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Probing the flat band of optically trapped spin-orbital-coupled Bose gases using Bragg spectroscopy
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Motivated by recent efforts in creating flat bands in ultracold atomic systems, we investigate how to probe a flat
band in an optically trapped spin-orbital-coupled Bose-Einstein condensate using Bragg spectroscopy. We find
that the excitation spectrum and the dynamic structure factor of the condensate are dramatically altered when the
band structure exhibits various levels of flatness. In particular, when the band exhibits perfect flatness around the
band minima corresponding to a near-infinite effective mass, a quadratic dispersion emerges in the low-energy
excitation spectrum; in sharp contrast, for the opposite case when an ordinary band is present, the familiar linear
dispersion arises. Such linear-to-quadratic crossover in the low-energy spectrum presents a striking manifestation
of the transition of an ordinary band into a flat band, thereby allowing a direct probe of the flat band by using
Bragg spectroscopy.
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I. INTRODUCTION

There have been intensive efforts in realizing flat bands
in various context of condensed-matter [1] and atomic
physics [2–6]. The motivation behind this search is twofold.
First, a flat band, whose kinetic energy is highly quenched
compared to the scale of interactions, possesses macroscopic
level degeneracy and, as a result, interactions play a dominant
role in affecting the system that has given rise to many interest-
ing quantum phases [3]. Second, even more challenging is to
create topological flat bands with nonzero Chern number [7],
which can open a new avenue for engineering a fractional
topological quantum insulator [1,2] without Landau levels
prompted by the analogy to Landau levels [8] in condensed-
matter physics. Motivated by the ongoing interest in creating
flat bands in ultracold atomic systems [2–7,9], we address
below the problem of how to probe an arising isolated flat band
in an optically trapped spin-orbital-coupled Bose-Einstein
condensate (BEC) [9] by using Bragg spectroscopy.

The key ingredient of our work consists in investigating
how the excitation spectrum and dynamic structure factor of
the system change when the band structure varies its flatness.
Our main results are as follows. (i) A quadratic dispersion
ε(k) ∼ k2 emerges in the low-energy excitation spectrum if
the band is perfectly flat in the vicinity of energy-band minima
(corresponding to an infinite effective mass); contrasting
sharply, in the opposite case when the BEC has an ordinary
band, the familiar linear dispersion relation ε(k) ∼ k is found.
(ii) The static structure factor S(k) exhibits a crossover from
a linear (S(k) ∼ k) to a quadratic relation (S(k) ∼ k2) in the
momenta, when the band transforms from the ordinary into the
flat band. Moreover, by relating the flatness of the band with
the effective mass at the band minima and by using Feynman’s
relation ε(k) = ε0(k)/S(k) [10–12], we are able to directly
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connect the emerging quadratic dispersion in a perfect flat
band case with the vanishingly small kinetic energy in the
single-particle energy ε0(k).

The setting we consider to probe a flat band in a quasi-
one-dimensional BEC with spin-orbit coupling (SOC) trapped
in an optical lattice in the x direction is illustrated in Fig. 1.
In addition, we strongly confine the BEC in both the y and
z directions such that the dynamics of the model system
is effectively restricted to one dimension. Experimentally,
the setting in Fig. 1 can be realized by combining Bragg
spectroscopy [13,14] and SOC [15–17] that are available in
both BECs [18] and Fermi gases [19]. In particular, the one-
dimensional (1D) SOC with equal Rashba and Dresselhaus
contributions considered in this work has been implemented
in Ref. [18] by coupling two internal states of atoms 87Rb
via Raman lasers. Very recently, Bragg spectroscopy has been
employed to reveal the structure of the excitation spectrum
in a BEC with SOC in the free space [20–22]. In particular,
the measurement of the static structure factor combined with
Feynman’s relation [20–22] has allowed the experimental
verification of the emerging roton-maxon dispersion in these
systems. Building on this experimental progress in applying
Bragg spectroscopy in a free BEC with SOC, we propose that
Bragg spectroscopy in an optically trapped BEC with SOC
in quasi-one-dimension can help reveal the linear-to-quadratic
transition in the low-energy spectrum predicted in this work
and therefore provide a direct experimental probe of a flat band.
Theoretically, the Gross-Pitaevskii equation (GPE) has been
shown to describe well, at the mean-field level, both the static
and the dynamic properties of a BEC with SOC [9,23–26]. The
validity of the GPE can be tested a posteriori by evaluating
the quantum depletion of the condensate. For a more rigorous
proof of the validity of the GPE, we refer to the Supplemental
Material in Ref. [27].

