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Long-lived, spatially localized, and temporally oscillating nonlinear excitations are predicted by numerical
simulation of coupled Gross-Pitaevskii equations. These oscillons closely resemble the time-periodic breather
solutions of the sine-Gordon equation but decay slowly by radiating Bogoliubov phonons. Their time-dependent
profile is closely matched with solutions of the sine-Gordon equation, which emerges as an effective field theory
for the relative phase of two linearly coupled Bose fields in the weak-coupling limit. For strong coupling the
long-lived oscillons persist and involve both relative and total phase fields. The oscillons decay via Bogoliubov
phonon radiation that is increasingly suppressed for decreasing oscillon amplitude. Possibilities for creating
oscillons are addressed in atomic gas experiments by collision of oppositely charged Bose-Josephson vortices
and direct phase imprinting.
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I. INTRODUCTION

Oscillons are localized and oscillating concentrations of
energy in a nonlinear field that decay very slowly over many of
their oscillation periods [1–3]. They are thought to be relevant
in the dynamics of cosmological phase transitions [4] and
inflation scenarios [5], where they provide localized stores of
energy. In contrast to cosmic strings [6] or other topological
defects that can only be destroyed by annihilation, isolated
oscillons can decay by radiation over long time scales. Closely
related to oscillons are breathers, which are time-periodic
localized solutions of a nonlinear field equation [3]. Breathers
only exist when resonance between the breather frequency and
extended linear waves is avoided. This is known to happen only
in integrable nonlinear wave equations like the sine-Gordon
(SG) equation [7] and the nonlinear Schrödinger equation [8],
or in nonlinear lattices [9] due to the occurrence of band gaps in
the linear wave spectrum. Oscillons are thus the more generic
localized and oscillating nonlinear excitations.

In most nonlinear field equations, oscillon solutions are
not known in closed form and the investigation of oscillon
properties relies on numerical simulations. However, due to the
integrability of SG equation in 1 + 1 dimensions [10,11], the
closed form solutions of SG breathers as well as solitons can
be derived [12]. The fundamental solitons of the SG equation
are localized topological excitations with a topological charge
of ±1 known as kinks and antikinks, respectively. Sine-Gordon
breathers are localized in space and periodic in time and can be
understood as the bound states of kink and antikink. Since their
total topological charge is zero, breathers are not protected by
their topological properties but rather by the integrable nature
of the SG equation. Slight modifications of the equation that
break the integrability typically destroy the breather solutions.
However, numerical methods can still find long-lived spatially
localized and oscillating concentrations of energy, namely,
oscillons [3,13,14].

Linearly coupled BECs have been proposed as a model
system to simulate the sine-Gordon equation in a variety of

contexts [15–17]. This has aroused considerable interest in
investigating the excitations of linearly coupled Bose gases,
in particular Josephson vortices, which are closely related to
SG kinks [18–22]. In a recent paper several of us simulated
the spontaneous formation and decay of Josephson vortices
within the Kibble-Zurek scenario of a rapid quench through
the BEC phase transition in quasi-one-dimensional coupled
Bose gases [23]. The finding that post-quench dynamics
and in particular the collision and annihilation of Josephson
vortices contribute decisively to the breakdown of Kibble-
Zurek scaling laws has motivated the current study. As shown
in Sec. IV A, the collision of slow and oppositely charged
Josephson vortices generically produces oscillons.

It has further been suggested that breather-like excitations
(oscillons) with a finite lifetime can be spontaneously formed
in coupled BECs via a dynamical instability triggered by
parametric amplification of quantum fluctuations [16]. This
emergence of localized excitations from amplified quantum
fluctuations bears close analogy with the formation of oscillons
after inflation of the early universe predicted within relativistic
cosmological models [5]. The coupled BECs may thus provide
an experimentally accessible model to simulate the evolution
of the early universe [17].

