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Metastable Bose-Einstein condensation in a strongly correlated optical lattice
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We experimentally and theoretically study the peak fraction of a Bose-Einstein condensate loaded into a cubic
optical lattice as the lattice potential depth and entropy per particle are varied. This system is well described by the
superfluid regime of the Bose-Hubbard model, which allows for comparison with mean-field theories and exact
quantum Monte Carlo (QMC) simulations. By correcting for systematic discrepancies between condensate and
peak fraction, we find that the QMC simulations and measured peak fraction agree at low entropies per particle.
At high entropy, however, we discover that the experiment consistently shows the presence of a condensate at
temperatures higher than the critical temperature predicted by QMC simulations. This metastability suggests
that turning on the lattice potential is nonadiabatic. To confirm this behavior, we compute the time scales for
relaxation in this system, and find that equilibration times are comparable with the known heating rates. The
similarity of these time scales implies that turning on the lattice potential adiabatically may be impossible. Our
results point to the urgent need for a better theoretical and experimental understanding of the time scales for
relaxation and adiabaticity in strongly interacting quantum gases, and the importance of model-independent
probes of thermometry in optical lattices.
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I. INTRODUCTION

Research efforts using ultracold quantum gases trapped in
optical lattices to study models of strongly correlated matter,
such as cuprate superconductors, are at a crossroads. Rapid
experimental progress has enabled emulation of ever more
interesting and complex Hamiltonians, including those that go
beyond conventional condensed matter paradigms. However,
in most cases, the ultralow temperatures required to study
exotic many-particle ground states have been inaccessible to
experiments [1]. For example, experiments have prepared a
gas at temperatures close to the Néel temperature for fermionic
atoms trapped in a cubic lattice [2], which realize the Hubbard
model. However, there are no known viable methods for
reaching the orders-of-magnitude lower temperature required
to achieve the putative d-wave superfluid state.

The current approach to achieving low temperatures in
experiments is to cool a gas confined in a parabolic trap
and then slowly turn on an optical lattice potential. Reaching
lower temperatures in the lattice requires achieving lower
entropy per particle in the trap. At best, turning on the lattice
preserves entropy per particle. Generally, imperfections in the
experiment, such as spontaneous scattering of the lattice light,
and nonadiabaticity will lead to heating, and the entropy per
particle of the gas in the lattice will be higher than the initial
state. There are also proposals to cool the relevant degrees
of freedom for atoms in the lattice, which have not been
realized in experiments. In either approach, understanding and
verifying equilibration and measuring temperature are critical
to exploring low entropy states.

Understanding relaxation and equilibration dynamics in
strongly correlated systems is especially challenging. Exact
dynamics can only be calculated reliably for one-dimensional
systems and for short times. In two and three dimensions,
we are often forced to rely on approximate time-dependent
mean-field theories, which ignore correlation effects, or exact

simulations of small numbers of particles, which may not
reproduce experiments. Ultracold gas experiments introduce
an additional complication in that they are isolated from the
environment and a thermal bath is absent. Equilibration and
thermalization in closed quantum systems via interparticle in-
teractions is an open topic rife with unresolved questions [3,4].

Measuring temperature in closed quantum systems is also
challenging. In systems connected to a reservoir, such as
electronic solids, thermal contact is maintained with a carefully
calibrated thermometer. In contrast, in closed systems, temper-
ature must be measured via its relation to an observable derived
from the system itself. Such a procedure can be problematic
when the physics and energy spectrum of the system of interest
are not fully understood.

In this paper, we use a combination of experiment, quantum
Monte Carlo (QMC) simulations, and semianalytic theory
to explore equilibration and temperature in a prototypical
strongly correlated system: the Bose-Hubbard (BH) model
realized using ultracold bosonic 87Rb atoms trapped in an
optical lattice [5,6]. In the BH model, particles tunnel between
adjacent lattice sites with energy t , and particles interact on the
same site with energy U . Changing the ratio of t/U realizes
a quantum phase transition between superfluid and Mott
insulating states [7,8]. An important feature of the BH model is
that the equilibrium properties can be computed using a variety
of theoretical tools, and thus the experiments and theory can be
benchmarked against one another. If t/U < 1, strong coupling
expansions [9,10], Gutzwiller theory [11], and dynamical
mean-field theory [12] can be used. Conversely, if t/U > 1, the
Hartree-Fock-Bogliubov-Popov (HFBP) approximation can
be employed [13–15]. In this paper, we comprehensively test
the ability of these approximate methods to predict condensate
fraction, which is a primary experimental observable, by
comparing to quantum Monte Carlo simulations. QMC [16,17]
is statistically exact for the BH model for all ranges of t/U ,
since the sign problem is absent. For all theoretical and
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numerical predictions, we include the effects of the parabolic
trapping potential that is present in combination with the lattice
in experiments.