This paper is organized as follows. In Sec. II we begin by
briefly describing the model system in which a flat band can
arise following Ref. [9]. Then, in Sec. III we show how Bragg
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FIG. 1. (Color online) On the left Bragg spectroscopy probes a
single-particle flat band generated by an optically trapped spin-orbit-
coupled Bose gas. Shown on the right is the schematic setup for
implementing a flat band realized in 1D spin-orbit-coupled Bose gas
proposed by Ref. [9]. Here �1 and �2 are the Rabi frequencies of
the Raman lasers for generating SOC. The interference of other two
counterpropagating laser beams labeled by k1 and k2 generates an
optical lattice. Bragg spectroscopy can be described theoretically by
the dynamic structure factor of the model system.

spectroscopy can present as an efficient tool to quantitatively
probe the presence of a flat band. Finally, Sec. IV is devoted
to the discussion of observing the described phenomena in a
possible experimental parameter regime and a summary of our
work.

II. EMERGING FLAT BANDS IN A
SPIN-ORBIT-COUPLED BEC

The system considered in this work is illustrated in Fig. 1,
which consists of a BEC with 1D SOC that is trapped in
a strongly anisotropic lattice potential. The transverse lattice
confinement in the y and z directions is sufficiently strong
to freeze the atomic motion in these directions, allowing the
atomic tunneling only in the x direction [28]. This realizes
an optically trapped quasi-1D BEC with 1D SOC in the x

direction, which can be well described by the GPE [9,23–26]

i�
∂�

∂t
= (H0 + Hint)�, (1)

with � = (ψ↑,ψ↓)T being the two-component condensate
wave functions. The Hamiltonian H0 describes non-interacting
bosons in a 1D optical lattice with SOC, reading

H0 = p2
x

2m
+ γpxσz + �σx + V0ER sin2(kLx), (2)

where m is the bare atom mass; σx and σz are the x and
z components of Pauli matrices; � is the Rabi frequency
for generating SOC; γ = 2π� sin(θR/2)/λRm, with λR the
wavelength of the two Raman lasers and θR the angle between
the lasers; and V0 labels the lattice strength in the unit
of the recoil energy ER = �

2k2
L/2m, with kL the wave vector

of the lasers creating the optical lattice. The Hamiltonian Hint

describes the hard-core interaction between bosonic atoms,
which can be generally written as

Hint =
∫

dx(g11n
2
↑ + g22n

2
↓ + 2g12n↑n↓), (3)

where n↑ = |ψ↑|2 and n↓ = |ψ↓|2 are the two-component
condensate densities and gij = 4π�

2aij /m(i,j = 1 or 2) is the
coupling constant, with aij the s-wave scattering length. In this
work, we limit ourselves to the case when g11 = g22 = g12 =
g = 4π�

2a/m > 0; in this regime, the striped phase will not
appear in the ground state. For later convenience, we rescale
the GPE (1) into the dimensionless form by introducing x →
kLx, t → (2ER/�)t , γ → γ /(�kL/m), � → �/2ER , and the
dimensionless interaction coefficient c = √

ωyωzkLaN/ER ,
with N the atom number in one unit cell and ωy and ωz the
trapping frequencies in the transverse directions.

The physics of an optically trapped quasi-1D BEC with
SOC is governed by the interplay among four parameters: the
SOC parameters γ and �, lattice strength V0, and interaction
c. Crucial to the emergence of the flat band in such systems,
as pointed out in Ref. [9], is the interplay between the SOC
parameters γ and � and the lattice strength V0. The basic
mechanism can be intuitively described using the single-
particle picture [9]. (i) Without the interaction (c = 0) and
the optical potential (V0 = 0), the single-particle Hamiltonian
H0 can be cast into a dimensionless form

H0 =
(

k2

2 + γ k �

� k2

2 − γ k

)
, (4)

which has two energy bands μ±(k) = k2/2 ±
√

γ 2k2 + �2

separated by a band gap 2� at k = 0. (ii) When an optical
lattice (V0 �= 0) is added to the Hamiltonian (4), a second
band gap will open at the edge of the Brillouin zone, with
the magnitude of the gap being dependent on V0. (iii) By
engineering (via tuning γ , �, and V0) the magnitude of both
gaps, a flat band can be realized. Strikingly, the existence of
flat bands stays robust against the mean-field interaction in the
BEC according to Ref. [9].

