarization state of the three points. Here, we assume the
north pole with state σ = +1 and l = 0, while the south pole with
σ = −1 and m = +2.
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FIG. 2. (Color online) Schematic illustration of the evolution of
phase and polarization on the hybrid-order Poincaré sphere. Insets
(a)–(c) show the evolution the phase for points A, B, and C,
respectively. Insets (a′)−(c′) show the evolution of polarization of
the three points. Here, we assume the noth pole with state σ = +1
and l = 0, while the south pole with σ = −1 and m = −2.

with coefficients ψ
l,m
D = (ψl,m

H + ψ
l,m
V )/

√
2 and ψ

l,m
A =

(ψl,m
H − ψ

l,m
V )/

√
2. Note that the equatorial points represent

vector vortex waves and the relative phase of the superposition
determines the orientation of the longitude on equator.

Figures 1 and 2 show the two cases for the evolution of phase
and polarization on hybrid-order Poincaré spheres. Comparing
with the high-order Poincaré sphere, the hybrid-order Poincaré
sphere has two special features: (1) The orbital states on
the hybrid-order Poincaré sphere should not be confined to
have the same value and opposite signs. As a result, the
cylindrical vector vortex beam can be represented by the
equatorial points. Intermediate points between the poles and
equator represent the elliptically polarized vector vortex beam.
(2) Polarization and phase evolution in any q plate can be
conveniently described by state evolution along the longitude
line on the hybrid-order Poincaré sphere. These features will
be described in detail in the next section.

II. BERRY CONNECTION, BERRY CURVATURE, AND
GEOMETRIC PHASE

From a basic geometric transformation on the Poincaré
sphere, the factor of ϕ → �/2 is a consequence of transfor-
mation between the physical SU(2) space of the light beam
and the topological SO(3) space of the hybrid-order Poincaré
sphere [9]. For a monochromatic wave, the polarization states
can be represented as a two-dimensional Jones vector given by

|ψ(θ,�)〉 = cos
θ

2
|Nl〉 + sin

θ

2
|Sm〉 exp(+iσ�), (14)

where

|Nl〉 =
√

2

2
(êx + iσ êy) exp(il�/2), (15)

|Sm〉 =
√

2

2
(êx − iσ êy) exp(im�/2). (16)

Here, (θ,�) are the latitude and longitude on the sphere. We
have introduced the relation θ = δ and � = 2α0 ± π/2, where
the choice of signs depends on the circular polarization hand-
edness of the input wave. Equations (15) and (16) represent
orthogonal circular polarizations with different topological
charges l and m.

Similar to the previously proposed Poincaré spheres, the
Berry connection can be written as [16]

A = i〈ψ(R)|∇R|ψ(R)〉. (17)

The components of the Berry connection can be obtained in
Appendix B as

Aρ = 0, (18)

Aθ = 0, (19)

A� = − 1

4ρ sin θ
[l(1 + cos θ ) + (m + 2σ )(1 − cos θ )].

(20)

The Berry curvature for the hybrid-order Poincaré sphere plays
the role of “magnetic field” in the parameter space and is given
by

V(R) = −∇R × A. (21)

Substituting Eqs. (18)–(20) into Eq. (21) we get

V(R) = l − (m + 2σ )

4ρ2
ρ̂. (22)

Equation (22) shows the Berry curvature is proportional to the
variation of the total angular momentum of light, a sum of
SAM and OAM.

In Berry’s framework a state ψ(R) undergoes a cyclic
transformation over a circuit C in parameter space R, and
then returns to the initial state, an additional phase in addition
to the dynamic phase arises which is given by

γ (C) = −
∫ ∫

C

dS · V(R), (23)

where dS = ρ2 sin θdρdθd�ρ̂ [17]. Substituting Eq. (22) into
Eq. (23), the resulting geometric phase on the hybrid-order
Poincaré sphere is then given by

γ (C) = − l − (m + 2σ )

4
�, (24)

where � is the surface area on the hybrid-order Poincacé
sphere enclosed by the circuit C. Equation (24) shows that
the geometric phase is directly proportional to the variation
of total angular momenta of light. Interestingly, when the two
modes have the same total angular momentum (as for q = 1)
both the Berry curvature and the geometrical phase vanish,
since the photon crossing the q plate does not change its total
angular momentum [15].