To experimentally test equilibration, we compare peak
fraction f0 [13,18–20] measured for lattice gases prepared
at varied temperature and t/U (in the superfluid regime)
to predictions from QMC simulations. Gases are cooled to
different temperatures in the trap before the lattice is turned
on. Temperature and entropy per particle are straightforwardly
determined for the weakly interacting trapped gas using time-
of-flight (TOF) imaging and a semi-ideal model [21]. After the
lattice is turned on slowly compared with the tunneling and
interaction time scales, peak fraction—which we show using
QMC simulations is closely related to condensate fraction n0

and can be used as an accurate thermometer—is measured
via TOF imaging. If the lattice turn-on is isentropic and the
gas remains in thermal equilibrium, then the measured peak
fraction should match the QMC prediction for the entropy
per particle measured before the lattice is turned on. At fixed
entropy per particle, the peak and condensate fraction drops at
higher lattice potential depths because of strong interparticle
interactions. Generally, the peak and condensate fraction will
be lower (and temperature higher) in the lattice than predicted
for the adiabatic case because of heating processes.

At low entropy per particle, we observe good agreement
with QMC predictions for peak fraction. However, at higher
temperatures, f0 is larger than predicted, implying lower en-
tropy per particle in the lattice than the initial state, in apparent
contradiction with the second law of thermodynamics. Above
the critical entropy per particle for superfluidity in the lattice,
a regime that has not been widely explored in experiments, we
find that f0 is nonzero. When such disagreement is present,
we show that there is no clear adiabatic time scale in the
experiment by measuring f0 for varied lattice-turn-on times.

While a full modeling of the dynamics present in the
experiment is beyond the scope of this paper, we obtain a rough
estimate for the time scales for equilibration and the lifetime
of the condensate by calculating the Landau damping time in
the lattice. We find that the time scale for thermalization can be
much longer than the tunneling and interaction time scales at
high entropy per particle. Furthermore, the condensate lifetime
is comparable to the heating time scale, making discrimination
of adiabaticity in the experiment difficult. Our measurements
in combination with these calculations imply the disagreement
between QMC and the experiment is likely due to a lack
of equilibrium and metastability of the condensate in the
lattice, making thermal equilibrium difficult to achieve and
challenging to distinguish from heating.

This paper is organized as follows. In Sec. II, we discuss the
experimental procedure along with the measurement protocols
used to obtain f0 as well as the entropy per particle S/N .
In Sec. III, we describe how the equilibrium n0 and f0 are
computed using full-scale QMC ab initio simulations and
mean-field theories. We show that the mean-field theory results
are generally in poor agreement with exact QMC predictions.
In Sec. IV, we discuss our results and show a comparison be-
tween the experimentally measured f0 and QMC predictions.
The discrepancy with experimental measures of f0 inevitably
points to a lack of adiabaticity during loading and the need
for a better understanding of the time scales of dynamics in

this system. Subsequently in Sec. V, we attempt to obtain a
rough estimate of the time scales for relaxation of the peak
fraction by calculating the Landau damping time in the lattice
for the experimentally measured entropies. Our calculations
suggest that the time scale for equilibration is comparable to
the time scale for heating, implying that the lack of agreement
between the theoretical and experimental results may be due
to a nonequilibrium effect. In Sec. VI, we present concluding
remarks and discuss future research directions.

II. EXPERIMENT

The details of our 87Rb Bose-Einstein condensate (BEC)
lattice apparatus are described in Ref. [22]. We prepare
approximately 200 000 87Rb |F = 1,mF = −1〉 atoms con-
fined in a harmonic trap that is formed from a single-beam
optical dipole trap at 1064 nm traveling perpendicular to
gravity and a magnetic quadrupole trap balancing gravity
and providing additional harmonic confinement in the two
horizontal directions. We control the entropy per particle
by evaporating to different depths of the dipole trap, after
which we ramp the depth to a constant value with a mean
harmonic trap frequency of ω0 = 2π (35.78 ± 6) Hz. To keep
the atom number roughly fixed for the different temperatures,
we selectively adjust the efficiency of the evaporation.