While recent works on simulating the SG model using
coupled BECs have focused entirely on the relative phase
dynamics [15–17], this picture neglects the coupling to the
symmetric degrees of freedom in the system, such as the
total phase and densities of the condensates. Realistically,
such couplings can serve as channels of decoherence that
can significantly alter the relative-phase dynamics and then
lead to the instability of nontopological excitations, such
as breathers. A similar circumstance arises, for example, in
annular Josephson junctions, where an effective dissipation
is introduced by carefully eliminating electronic degrees of
freedom [24,25]. By the same token, it has been shown that
the breathers are not robust against an ambient perturbation
and hence decay by continuously radiating phonons [26–28]
thus forming oscillons. This motivates us to carry out a detailed
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study of the full dynamics of breather-like excitations in BECs.
Specifically, we investigate the time evolution of an initial
SG breather state by numerically solving the Gross-Pitaevskii
equation over broad ranges of coupling energy and imprinted
SG breather frequency. We assess the stability of the long-lived
oscillon, and present a simple and feasible experimental
scheme to create an oscillon by the phase-imprinting method
in a double-ring BEC system.

The organization of this paper is as follows. In Sec. II, we
give a brief account of the system consisting of two linearly
coupled BECs. We outline the emergent SG sector in the
weak-coupling limit, and its kink solutions. In Sec. III, we
numerically demonstrate that the oscillon forms by imprinting
the SG breather onto the initial state of the BECs, and the
stability of the oscillon is studied for broad ranges of coupling
energy and imprinted SG breather frequency. In Sec. IV, we
demonstrate the creation of an oscillon from the collision of
two Josephson vortices, and outline experimental constraints
for a realistic phase-imprinting protocol in a double-ring
geometry. We conclude in Sec. V.

II. MODEL

We consider a system consisting of two linearly coupled
BECs, which are tightly confined in the transverse directions
but loosely confined in the longitudinal direction. The grand-
canonical Gross-Pitaevskii (GP) energy functional for this
quasi-one-dimensional system is given by

E =
∑
j=1,2

∫
dz

[
�

2

2m
|∂zψj (z)|2 + g

2
|ψj (z)|4 − μ|ψj |2

]

− ν̃

∫
dz[ψ∗

1 (z)ψ2(z) + ψ∗
2 (z)ψ1(z)], (1)

where ψj is the order parameter of the jth condensate, μ the
chemical potential, ν̃ the coupling strength characterizing the
tunneling energy between the two systems, and g the effective
nonlinear interaction strength. The equation of motion for each
ψj can be derived via the Hartree variational principle, namely,
i�∂tψj = δE/δψ∗

j . For computational simplicity, we let the
length and time to be scaled in units of lc = �/

√
mμ and

t0 = �/μ, respectively, so that the coupled GP equations are
expressed in the dimensionless form

i∂tψ1 = (−∂2
z

/
2 + |ψ1|2 − 1

)
ψ1 − νψ2,

(2)
i∂tψ2 = (−∂2

z

/
2 + |ψ2|2 − 1

)
ψ2 − νψ1,

where ν = ν̃/μ is the dimensionless coupling energy.
The ground state of the coupled BECs can be determined

by minimizing the energy functional, Eq. (1), where we seek
the minimum of V (ψ1,ψ2) ≡ ∑

j=1,2 |ψj |2[ 1
2 |ψj |2 − 1] −

ν[ψ∗
1 ψ2 + ψ∗

2 ψ1]. The symmetry V (ψ1,ψ2) = V (ψ2,ψ1) im-
poses a common amplitude for the ground-state fields. Taking
ψ0

1 = √
ρ0e

iφ1 , ψ0
2 = √

ρ0e
iφ2 , and � = φ1 − φ2, the mini-

mum of V = ρ2
0 − 2μρ0 − 2νρ0 cos � occurs at � = 0 and

ρ0 = (1 + ν).