In Figs. 2(a1)–2(d1) we have plotted the lowest Bloch bands
Eg(k) for various choices of the SOC parameters γ and � and
lattice strength V0 by numerically solving Eq. (1) with fixed
interaction parameter c (the detailed numerical method can be
found in Refs. [29–31]). The presence of a flat band is manifest
to the eye [see Figs. 2(b1)–2(d1)], as compared to an ordinary
band [see Fig. 2(a1)]. Quantitatively, the global flatness of the
bands can be measured by the ratio W between the bad gap
and the bandwidth [9].

When the model BEC system is probed by Bragg spec-
troscopy, it is the excitation near the band minima kmin that
is addressed in the linear perturbation regime. Therefore, we
expect the local flatness at kmin to be directly probed in Bragg
spectroscopy, rather than the global flatness measured by W .

In order to characterize the local flatness near the band
minima, we have calculated the effective mass m∗(kmin) for
various bands (in this work, whenever we use the notation
m∗, we refer to the effective mass evaluated at kmin). Our
calculation shows that an ordinary band has m∗ ∼ 1 [e.g.,
1/m∗ = 0.65 in Fig. 2(a3)], while in comparison the flat
band has much larger effective mass m∗ 	 1, as expected
[see Figs. 2(b3)–2(d3)]. Interestingly, m∗ also varies sharply
for various flat bands such that we can further discriminate
between the sectional flat band [see Figs. 2(c1) and 2(d1)] and
the global flat band [see Fig. 2(b1)], the former having much
bigger effective mass m∗ than the latter. In other words, the
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FIG. 2. (Color online) (a1)–(d1) Lowest Bloch bands of an optically trapped spin-orbit-coupled BEC (in the inset, the lowest two Bloch
bands are plotted). (a2)–(d2) Lowest three Bogoliubov bands ωj and the vertical lines represent the excitation strengths Zj (j = 1,2,3) toward
the first three bands for q = 0.8kL, −1.2kL, and 2.8kL, respectively. (a3)–(d3) Lowest excitation spectrum. (a4)–(d4) Excitation strength
Z1,2,3 and static structure factor S via a given transferred momentum q. Here m∗ labels the effective mass at the energy minima kmin. The
parameters are given as follows: c = 0.0500 and (a1)–(a4) γ = 0.5000, V0 = 0.6000, and � = 0.8000; (b1)–(b4) γ = 1.0500, V0 = 1.0000,
and � = 1.1500; (c1)–(c4) γ = 0.6100, V0 = 2.0000, and � = 0.3700; and (d1)–(d4) γ = 0.7000, V0 = 1.0000, and � = 0.5005.

sectional band is locally much flatter near kmin than the global
flat band, even though its global flatness measured by W can
be actually smaller. Figure 2(b1) presents a typical globally flat
band, which has 1/m∗ = 0.059, whereas Figs. 2(c1) and 2(d1)
present two sectional flat bands, which have 1/m∗ = 0.0038
and 0.000 29, respectively. Noticing that m∗ → ∞ for the
sectional band in Fig. 2(d1), we call it a perfect flat band.
As we will see, the excitation behavior of the model BEC
can alter significantly when m∗ and the flatness of the band
changes.

III. PROBING FLAT BANDS USING
BRAGG SPECTROSCOPY

We now discuss how the flatness of a band in a SOC BEC
(see Fig. 1) can be revealed in Bragg spectroscopy. Bragg
spectroscopy consists here in generating a density perturbation
to the model system by using two Bragg laser beams that
have momenta k1,2 and a frequency difference ω (ω is much
smaller than their detuning from an atomic resonance [13,14]).
The linear perturbation is described by the Hamiltonian V1 =
V
2 [ρ†

qe
−iωt + ρ−qe

+iωt ], where ρq = ∑
j eiq·rj /� is the Fourier-

transformed one-body density operator and q = k1 − k2 is the
probe momenta. Right after the perturbation, the dynamical

structure factor [32,33] is probed, which is written as

S(q,ω) =
∑

e

|〈e|ρ†
q|0〉|2δ(ω − (Ee − Eg)/�), (5)

with |0〉 (|e〉) being the ground (excited) state having the energy
Eg (Ee). From the dynamic structure factor, the excitation
spectrum can then be extracted [30,31,33].