A cubic optical lattice is formed by exponentially ramping
on three sets of retroreflected lattice beams at λ = 812 nm
over 100 ms using a 200 ms time constant (for most of the
data in this paper). The lattice potential depth is characterized
as sER , where ER = (h/λ)2/2m = 2.31 × 10−30 J is the
recoil energy. We use Kaptiza-Dirac diffraction to calibrate
s to within 7%. The lattice beams add additional harmonic
confinement, and the overall confinement is well described

by ω =
√

ω2
0 + 8sER

m(2π)2(120μm)2 . After turning on the lattice and

waiting for 10 ms, we turn off all potentials and allow the
atoms to expand for 20 ms time of flight. We optically pump
atoms into the F = 2 state, and take an absorption image on
the F = 2 to F ′ = 3 cycling transition.

The optical depth (OD) in absorption images saturates for
OD > 3 (i.e., high column density) because of nonabsorbable
light in the imaging laser beam. This is a complication for
imaging condensed gases at nonzero temperature, which pos-
sess high-density peaks and a low-density thermal component.
To increase the dynamic range of imaging and obtain high
signal-to-noise ratio data for the condensate and noncon-
densate atoms, we take a series of two images in separate
measurements. We produce high OD images by transferring
all the atoms into F = 2, and low OD images are acquired by
pumping a fraction of the atoms so that the OD < 2. High OD
images are used to measure the atoms outside of the condensate
peaks, and low OD images are employed to measure the atoms
in the peaks (which are saturated in the high OD images).
We calibrate the relative number between high and low OD
images and verify that quantities such as condensate fraction
agree between the two modalities using a gas released from
the trap.

A typical experimental sequence at a given lattice depth
and entropy per particle involved seven sets of four images: a
high OD and low OD image in the harmonic trap, and a high

023625-2



METASTABLE BOSE-EINSTEIN CONDENSATION IN A . . . PHYSICAL REVIEW A 91, 023625 (2015)
s (

E R
)

S/N ( kB )

6

8

10

12

0.3 0.6 1.4 2.6 3.0

un
its

 o
f 

units of 

0

0.5

1.0

1.5

2.0

2.5

3.0
OD

FIG. 1. (Color online) High OD TOF images for a variety of
lattice depths (in units of ER) and initial entropies averaged over seven
iterations. The top line shows the gas released from the harmonic trap;
the starting conditions were almost identical for all lattice depths. The
OD saturates at approximately 3 because of nonabsorbable light in
the laser beam used for imaging.

OD and low OD image in the lattice. All quantities presented
in this paper are averages over these seven sets of images.
Figure 1 illustrates the resulting averaged high OD images.

To determine S/N for the gas before turning on the
lattice, images for gases released from the harmonic trap
were fit using a multistep scheme similar to that employed
in Ref. [23] to determine the condensate fraction. The high
OD image was fit to a Thomas-Fermi (TF) profile combined
with an independent Gaussian function, taking into account
the line-of-sight integration. The pixels within a radius 10%
greater than the TF radius were masked, and the remaining
image was fit to a Bose-Einstein distribution to determine the
number of thermal atoms Nth. In images with sufficient signal,
the low OD image was fit to a combined TF-thermal profile,
and the condensate number NBEC was determined from the
TF component. The condensate fraction was determined as
NBEC/(Nth + NBEC) in this case. If the signal-to-noise ratio
was too small to resolve the thermal component in the low OD
image, a fit to a simple TF profile was used to determine the
number of atoms NTF within the TF radius. The total number
of atoms N was determined in this case by adding the number
of atoms outside the TF radius in the high OD image. The
condensate fraction was then 1 − Nth/N . Entropy per particle
was determined from the condensate fraction and total number
using the semi-ideal model [21].