A. Collective excitations

To find the low-lying excitations above the ground state, we
can replace ψj with ψ0

j + α
j
qe

iqz−iωt − β
j∗
q e−iqz+iωt in Eq. (2)

and retain the expressions up to the linear order in αq and βq ,
which then leads to the Bogoliubov-de Genes (BdG) equation⎡

⎢⎣
H0 − ω −(1 + ν) −ν 0
1 + ν −H0 − ω 0 ν

−ν 0 H0 − ω −(1 + ν)
0 ν 1 + ν −H0 − ω

⎤
⎥⎦

×

⎡
⎢⎢⎢⎢⎣

α1
q

β1
q

α2
q

β2
q

⎤
⎥⎥⎥⎥⎦ = 0, (3)

where H0 = q2/2 + (1 + 2ν). The low-lying excitation spec-
trum is determined by solving the eigenvalue problem, Eq. (3).
As a result, we obtain two distinct dispersion relations for the
excited modes:

ω1 =
√

q2

2

(
q2

2
+ 2ν + 2

)
, (4)

with the eigenvector ∼(u,v,u,v)T , and

ω2 =
√(

q2

2
+ 2ν

)(
q2

2
+ 4ν + 2

)
, (5)

with the eigenvector ∼(u,−v,−u,v)T . Equation (4) represents
a gapless mode, corresponding to the in-phase excitation
of the two components of condensates, which manifests
itself as the Bogoliubov sound wave propagating at a speed
vBog = √

1 + ν. On the other hand, Eq. (5) indicates a gapped
mode, which corresponds to out-of-phase excitation. It should
be noted that these two modes are decoupled in the linear
approximation. Moreover, the gapped excitation possesses a
relativistic energy dispersion ω2

2 = q2c2
2 + m2

2c
4
2 with sound

speed, c2
2 = 1 + 3ν and the rest energy, m2

2c
4
2 = 4ν(1 + 2ν).

The gapless branch accounts for the relative phase dynamics
which can be described by the sine-Gordon equation [17].

B. Sine-Gordon regime

Before studying the oscillon excitation in linearly coupled
BECs, we investigate the low-energy dynamics of the symmet-
ric degrees of freedom. In general, the order parameters of the
coupled BECs can be represented by ψ1 = √

ρ ei(φs+φa )/2 sin θ

and ψ2 = √
ρ ei(φs−φa )/2 cos θ , where φs and φa are, respec-

tively, the total and relative phase, ρ the total density, and
θ is the density mixing angle. Substituting ψ1 and ψ2 into
Eq. (1) with the assumption that the coupling between the
two BECs is sufficiently weak, and following the arguments
used in Ref. [17], we obtain the relevant Hamiltonian density
accounting for the sine-Gordon dynamics

HSG = (1 + ν)

4
(∂zφa)2 + (1 + ν)2(1 + cos 4θ )

− 2ν(1 + ν)(cos φa − 1) sin 2θ, (6)
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where the total density ρ is replaced by the sum of the ground-
state density of the two components, namely, 2ρ0 = 2(1 + ν).
Using the variational principle, the Euler-Lagrange equation
of the relative phase is derived [17],

∂2
t φa − (1 + ν)∂2

z φa + 4ν(1 + ν) sin φa = 0, (7)

which is equivalent to the SG equation. It is well known that
the SG equation possesses the topologically protected kink
and antikink solutions [12], i.e.,

φS
a = 4 tan−1

[
exp

(
±

√
4ν

z − z0√
1 − 2v2/(1 + ν)

)]
, (8)

where the +(−) sign corresponds to the kink (antikink) and v

and z0 are the velocity and the initial location of the (anti)kink,
respectively. Remarkably, the kink and antikink in Eq. (8) may
form a bound kink-antikink pair. Such a solution does exist
for the SG model, which is spatially localized but temporally
oscillating, and is thus called breather,

φB
a = 4 tan−1

⎡
⎣

√
1 + ν sin

√
4ν

1+u2/(1+ν)ut

u cosh
√

4ν
1+u2/(1+ν)z

⎤
⎦ . (9)

Here u is a positive constant that parametrizes the amplitude
and frequency of the breather by

φB
a,max = 4 tan−1

(√
1 + ν

u

)
, (10)

and

ωB = u

√
4ν

1 + u2

1+ν

, (11)

respectively. In contrast to kink and antikink, the breather is
not protected by topology but is protected by the integrability
of the SG equation. The breather becomes unstable once
the integrability is broken. From Eq. (9), we can define the
full width at half maximum (FWHM) of the breather, zw =√

[1 + u2/(1 + ν)]/4ν sech−1(1/2). Note that the amplitude
(frequency) decreases (increases) with increasing u. With
Eq. (9), it is straightforward to show that the energy of a
breather is given by

EB = 16(1 + ν)
√

ν(1 − ω̃2), (12)

with ω̃ = ωB/
√

4ν(1 + ν) [29]. In addition to the kink and
breather, the SG equation also possesses extended phonon
excitations [12].