Let us calculate the excitation spectrum and the dynamic
structure factor S(q,ω) of the model system for various band
structures, from an ordinary band to a perfect flat band. For this
purpose, we apply the Bogoliubov theory [30,34] to Eq. (1) and
decompose the condensate wave function (ψ↑,ψ↓)T into the
ground-state wave function (φ↑0,φ↓0)T and a small fluctuating
term reading

(
ψ↑
ψ↓

)
= e−iμt

[(
φ↑0

φ↓0

)
+

(
u↑(x)
u↓(x)

)
e−iωt +

(
v∗

↑(x)
v∗

↓(x)

)
eiωt

]
.

(6)

By substituting Eq. (6) into Eq. (1) and expanding u↑, ↓(x)
and v↑, ↓(x) in the Bloch form in terms of ul and vl (l labels
the Bloch eigenstate), we obtain the Bogliubov–de Gennes
(BdG) equations M�φ = ω�φ, with �φ = (u↑l ,v↑l ,u↓l ,v↓l)
and

∫
dx(|u↑l|2 − |v↑l|2 + |u↓l|2 − |v↓l|2) = 1, and the matrix
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M reads

M =

⎛
⎜⎜⎜⎝

L(↑↓)(k + q) cφ2
↑0 � + cφ↑0φ

∗
↓0 cφ↑0φ↓0

−c(φ∗
↑0)2 −L(↑↓)∗(k − q) −cφ∗

↑0φ
∗
↓0 −� − cφ∗

↑0φ↓0

� + cφ∗
↑0φ↓0 cφ↓0φ↑0 L(↓↑)∗(−k − q) cφ2

↓0

−cφ∗
↑0φ

∗
↓0 −� − cφ∗

↓0φ↑0 −c(φ∗
↓0)2 −L(↓↑)(−k + q)

⎞
⎟⎟⎟⎠ , (7)

with

L(m1m2)(k) = − 1
2 (2in + ik)2 + V0 sin2(x) − iγ (2in + ik)

−μ + 2c
∣∣φm10

∣∣2 + c
∣∣φm20

∣∣2
(8)

and m1,m2 = ↑,↓. By solving the BdG equations numerically,
the Bogoliubov excitation spectrum can be extracted. Note
that, for a BEC trapped in optical lattices, two different types
of instabilities of the BEC, i.e., dynamical instability and
Landau instability [35], can break the superfluidity of the
model system, both of which have been extensively studied
in theory [35] and experiments [36]. In this work, in order to
avoid dynamical instability, which is relevant to our detailed
calculations, we have limited ourselves to the stable parameter
regime [9]. Then the dynamic structure factor can be found
via [30,34] S(q,ω) = ∑

j Zj (q)δ(ω − ωj (q)), where Zj (q)
and ωj (q) are the excitation strength and frequency from
the ground state to the j th Bloch band, respectively. In
particular, the static structure factor for the model system can
be immediately read off as [30,34]

S(q) =
∑

j

Zj (q). (9)

We present in Figs. 2(a3)–2(d3) the low-energy excitation
spectrum of an optically trapped BEC with SOC corresponding
to the four bands in Figs. 2(a1)–2(d1), respectively. We
find that, when the model BEC has an ordinary band, the
familiar linear relation ε(q) ∼ q arises [Fig. 2(a3)], whereas,
remarkably, when the model BEC has a perfect flat band,
a quadratic dispersion ε(q) ∼ q2 emerges [Fig. 2(d3)]. Such
distinct change in the excitation behavior of the model system
when the band flatness varies is also clearly observed in the
dynamic structure, which is shown in Figs. 2(a4)–2(d4). In
particular, the static structure factor [see black solid lines
in Figs. 2(a4)–2(d4)] exhibits a crossover from a linear
relation S(q) ∼ q to a quadratic relation S(q) ∼ q2, when
the band structure transforms from the ordinary into the
perfect flat.