On the plane-wave Poincaré sphere, the evolution of polar-
ization states in a homogeneous waveplate can be described
as the transformations of longitude and latitude. A quarter-
wave plate can transform a circular polarization light to a
linear polarization one. This transformation on the plane-wave
Poincaré sphere can be described as polarization states from
the north pole to a point on the equator, and whose longitude
depends on the orientation of the optical axis. Rotation of
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FIG. 3. (Color online) Schematic illustration of the evolution of
states on the hybrid-order Poincaré sphere. As an example, we choose
q = 1 and l − m = 2. Insets (a)–(c) realization of the evolution along
different longitude lines from the north pole to south pole by the
half-wave q plate with different initial angles α0. Insets (a′)−(c′)
realization of the evolution along different longitude lines from south
pole to north pole. The initial angle of the q plate can be obtained by
the relation � = 2α0 − π/2 from the north pole to south pole, and
� = 2α0 + π/2 from the south pole to north pole.

the waveplate through an angle α advances the longitude by
an angle 2α. A half-wave plate can transform a left-handed
circular polarization to a right-handed one. This transformation
is presented by a move from pole to pole along a great circle.
This dependence can be easily demonstrated if we regard the
half-wave plate as two identical quarter-wave plates [3].

On the hybrid-order Poincaré sphere, the evolution of
polarization states in an inhomogeneous waveplate can also
be described as the transformations of longitude and latitude.
A quarter-wave q plate transforms a circular polarization light
to a cylindrical vector polarization one. This transformation
on the hybrid-order Poincaré sphere can be described as
polarization states from the north pole to a point on the equator,
and whose longitude depends on the orientation of the initial
angle of the q plate. Rotation of the initial angle α0 of the q

plate advances the longitude by an angle 2α0 as shown in Fig. 3.
Similarly, a half-wave q plate transforms left-handed circular
polarization to the right-handed one. This transformation is
presented by a move from one pole to the other pole along
a great circle. Therefore, our scheme provides a convenient
method to describe the spin-orbit interaction. In a word, the
phase retardation of the q plate determined the latitude of the
state on the hybrid-order Poincaré sphere, while the longi-
tude is determined by the initial orientation angle α0. We
therefore can achieve any vector vortex beams by controlling
the phase retardation and initial orientation angle of the q plate.
An important point should be noted that for general cases with
q �= 1, α0 can be varied by rigidly rotating the q plate; we there-
fore can achieve a similar effect of selecting the longitude line.

For the case of σ = ±1 and l = −m, the hybrid-order
Poincaré sphere reduces to the high-order Poincaré sphere
[7,8]. For the case of σ = 0 and l = −m, the hybrid-order
Poincaré sphere reduces to the orbital Poincaré sphere [3,4].

For the case of σ = ±1 and l = m = 0 the hybrid-order
Poincaré sphere reduces to the well-known fundamental plane-
wave Poincaré sphere. In addition, the hybrid-order Poincaré
sphere can also be extended to describe the electron vortex
beam where the Pancharatnam-Berry phase is related to real
magnetic field [18]. Note that the rotational symmetry of a light
beam’s electric field gives rise to the temporal frequency shift
or rotational Doppler effect [19–22]. For a spatial rotation
of anisotropic axis in plane transverse to the propagation
direction of the beam, the rotational Doppler effect is valid
by replacing the temporal frequency shift with a spatial one
[23,24]. The hybrid-order Poincaré may provide a convenient
route to describe the spatial Doppler effect.

III. CONCLUSIONS

In conclusions, we have proposed a hybrid-order Poincaré
sphere to describe the evolution of polarization states in
inhomogeneous anisotropic media. The metasurface (a two-
dimensional electromagnetic nanostructure) [25] is expected
to be a good candidate for realizing the evolution of po-
larization states on the hybrid Poincaé sphere. By correctly
controlling the local orientation and geometrical parameters
of the nanograting, one can achieve any desired polarization
distribution on the hybrid-order Poincaré sphere [26,27].
We have demonstrated that both the Berry curvature and
the Pancharatnam-Berry phase on the hybrid-order Poincaré
sphere are demonstrated to be proportional to the variation
of total angular momentum. A representation of beams in
the framework of the hybrid-order Poincaré sphere would
offer great utility to describe the spin-orbit interaction and
Pancharatnam-Berry phase.
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APPENDIX A: CALCULATION OF BEAM EVOLUTION IN
INHOMOGENEOUS MEDIA