The Hamiltonian, Eq. (6), represents an emergent SG sector
in the weak coupling limit of the total GP Hamiltonian, where
the latter supports excitations described by both asymmetric
and symmetric degrees of freedom. Excitations in the SG
sector such as the kink, breather, and phonon depend only on
the asymmetric degrees of freedom. On the other hand, off the
SG sector, there are other types of excitations depending on the
symmetric degrees of freedom, such as the Bogoliubov phonon
(gapless excitation) and the GP dark (grey) soliton which has a
2π (<2π ) phase jump in the total phase. Under the framework
of the full GP formalism, theses excitations of different
degrees of freedoms would couple to each other and these
couplings would play an important role in the dynamics of

the condensates. Therefore, it is expected that the SG breather
is not stable in the presence of these couplings and would
decay by slowly radiating energy, thus forming a so-called
oscillon. In the following section, we investigate dynamics of
the oscillon excitations in the linearly coupled BECs.

III. DYNAMICAL STABILITY

To create an oscillon, we begin with a phase-imprinted SG
breather, with the relative phase given by Eq. (9), initially
imprinted into a system of two linearly coupled BECs in
a double-ring geometry. The couplings between different
degrees of freedom lead to the instability of the initially
imprinted breather and result in energy radiation in terms of
sound waves. We expect that the propagation of the emitted
sound waves may introduce extra effects to the dynamics of the
oscillon, and our aim is to investigate how the oscillon evolves
under the influence of the evolving background condensates.

A technical issue arises, namely, that since we impose
periodic boundary conditions corresponding to a double-
ring geometry for the numerical computations, whenever the
outgoing sound waves reach one of the boundaries they will
re-enter the system from the boundary at the opposite side.
These re-entering waves will interfere with those outgoing
ones and also interact with the oscillon, complicating the
dynamics in an uncontrollable way. To suppress the reentry of
the emitted sound waves, we impose the absorption boundary
layers by including a position-dependent damping coefficient
σ (z) in Eq. (2), which turns Eq. (2) into a damped GP
equation [30–32]

i∂tψ1 = (1 − iσ )
[(−∂2

z

/
2 + |ψ1|2 − 1

)
ψ1 − νψ2

]
, (13)

i∂tψ2 = (1 − iσ )
[(−∂2

z

/
2 + |ψ2|2 − 1

)
ψ2 − νψ1

]
. (14)

The damping coefficient σ varies with z according to the
prescription σ (z) = 1 + [erf (s(z − z0)) − erf (s(z + z0))]/2,
where z0 and 1/s are the center and the width of the error
function, respectively. In the simulations, z0 is chosen to be
located far from the origin and s is set to be sufficiently small,
such that σ is increasing smoothly over the boundary layer and
the reflected sound waves are greatly reduced. From a physical
point of view, the absorber means that we are effectively
considering a very large ring system, where the feedback from
acoustic emissions lags the oscillon dynamics by a significant
time scale.

In what follows, we present the main results obtained by
numerically integrating Eqs. (13) and (14) over a variety
of initial conditions, where the space integration is by the
highly accurate Fourier pseudospectral method, and the time
integration is by the adaptive Runge-Kutta method of orders 4
and 5 (RK45).

A. Dynamics of the oscillon

To study the dynamics and stability of oscillons in the
coupled BECs, we imprint the phase profile of the SG breather,
φB

a , which is defined in Eq. (9), onto the homogeneous
background density n0

1 = n0
2 = 1 + ν,

ψ1(t = 0) = ψ∗
2 (t = 0) = √

1 + ν eiφB
a /2, (15)
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FIG. 1. (Color online) Time evolution of the oscillon with imprinted SG breather parameters, u = 0.5 and ν = 0.01 [Eq. (9)]: (a) The
density profile of the two superposed atomic fields, |ψ1 + ψ2|2. (b) The spatial distribution of the relative phase, φ1 − φ2. (c) The spatial
distribution of the total phase, φ1 + φ2. (d) The density profile of the grand canonical GP energy E. (e) The measured frequency of the oscillon.
(f) The computed localized energy of the oscillon: blue circle indicates the energy EB obtained according to Eq. (12); black line indicates the
energy E obtained by integrating Eq. (1); red line indicates the energy HSG obtained by integrating Eq. (6).

and evolve this initial state in accordance with Eqs. (13)
and (14).