Peak fraction f0 was determined from images of the gas
released from the lattice using the procedure from Ref. [24].
Several complications make interpreting fits to TOF images for
lattice gases difficult. Unlike the trapped case, the functional
form of the density distribution after TOF is unknown. Further-
more, atoms that appear outside of the condensate peaks are a
combination of superfluid atoms (expelled from single-particle
low-momentum states by strong interactions) and thermal
atoms. A final challenge is specific to our apparatus—there
is no spherical symmetry in a lattice momentum distribution,
and our imaging direction is not along a lattice direction. This

makes even the noninteracting distribution difficult to fit [see
Eq. (23) in Ref. [22]].

In the face of these difficulties, we have adopted a heuristic
approach that is fast and independent of experiment details. In
the high OD image, we mask the peaks and fit the distribution to
a single Gaussian. The number of atoms from this fit is NGauss.
Next, the Gaussian fit is subtracted from the image and we fit
each peak to a TF profile. These fits are used to mask the peaks,
and the remaining signal is summed to determine the number
of atoms N∑ outside of the peaks and not included in the
Gaussian fit. These steps capture all the nonpeak atoms, except
those that are part of the broader distribution and coincident
with (or “under”) the peaks in the image. Counting these atoms
accurately would require knowledge of the density distribution
after TOF, including the effects of interactions [25–28]. Since
analytical expressions for the TOF distribution are unknown,
we make the simple assumption that the nonpeak distribution
that overlaps with the peak is uniform [see (a) and (b) of
Fig. 2]. We determine the average nonpeak OD coincident
with the peak by averaging the OD around the perimeter of
the peak. The number of nonpeak atoms Nunpk coincident with
the peak is estimated using a uniform distribution with this
average OD. The total nonpeak number of atoms is Nnonpk =
NGauss + N∑ + Nunpk.

We fit only the peaks of the low OD image to determine
the peak number Npk using a series of TF profiles (subtracting
off a Gaussian if there is a sufficient signal) [see (c) and (d)
of Fig. 2]. The total number is then N = Npk + Nnonpk, and
the peak fraction is f0 = 1 − Nnonpk/N . In the next section
we demonstrate that f0 is related to the condensate fraction
n0 by applying this fitting procedure to simulated TOF images
produced using QMC calculations.

III. EQUILIBRIUM THEORY

To assess whether equilibrium is achieved in the lattice,
we determine peak fraction f0 and entropy per particle
S/N for equilibrium gases using QMC simulations. We also
compute condensate fraction n0 in order to establish the
relationship between condensate and peak fraction. We match
the parameters of the experiment as closely as possible. The
particle number is kept constant within 5% to N = 200 000
for optical lattice depths of s = 6, 8, 10, and 12. Furthermore,
the confining potential is accounted for exactly in the QMC
simulations.

QMC simulations are carried out using the stochastic
series expansion method (SSE) [29]. SSE is an exact method
suffering from no biases or approximations. The condensate
fraction n0 is obtained directly from the single-particle density
matrix in adherence to its rigorous definition as the ratio
of the occupation number of the macroscopically occupied
single-particle mode to the total particle number. The general
prescription used to calculate n0 and the momentum distribu-
tion n(�k) that includes finite TOF effects has been discussed
elsewhere [30].

We use the momentum distribution n(�k) from QMC
simulations to generate line-of-sight integrated images. Finite
TOF effects—which lead to additional overlap between the
condensate and noncondensate distributions—are fully ac-
counted for as in Ref. [30], and the integration direction is
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FIG. 2. (Color online) Illustration of the fitting procedure used to determine peak fraction from a high OD image [(a) and (b)] and from
a low OD image [(c) and (d)]. Here we use an averaged image for s = 10 and S/NkB ≈ 1.35 (middle image in Fig. 1). For all these images,
we have first subtracted off a Gaussian fit as described in the main text. In (a), we show the high OD image with the peaks masked and the
nonpeak distribution coincident with the peak assumed to be a uniform distribution. Note that we have masked the nine peaks that correspond
to zero momentum and the first- and second-order diffraction peaks. We ignore the higher-order peaks, which contain a negligible number of
atoms. A slice along the red dashed line is displayed in (b). The black line is the nonpeak distribution, and the red line is the complete image
including the peaks. In (c), we show the low OD image used to determine the peak number. A slice along the red dashed line is displayed in
(d). The black line is the TF fit to the peaks and the red line is the data from the image. Note that there is a scale factor between the high and
low OD images of approximately 5.75.

matched to the experiment. These images are then used to
extract the peak fraction using the fitting procedure applied to
the experiment modified to work with a single image. Figure 3
shows n0 and f0 computed at the same temperature for the s

sampled in the experiment. It is evident that n0 and f0 are
monotonically related, and that peak fraction can be used
to determine temperature in the experiment (assuming that
equilibrium is achieved). The relationship between f0 and n0

also does not depend strongly on lattice potential depth. When
n0 < 0.05, the fitting procedure cannot identify the presence
of condensate even with virtually noiseless QMC data.