In this appendix we give a detailed calculation of beam
evolution in inhomogeneous anisotropic media. The manipu-
lation of the polarization state and phase is obtained by using
the effective birefringent nature of inhomogeneous media. If
the orientation of the optical axis is space variant at each
location, the grating can be described by the space-dependent
matrix [28]:

T(r,ϕ) = M(r,ϕ)JM−1(r,ϕ). (A1)

Here, J is the Jones matrix of a uniaxial crystal, and

M(r,ϕ) =
(

cos α sin α

sin α −co sα

)
, (A2)

where α(r,ϕ) is the local orientation of the optical axis. It can
be easily proved that the Jones matrix T(r,ϕ) of the optical
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field interacting with the inhomogeneous anisotropic media at
each transverse position (r,ϕ) is given by the following:

T(r,ϕ) = cos
δ

2

(
1 0
0 1

)

− i sin
δ

2

(
cos 2α sin 2α

sin 2α −cos 2α

)
. (A3)

The Jones vector of the electric field associated with the
input wave is given by |ψ〉 = √

2/2(êx + iσ êy) exp(ilϕ). The
beam in the inhomogeneous anisotropic media |ψ(δ,ϕ)〉 =
T(r,ϕ)|ψ〉 can be written as

|ψ(δ,ϕ)〉 = cos
δ

2
exp(ilϕ)

√
2

2
(êx + iσ êy) − i sin

δ

2

×
√

2

2
(êx + iσ êy) exp[i(lϕ + 2σα)]. (A4)

Here, we pay our attention to the evolution of polarization and
phase, and therefore ignoring the evolution of intensity in the
radial coordinate.

APPENDIX B: CALCULATION OF BERRY CONNECTION
AND BERRY CURVATURE

In this appendix we give a detailed calculation of the Berry
connection and the Berry curvature. From Eq. (17) the three
components of the Berry connection can be written as

Aρ = i〈ψ(R)|∂ρ |ψ(R)〉, (B1)

Aθ = i〈ψ(R)|∂θ |ψ(R)〉/ρ, (B2)

A� = i〈ψ(R)|∂ϕ|ψ(R)〉/(ρ sin θ ). (B3)

As |ψ(R)〉 is independent of ρ, and ∂ρ |ψ(R)〉 = 0. Substi-
tuting it into Eq. (B1) we get

Aρ = i〈ψ(R)|∂ρ |ψ(R)〉 = 0. (B4)

From Eq. (14), we know that

|∂θψ(R)〉 = −1

2
sin

θ

2
|Nl〉 + 1

2
cos

θ

2
|Sm〉 exp(+iσ�). (B5)

Substituting it into Eq. (B2) we get

Aθ = i〈ψ(R)|∂θ |ψ(R)〉/ρ
= − 1

4ρ
sin θ〈Nl|Nl〉 + 1

4ρ
sin θ〈Sm|Sm〉 = 0. (B6)

From Eq. (14), we get

|∂�ψ(R)〉 = il

2
sin

θ

2
|Nl〉 + i(m + 2σ )

2
cos

θ

2
|Sm〉e+iσ�.

(B7)

Substituting it into Eq. (B3) we get

A� = i〈ψ(R)|∂�|ψ(R)〉/(ρ sin θ )

= − 1

4ρ sin θ
[l(1 + cos θ ) + (m + 2σ )(1 − cos θ )]. (B8)

The Berry curvature is given by V(R) = −∇R × A, where
the Laplace operator in the sphere coordinate representations
can be written as

∇ = d

dρ
ρ + 1

ρ

d

dθ
θ + 1

ρ sin θ

d

d�
�. (B9)

We then get

V(R) =
∣∣∣∣∣∣
ρ ρθ ρ sin θ�
d
dρ

d
dθ

d
d�

Aρ ρAθ ρ sin θA�

∣∣∣∣∣∣ . (B10)

Because of Aρ = Aθ = 0, we can just obtain a component
from Eq. (B10) as

Vρ =
d
dρ

(ρ sin θA�)

ρ2 sin θ
. (B11)

After substituting Eq. (B8) into Eq. (B11), we get

Vρ(R) = l − (m + 2σ )

4ρ2
, (B12)

which is proportional to the variation of total angular momenta
of light.
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