1. Weak coupling

We first consider the case of a weak-coupling energy
ν = 0.01, and u = 0.5 for the initially imprinted SG breather
profile. The created oscillon can be easily identified in the
pattern of superposition |ψ1 + ψ2|2 and in the time-varying
spatial distribution of the relative phase φ1 − φ2, as shown
in Fig. 1(b). Continuous emission of Bogoliubov sound
waves from the oscillon is revealed by the appearance of the
wavefronts in Figs. 1(a) and 1(c), which corresponds to the
up-chirping of the oscillon frequency as shown in Fig. 1(e).
To characterize the evolution of the oscillon, we measure the
frequency (period) of the relative phase oscillation shown in
Fig. 1(e). To verify the degree of deviation of the oscillon from
the SG breather, we compare the energy of the oscillon with
those calculated by integrating the GP energy functional (1)
and SG Hamiltonian (6) within the region of localization of
the oscillon, −7zw < z < 7zw. As shown in Fig. 1(f), the
energies EB of Eq. (12) obtained from the measured oscillon
frequency (blue circle), the GP energy E of Eq. (1) (black
line), and the SG Hamiltonian HSG of Eq. (6) (red line) agree
closely with each other, implying that the resulting oscillon
is almost identical to the SG breather. Furthermore, the red
line shows small-amplitude oscillation caused by the coupling
of the asymmetric degrees of freedom to the symmetric
ones and this suggests that the observed localized energy
oscillation is in the context of the oscillon. We also perform
the simulations for much smaller couplings, and the oscillation
of SG energy and the emission of the Bogoliubov sound are
suppressed which suggests that for sufficiently weak coupling

(ν � 1) the coupled BECs support long-lived oscillon-type
excitations. Studies of both the φ4 and the perturbed SG
models have predicted the decay of the oscillon excitation via
phonon emission [26–28]. However, in the weakly coupled
BEC system we observe a slightly different decaying behavior
where the oscillon-type excitations in the asymmetric degrees
of freedom lose energy to the symmetric degrees of freedom by
emitting Bogoliubov phonons. Unlike the φ4 and SG model,
the decay which we observed could only occur in the coupled
BECs since the coupled BECs support different degrees of
freedom.

2. Strong coupling

In the strong-coupling regime, the relative phase dynamics
is beyond the SG description so the dynamical properties of
the oscillon are expected to be different from those of the
SG breather. To study the oscillon dynamics in the strong-
coupling regime, we follow the same simulation procedure in
the weakly coupled BECs by imprinting the SG breather onto
the ground state. We first consider a stronger coupling energy
of ν = 0.5 and an initially imprinted SG breather of u = 0.5.
The evolution is shown in Fig. 2, where the imprinted SG
breather is unstable and decays into two GP solitons instantly.
We see that the two GP grey solitons, which carry the majority
of the excitation energy, move towards the boundaries of the
coupled condensates. However, we find that the oscillon could
remain long lived by increasing u of the initially imprinted
SG breather. Now let us consider the same coupling energy
but with an otherwise different initial imprinted SG breather
of u = 10. The time evolution of this initial state is shown
in Fig. 3. In Fig. 3(a), the imprinted SG breather emits sound
waves initially to reduce its energy and then form the long-lived
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FIG. 2. (Color online) Formation of GP solitons with the im-
printed SG breather parameters, u = 0.5 and ν = 0.5 [Eq. (9)]:
(a) The density profile of the two superposed atomic fields, |ψ1 +
ψ2|2. (b) The spatial distribution of the relative phase, φ1 − φ2. (c)
The spatial distribution of the total phase, φ1 + φ2. (d) The density
profile of the grand canonical GP energy E. Note that the imprinted
SG breather is unstable which instantly decays into two GP solitons.