Generally, f0 is less than n0. This discrepancy between f0

and n0 arises from inaccurate accounting of the condensate
and noncondensate distributions. In part, this is due to the
high-momentum tails of the condensate that extend into the
broad Gaussian-like part of the momentum distribution, and
that are mistakenly accounted for as noncondensate by the
fitting procedure [30]. Apart from these systematic errors in
the fitting protocol, there may also be additional interaction
effects that arise during TOF that we cannot account for in the
QMC simulations.

The QMC simulations are carried out at temperatures that
span the range explored by the experiment, but that are chosen
independently of the measurements. In order to compare with

experiments that have access to the entropy per particle but
not temperature, we also use QMC simulations to compute the
temperature dependence of S/N . This is done by integrating
the internal energy per particle [u(β) ≡ U/N (β)] shown in
Fig. 4, obtained from QMC simulations, where β = 1/kBT .

Using the definition u(β) = u0 + f (β), where u0 ≡
limβ→∞u(β) is the ground-state energy and f (β) is a monoton-
ically decreasing function that characterizes the temperature
dependence with limβ→∞f (β) → 0, we obtain

S/N (β) = βf (β)|β∞ +
∫ ∞

β

f (β)dβ = βf (β) +
∫ ∞

β

f (β)dβ.

(1)

Here the limit limβ→∞βf (β) can be taken provided f (β)
decays faster than linearly—a condition that is easily met since
the data fit well to an exponential function with a reduced
χ2 ∼ 1. Our strategy is to integrate u using a fit to all sampled
points. We fit the high β tail to an exponential decay, since
we cannot use a finite temperature method to access the true
ground-state energy at β → ∞. The high temperature points
are fit using a cubic spline. Error bars for S/N are computed
using a resampling procedure. For each u(β) that we have
computed, we sample a Gaussian of mean u(β) and standard
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FIG. 3. Comparison of condensate n0 and peak f0 fraction obtained from QMC simulations for s = 6,8,10,12 [(a)–(d), respectively]. n0

was obtained directly by diagonalizing the single-particle density matrix. f0 was calculated by fitting QMC momentum distributions for a finite
TOF of 20 ms using experimental fitting procedures. The monotonic dependence is clear, but it is to be noted that the procedure cannot be
used when n0 < 0.05. The uncertainty in these values is smaller than 1%. The maximum n0 and f0 is smaller at higher s because of quantum
depletion.

deviation σ (u) to generate a sample ui(β). A collection of
ui describe the vector Ui ≡ {u(β)} that is fitted to obtain an
estimate of (S/N )i . This procedure is repeated multiple times
to obtain an estimate of 〈S/N (β)〉 and σ (S/N ).

We compare the QMC results to a variety of approximate
theories, in order to evaluate the accuracy of these less
time-consuming methods. We consider mean-field theories
(MFT) viz., the Hartree-Fock (HF), HFBP, and Gutzwiller
approximations. While these approaches have been used to
analyze experiments as benchmarks for more sophisticated
theories [14,19,20,31–34], their validity has not been compre-
hensively examined. For calculations involving MFTs, the trap
is accounted for using the local density approximation.

The HF and HFBP approaches rely on a perturbative ex-
pansion of the local field operator ψ̂(�r) = ψ0(�r) + δψ̂(�r) that
accounts for the macroscopically occupied scalar condensed
mode [ψ0(�r)] together with the fluctuations [δψ̂(�r)]. The
former treats the kinetic energy terms of the BH Hamiltonian
exactly, while treating the interactions via the HF approxima-
tion, which leads to the HF spectrum

εHF(�q) = ε(�q) − μ + 2U (ρ0 + ρth), (2)

where �q is the quasimomentum, ρ0 is the condensate den-
sity, ρth is the noncondensate density, μ is the chemi-
cal potential, and ε(�q) = 2t[3 − cos(qxd/�) − cos(qyd/�) −
cos(qzd/�)] is the tight-binding dispersion for single particles
in the lowest energy band. The HFBP approach allows for

mixing of particlelike and holelike excitations, which produces
a dispersion

εHFBP(�q) =
√

[εHF(�q)]2 − (Uρ0)2. (3)