The crossover from the linear dispersion ε(q) ∼ q to the
quadratic dispersion ε(q) ∼ q2 in the excitation spectrum of
the model BEC [37,38], when the band structure transits
from an ordinary band to a locally perfect flat band, can be
intuitively understood in connection with the effective mass
m∗ near the band minima. As previously mentioned, a perfect
flat band is associated with an almost infinite effective mass
m∗ → ∞, therefore, the q2 term is expected to vanish in
the single-particle dispersion relation ε0(q) (corresponding to
zero kinetic energy) and the leading term can only emerge as
ε0(q) ∼ q4. Thus, by using the above results S(q) ∼ q2 for
a perfect flat band and Feyman’s relation ε(q) = ε0(q)/S(q),
we immediately have ε(q) ∼ q2, which explains the numerical

results in Figs. 2(c1) and 2(d1). In contrast, in the opposite case
of an ordinary band when m∗ ∼ 1, the single-particle kinetic
energy is finite such that ε0(q) ∼ q2. Hence, from S(q) ∼ q

and Feynman’s relation, we have the familiar linear relation
ε(q) ∼ q in the BEC. We point out that, while the existence
of flat bands in an optically trapped quasi-1D BEC with SOC
can be described with a single-particle picture, the emerging
quadratic low-energy dispersion when the band is perfectly
flat is a many-body effect, which results from the interplay
between the interaction and the band’s flatness.

Finally, we have also analyzed how the excitation strength
Zj is affected by the lattice strength V0, in cases when
the band is ordinary [Fig. 2(a1)] and when the band is
flat [Figs. 2(b1)–2(d1)], respectively. As is clearly shown in
Figs 2(a2)–2(d2), where the first three Bogoliubov bands are
plotted, the dynamic structure factor is significantly affected
by the optical lattice compared to the free-space case [25].
In particular, for a given value of momentum transfer p, it
is possible to excite several states corresponding to different
bands. For example, Fig. 2(d2) shows that when a density
perturbation with q = 0.8kL is generated in the BEC, not only
is the first excitation strength Z1 = 0.37 obtained, but also
the second excitation Z2 = 0.04. An important consequence
is that, on the one hand, it is possible to excite the high-energy
states with small values of p; on the other hand, one can
also excite the low-energy states in the lowest band with high
momenta p outside the first Brillouin zone. Such excitation
behavior is shared by both the ordinary band [Fig. 2(b3)] and
the flat bands [Figs. 2(b4)–2(d4)] and therefore the existence
of flat bands cannot be revealed in the excitation strength Zj

alone.

IV. CONCLUSION

Overall, the crossover from linear to quadratic dispersion
in the low-energy excitation spectrum presents a striking
manifestation of the transition of an ordinary band into a
perfect flat band, which permits the direct probe of the flat
band using Bragg spectroscopy. The experimental realization
of our scenario amounts to controlling four parameters whose
interplay underlies the physics of this work: the lattice strength
V0, SOC parameters γ and �, and the interatomic interaction
c. All these parameters are highly controllable in the state-
of-the-art technologies: V0 can be changed from 0ER to
32ER; both γ and � can be changed by varying the angle
between the two Raman lasers or through a fast modulation
of the laser intensities [39]; in typical experiments to date,
we can calculate the interaction coupling c = 0.05 with the
relevant parameters [18] of a = 100aB with aB the Bohr
radius. Thus, we expect the phenomena discussed in this work
to be observable within the current experimental capabilities.
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To conclude, we have found that the excitation spectrum
of an optically trapped quasi-1D BEC with SOC alters
significantly when the band flatness varies. In particular,
when the model BEC exhibits a perfect flat band (corre-
sponding to m∗ → ∞ at the band minima), a quadratic
dispersion ε(q) ∼ q2 emerges in the low-energy excitation
spectrum, whereas, if the band is ordinary, the familiar linear
dispersion ε(q) ∼ q arises. The variation in the flatness of
the band also alters the dynamic structure significantly. In
particular, the static structure factor for a perfect band is
quadratic in momenta S(q) ∼ q2, in contrast to the case of
an ordinary band when S(q) ∼ q is linear. Based on these
results, we propose to use Bragg spectroscopy to probe the

arising flat band in an optically trapped quasi-1D BEC. The
experimental verification of the dynamic features predicted
in this work is expected to provide a significant advance
in our understanding of systems exhibiting flat-band-related
phenomena.
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