oscillon excitation. In contrast to the oscillon in the SG regime,
the oscillon in the strongly coupled BECs exhibits different
dynamical behavior: the oscillon only emits sound waves at the
beginning and subsequently the total phase manifests localized
breathing oscillation as shown in Figs. 3(a) and 3(b). Similar
to the weak-coupling case, we also compare the energies of

the oscillon obtained by Eqs. (1), (6), and (12) and find that
all these results are noticeably different. We see that the GP
energy density [Fig. 3(d)] shows a different behavior from the
weak-coupling case [Fig. 1(d)]. The latter exhibits a temporally
oscillatory behavior but the former does not. This oscillation
implies the energy transfer between the asymmetric degrees
of freedom and the symmetric degrees of freedom which also
accounts for the emergence of the oscillon in both the total
and relative phases. Furthermore, the deviation of GP energy
from the breather energy obtained by inserting the measured
frequency into Eq. (12) [Fig. 3(e)] implies that the relative
dynamics in the present case cannot be properly described by
the SG equation. We have also considered a much stronger
coupling energy and the result shows similar behavior except
a much larger amplitude oscillation in the total phase. The
numerical results show the possibility of studying the oscillon-
type excitation in the strongly coupled BECs.

3. Phase diagram

From the previous simulations, we conclude that the long-
lived oscillon excitation can exist in both weak- and strong-
coupling regimes. In general, the stability of the oscillon
depends on two parameters, ν and u. We notice that u is not
directly related to system parameters, but it can be expressed
in terms of ν and ωB , the frequency of the initial SG breather.
Therefore, it is more practical to characterize the stability of
the oscillon as a function of the coupling ν and the frequency
ωB of the imprinted breather. We take the relative energy
Er , which is the ratio of remnant GP energy to the GP
energy of the imprinted initial state, as a measure of the
stability of the oscillon. Here the GP energy of the oscillon
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FIG. 3. (Color online) Time evolution of the oscillon with imprinted SG breather parameters, u = 10 and ν = 0.5 [Eq. (9)]: (a) The density
profile of the two superposed atomic fields, |ψ1 + ψ2|2. (b) The spatial distribution of the relative phase, φ1 − φ2. (c) The spatial distribution
of the total phase, φ1 + φ2. (d) The density profile of the grand canonical GP energy E. (e) The measured frequency of the oscillon. (f) The
computed localized energy of the oscillon: blue circle indicates the energy EB obtained according to Eq. (12); black line indicates the energy
E obtained by integrating Eq. (1); red line indicates the energy HSG obtained by integrating Eq. (6). The deviation of the red and black lines in
(f) indicates that the strongly coupled condensates cannot be described by the SG equation for the relative phase.
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is evaluated by integrating the energy density over the interval
−7zw < z < 7zw. To avoid the transient effects of the initial
phase imprinting, the relative energy is obtained by calculating
the ratio of the GP energy at t = 15T0 to that at t = 0, where
T0 = 2π/ωimp is the period of the imprinted SG breather. In
the simulation, ν is varied from 0.01 to 0.6, and for each ν, the
imprinted frequency ωimp is varied from 0.005 to

√
4ν(1 + ν).

The limiting value
√

4ν(1 + ν) is the maximally possible
frequency of the SG breather of Eq. (10) and indicates the
boundary beyond which the SG breather cannot be imprinted.
Numerically we also find an energy threshold for stability
given by Er ∼ 0.4, i.e., the oscillon is unstable if 0 < Er � 0.4
and stable if 0.4 � Er � 1.