We obtain the noncondensed density via

ρth = 1

2

∑
�q �=0

[
εHF(�q)

ε(�q)
coth[βε(�q)/2] − 1

]
, (4)

where ε(�q) = εHF(�q) [εHFBP(�q)] for the HF (HFBP) calcu-
lation. Due to the appearance of ρth on both sides of (4),
it must be solved self-consistently, starting with a guess
for ρ0 and utilizing the relation μ = U (ρ0 + 2ρth). Using
the spectrum determined using this procedure, we calculate
relevant thermodynamic observables, such as the entropy

S =
∑
�q �=0

[
βε(�q)

eβε(�q) − 1
− ln(1 − e−βε(�q))

]
, (5)

where β = 1/kBT .
The Gutzwiller approach utilizes a perturbative expansion

of the kinetic term (thereby treating it approximately) while
keeping the interaction term intact. We use â

†
i âj ≈ 〈â†

i 〉âj +
〈âi〉â†

j − 〈â†
i 〉〈âj 〉 to decouple the Hamiltonian, where â

†
i and

â
†
j are particle creation operators on neighboring sites i and j .

In this approximation, the Hamiltonian becomes independent
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FIG. 4. The energy per particle for varying lattice depths s = {6,8,10,12} [(a)–(d), respectively] for a system of N ∼ 200 000 particles in
a trap. These points were fitted using a procedure outlined in the text to obtain the entropy per particle that can be compared with experiment.
Temperatures only below the critical temperature for superfluidity are sampled.

of neighboring sites since 〈aj 〉 = α is a complex number:

H ≈ −zt(αâ† + α∗â − |α|2) + U

2
n̂(n̂ − 1) − μn̂, (6)

where z = 6 is the coordination number and n̂ = â†â. Us-
ing a truncated occupation number basis, we construct a
matrix for H that is diagonalized utilizing the relation α =∑

i〈i|â|i〉e−βEi , needed to account for the finite temperature
occupation of states. We solve this system iteratively, starting
with a guess for α which is updated until convergence occurs.
All thermodynamic quantities are computed using α at a
specific β, μ, and U/t .

In order to account for the parabolic trap used in exper-
iments, we rely on the local density approximation (LDA)
for MFT results. The LDA treats the slowly varying exter-
nal confining potential as a local chemical potential shift.
Thermodynamic quantities are computed at different μ(r)
(corresponding to a homogeneous system) and then integrated
over all r to determine observables for the trapped lattice gas.
The LDA ignores correlations across the trap.

We show predictions for condensate fraction n0 at different
entropies per particle and lattice potential depths in Fig. 5
for QMC simulations and MFTs. In each case, T and μ are
varied to match S/N and N as computed by the method
of interest. While all approaches show the same qualitative
trend, it is clear that HF theory is, in general, not in good
agreement with the QMC approach. This disagreement is
expected because HF theory does not account for the mixing of
particle and holelike excitations that result from interactions.

The comparisons of QMC against Gutzwiller and HFBP results
suggest that for moderate interaction strengths (at s = 6 to 8)
these MFTs generally work well. For stronger interactions (at
s = 10), HFBP calculations fail to capture finite temperature
effects, whereas the Gutzwiller approximation is able to
capture qualitative features. At the highest lattice potential
depths we sample (s = 12), the Gutzwiller method can capture
the high temperature regime, but cannot accurately compute
the correlations at low temperature, as is evidenced by the
15%–25% error in n0 for S/N < 0.5kB .

While the validity of the Gutzwiller approximation over a
wide range of interaction strengths and temperatures is sugges-
tive, this is only likely true for the high filling limit (a central
density of approximately three particles per site) considered
in this work. QMC simulations for low filling systems show
that the differences with the Gutzwiller approximation can be
quite large, as evident for the results for a central density of
one particle per site shown in Fig. 6. The discrepancy apparent
in Fig. 6 may also arise from quantum critical behavior, as
the lattice potential depth is set close to the Mott-insulator to
superfluid phase transition.