The results are shown in Fig. 4(a), where we see that the
oscillon as the remnant of the imprinted SG breather is always
long lived (Er ∼ 1) as long as ν < 0.04. In Fig. 4(a), the upper
green area marks the forbidden domain where no SG breather
can be phase imprinted and the black area indicates the domain
where the imprinted SG breather would instantly decay into
two GP solitons as shown in Fig. 2. Moreover, we observe that
the oscillon energy loss is accompanied by an up-chirping of its
oscillation frequency with time. Hence, the frequency chirping
of the oscillon can also serve as a measure of stability. To
this end, we consider the relative frequency ωr = ωmeas/ωimp,
where ωmeas is defined as the mean frequency of the oscillon
averaged over the time interval 10T0 � t � 15T0; this interval
includes several oscillations, while being much shorter than
the chirp time scale. The results of the frequency chirping
are shown in Fig. 4(b). Besides the green area in the energy
diagram, there are two stable domains having relative energy
above the threshold. The upper stable domain in the energy
diagram shows a lower chirping rate frequency compared to
that of the lower (narrow) stable domain. This suggests that the
energy decay is stronger in the lower stable domain than in the
upper stable domain. We also observe that, while increasing
the frequency of the imprinted SG breather at a given coupling
energy, the two grey GP solitons originating from the decay
of the imprinted SG breather, which are visible in Figs. 2(a)
and 2(c), would gradually speed up in the black area of the
energy diagram. The decay into two grey GP solitons arises
in the lower stability region as well, yet the emitted solitons
acquire a speed very close to that of Bogoliubov sound,

indicating that the solitons are very unstable in this domain.
Note that in the upper stable domain, there are no grey solitons,
but instead two outgoing small density bumps appear when the
oscillon is stabilized as shown in Fig. 3.

We note that since the dynamical properties of the oscillon
in a strong-coupling regime are different from those of the
SG breather, the frequency of the imprinted SG breather may
not serve as the relevant parameter to describe the stability
of an oscillon in the strong-coupling regime, which leads to
the appearance of the bifurcated stable domain in the strong-
coupling regime (starting around ν ≈ 0.2 in Fig. 4).

We have shown how the oscillon originating from a SG
breather loses its energy in both weak- and strong-coupling
cases. The influence of external perturbations upon the
dynamics of topology-protected excitations [33], so to speak, is
broadly analogous to the influence of integrability breaking on
oscillons and solitons [34,35], namely, that the breakdown of
strict integrability couples the excitation to additional degrees
of freedom that can extract its energy. Intriguingly, we find that
the formation of oscillons could be related to the collision of
Josephson vortices, and in next section we shall address such
a possibility.

IV. FORMATION OF AN OSCILLON

Since Josephson vortices are topologically stable excita-
tions of the coupled BEC system, they can spontaneously
form during the BEC phase transition via the Kibble-Zurek
mechanism [23,36] and may then collide to form an oscillon.
A Josephson vortex pair could also be phase imprinted and
then allowed to collide. In this section we study the Josephson
vortex collision process as a basic prototype of oscillon
formation.

A. Collision of Josephson vortices

We simulate the collision of two Josephson vortices
of opposite handedness, namely, kink and antikink, which
provides a possibility of generating an oscillon for Eq. (13).
We recall that the static Josephson vortices in the linearly
coupled BECs exist when ν̃/μ < 1/3, and closed form
expressions are known from Ref. [18]. To obtain a solution for
moving Josephson vortices, we assume solutions propagating
with constant velocity and solve the resulting coupled GPEs
numerically, increasing the velocity in small steps starting from
zero [22]. The initial state for the time-dependent simulation
is made up of two countermoving Josephson vortices with
speed |v| = 0.1, initially located at both sides with equal
distance from the origin. As can be seen from Fig. 5, the
head-on collision of two Josephson vortices takes place at
the origin. Remarkably, the two Josephson vortices do not
annihilate each other but bind together to form a oscillon
excitation after the collision. As soon as the oscillon is formed,
it continuously emits Bogoliubov sound waves. Since the
coupling is very weak, it is expected that the relative phase
dynamics is essentially governed by the SG equation, and the
oscillon emerging from the collision of two Josephson vortices
(SG kinks) appears very close to a SG breather, as the one
depicted in Fig. 1. As shown in Fig. 5(a), the frequency of the
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FIG. 5. (Color online) Collision of two Josephson vortices (ν =
0.005): (a) The density profile of the two superposed atomic fields,
|ψ1 + ψ2|2. (b) The spatial distribution of the relative phase, φ1 −
φ2. The two countermoving Josephson vortices with velocities v =
±0.1 collide at the instant t = 800 forming an oscillon. As shown in
(a), the quasibreather continuously radiates Bogoliubov sound waves
to the background superfluid, causing an up-chirp of the oscillon’s
oscillation frequency.

oscillon increases with time. According to Eq. (12), increasing
ωB will lower the value of EB , implying that the oscillon in
Fig. 5(a) gradually loses its energy. This decay is due to the
fact that the relative phase φa can couple to the other degrees
of freedom in the GP energy, namely, the total phase φS and
density ρ. Although the oscillon is not an exact SG breather
and undergoes damping, it has a very long lifetime compared
to its breathing period, suggesting that oscillon excitations in
linearly coupled BECs may be observable in BEC experiments.