We conclude that the HF and HFBP approximations
should not be used to compute observables such as n0 and
thermodynamic variables like S/N . While the Gutzwiller
approximation can provide quantitatively accurate results at
high filling and for moderate lattice potential depths, it fails at
low S/N and for strong interactions and for low densities. We
therefore use only QMC simulation results to compute S/N

and f0 for comparisons with the experimental data.
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FIG. 5. (Color online) Comparison between different types of mean-field theories against QMC results. Panels (a)–(d) correspond to s = 6,
8, 10, and 12, respectively. The particle number was kept constant at N ∼ 200 000. All other parameters were matched to experimental
specifications presented in Fig. 7. Green squares (dashed line) correspond to HF, orange triangles (dotted line) to HFBP, red circles (solid line)
to Gutzwiller, and black diamonds (with error bars) to QMC. The error bars show the statistical uncertainty in the QMC results.

IV. RESULTS AND DISCUSSION

To assess thermal equilibrium in the experiment, we
show a comparison between the experimentally measured
f0 (determined from images shown in Fig. 1 and the fitting
procedure described in Sec. I) and the equilibrium QMC
prediction at the same S/N in Fig. 7. A strong discrepancy is

FIG. 6. (Color online) Comparison between Gutzwiller (red tri-
angles) and QMC (black squares) results for a strongly interacting
system (s = 13.6) at low filling. The central density for these results
is approximately one particle per site with ω = 2π × 55.6 Hz and
N ∼ 60 000. The line is a guide to the eye.

evident: there is an alarming degree of disagreement between
the QMC results and the experiment at high temperatures (i.e.,
high S/N ). The experimentally observed peak fraction (and
therefore condensate fraction) is systematically high compared
with the QMC prediction. What is more troubling is that the
condensate survives beyond the transition temperature, which
is marked by f0 (and n0) vanishing in the QMC predictions.

We do not believe that this discrepancy can be explained by
systematic errors in the analysis of the experimental data. One
source of error might be that binary collisions between atoms
in different peaks eject condensate atoms during TOF [35,36].
While this effect may play a role in suppressing peak fraction
for the lowest entropies at s = 6, its impact should be reduced
at higher lattice potential depths and temperatures as the
condensate density decreases. Furthermore, this effect would
lead to lower, not higher, peak fractions than the equilibrium
QMC prediction.

Another possibility is that we erroneously identify peaks
in the TOF image. It has been previously discussed that sharp
peaks in momentum distributions may not be uniquely associ-
ated with a condensate [37,38]. However, calculations focusing
on trapped systems for realistic experimental conditions and
experiments have demonstrated that the visibility, which is
a quantitative measure of peak sharpness, can distinguish
between condensed and noncondensed states [20,39,40]. The
features we observe at high S/N are narrow and quantitatively
similar in extent to the peaks observed at low temperatures.
The sharpness of the peaks we measure at high S/N is most
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FIG. 7. Experimentally determined peak fraction at each lattice depth as a function of the initial entropy per particle in the harmonic trap
(circles). Corresponding peak fraction from QMC simulations determined by fitting the momentum distribution using the same procedure used
in experiments in the lattice are also shown (triangles). The number of atoms at each experimental point (from lowest to highest entropy)
is (a) s = 6, N = {2.38 ± 0.03,2.08 ± 0.06,1.64 ± 0.03,2.04 ± 0.07,2.06 ± 0.09} × 105, (b) s = 8, N = {2.36 ± 0.06,2.05 ± 0.11,1.66 ±
0.07,2.02 ± 0.09,1.73 ± 0.05} × 105, (c) s = 10, N = {2.41 ± 0.08,2.15 ± 0.11,1.68 ± 0.09,2.03 ± 0.16,1.85 ± 0.09} × 105, and for (d)
s = 12, N = {2.55 ± 0.12,1.98 ± 0.10,1.65 ± 0.04,2.06 ± 0.11,1.74 ± 0.11} × 105. QMC curves are constrained to a constant number, which
is the mean of the number at each lattice depth (N ∼ 200 000). The tunneling, interaction energies, and trap frequencies for s = {6,8,10,12}
are, respectively, t = {1.17,0.711,0.443,0.283} × 10−31J, U = {3.92,5.23,6.48,7.67} × 10−31J, and ω = 2π × {51.27,55.48,59.4,63.07} Hz.
The error bars in the experimental data show the standard error of the mean for the average across seven measurements. The horizontal error
bars for the measurements also include the influence of the uncertainty in the trap frequency and number of atoms and do not impact the QMC
results. The uncertainty in the QMC results is too small to be visible.

apparent in the s = 6 and s = 8 images shown in Fig. 1.
This bimodal nature of the TOF images is associated with the
existence of a condensate [13], and thus it is highly unlikely
that we are systematically finding a nonzero peak fraction in
images where a condensate is absent. Furthermore, we do not
observe peaks in the TOF distribution determined from QMC
above Tc.