B. Constraints for phase imprinting

We have systematically studied the oscillon in the coupled
BECs at different regimes of coupling strength. A possible way
to realize the oscillon is to phase imprint the relative phase
profile by shining a Gaussian laser beam onto the coupled
BEC system, so that the Stark effect generated by the laser
can cause a controllable position-dependent phase difference
between the two BECs. To create the required relative phase
profile, the laser beam should be focused between the two
BECs and the focusing point should sit slightly away from the
centerline between the two BECs. Assuming that the phases
imprinted on the two BECs take the form

φi
1 = A exp[−z2/κ2], φi

2 = εA exp[−z2/κ2], (16)

where κ is the width of the Gaussian beam, α is the geometric
factor due to the departure of focal point from the centerline
between the two condensates, and A is proportional to the
product of laser intensity and time duration of the exposure.
As a consequence, the relative phase is given by �φ = (1 −
ε)A exp[−z2/κ2]. Matching the amplitude and width of �φ to
those of the SG breather given by Eq. (9), the width κ and the
amplitude A can be determined after some algebra as

κ2 = z2
w

ln
(

tan−1
√

1+ν
u

) − ln
(

tan
√

1+ν
2u

) , (17)

A = 4

1 − ε
tan−1

√
1 + ν

u
, (18)

where zw is the FWHM of the SG breather defined previously.
Note that the parameter range of the imprinted Gaussian
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FIG. 6. (Color online) Dynamics following a Gaussian phase
imprint as described in the text. Panels (a) and (c) show the density
profile of the superposition |ψ1 + ψ2|2, and (b) and (d) show the
relative phase φ1 − φ2 for two different sets of initial parameters:
u = 2, ν = 0.01, ε = 0.2 [(a) and (b)] and u = 10, ν = 0.5, ε = 0.2
[(c) and (d)]. In both cases a long-lived breather is created as seen in
the relative phase.

phase is limited since Eq. (17) becomes imaginary when
tan(

√
1 + ν/2u) > tan−1(

√
1 + ν/u).

To demonstrate that the aforementioned method is practical,
we simulate Eq. (13) by phase imprinting the Gaussian phase
profile with (ν,ε,u) = (0.01,0.2,2) and (0.5,0.2,10) and the
width κ and the amplitude A are given according to Eqs. (17)
and (18). Note that according to the assumption in Eq. (16),
a nonzero total phase will also be imprinted, which causes
disturbance in the total density. As shown in Fig. 6, this
disturbance is detectable only in the atomic interference
pattern Figs. 6(a) and 6(c)] despite the creation of an oscillon
excitation in the relative phase [Figs. 6(b) and 6(d)].

V. CONCLUSIONS

We have theoretically studied the dynamics of an oscillon
in the relative phase of two linearly coupled Bose-Einstein
condensates. The stability of the oscillon has been examined
over broad ranges of coupling energy and imprinted SG
breather frequency. In the weak-coupling limit, the system
exhibits SG dynamics predominantly, and thus an oscillon
forms a long-lived metastable excitation, despite gradually
losing energy to Bogoliubov phonons. In the strong-coupling
regime, the system dynamics is no longer governed by the
SG equation for the relative phase due to the increasingly
prominent interplay between the symmetric and asymmetric
degrees of freedom. A systematic study of parameter space
reveals large regions where the lifetime of the oscillon exceeds
its period by several orders of magnitude. The experimental
realization of oscillons may enable the possibility of using
Bose-Einstein condensates as an analog model to simulate and
characterize oscillon formation in the dynamics of the early
universe.
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