A further potential source of systematic error is heating
by the lattice light [1], which would have the largest impact
at low entropy. However, we find that the QMC equilibrium
predictions and the experimental data agree well in this regime.
For higher entropies, heating should reduce peak fraction
below the QMC prediction, which is opposite to the observed
behavior.

We conclude that the measured peak fraction is systemat-
ically higher than that allowed in equilibrium by the second
law of thermodynamics—the measured f0 implies that the gas
is at lower S/N after the lattice is turned on. Furthermore,
a condensate appears present at temperatures exceeding the
critical temperature for superfluidity in the lattice. Condensate

and peak fraction should always decrease in equilibrium as the
lattice is turned on to higher s because of quantum depletion
resulting from strong interparticle interactions.

The experimental observations imply that equilibrium is not
established and the condensate is metastable during the lattice
turn-on. A natural question is whether the lattice is turned on
too quickly for thermalization to take place. One limitation
is nonadiabaticity associated with changes in the size of the
gas and mass flow [41]. This problem is primarily associated
with the Mott-insulator regime, which we do not sample here.
Furthermore, we estimate that overall rms radius of the gas
changes by less than 20% at s = 6 and S/N ≈ 1.5kB when
the lattice is turned on, which is not likely to cause the large
discrepancy evident in Fig. 7 for these parameters.

Another issue is how the lattice turn-on time compares with
natural time scales in the Hamiltonian. The 100 ms lattice
turn-on time is slow compared with the Hubbard time scales
h/t and h/U , which vary from 6 to 24 ms and 2 to 1 ms for s =
6–12. The many-particle time scale for thermalization may be
longer than these single- and two-particle times, however. We
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FIG. 8. (Color online) Peak fraction for different lattice turn-on
times τ at s = 6. The exponential time constant used for ramping
on the lattice light is set to 2τ . Data and theoretical predictions are
shown for S/N = 0.44 (triangles, solid), 1.2 (squares, dashed), and
2.2 (circles, dotted) kB . The lines are the equilibrium f0 predicted by
QMC simulations taking into account heating from the lattice light.
At the highest S/N , QMC predicts that a condensate should be absent
in the lattice.

examine this possibility at s = 6 by turning on the lattice over
times up to 1 s for different S/N in the trap. As shown in Fig. 8,
we include data for low S/N where the agreement with QMC
predictions is good, and high S/N where the experimental
peak fraction is nonzero above the critical temperature.

In all cases, no adiabatic time scale is apparent—the peak
fraction continuously decreases with the lattice turn-on time.
This behavior is characteristic for all the s sampled in this work.
At low and intermediate S/N , the decrease in peak fraction is
consistent with the heating from the lattice light. We compute
the predicted equilibrium peak fraction including heating for
different lattice turn-on times τ using QMC results for u. The
rate of increase in u from the lattice light and the corresponding
increase in S/N and decrease in f0 are determined using the
results from Ref. [1]. We conclude that the adiabatic time scale
is comparable to or longer than the time scale for heating, and
thus discriminating between the two processes is not possible.

Ultimately, interparticle interactions via binary collisions
are the dominant mechanism by which equilibrium is estab-
lished and condensate fraction decreases as the lattice potential
is turned on. Despite extraordinary advances in methods
such as QMC, computing exact dynamics in higher than one
dimension for more than a few tens of particles and short times
remains infeasible for strongly interacting systems such as the
BH model. In the next section, we use a hybrid of equilibrium
QMC simulations and approximate theory to compute the
time scale associated with the simplest mechanism—Landau
damping—for relaxation of n0.

V. LANDAU DAMPING THEORY FOR
RELAXATION OF THE CONDENSATE

In this section, we outline a model for relaxation of the
condensate atom number via Landau damping. In a closed

FIG. 9. (Color online) Schematic representation of Landau
damping in one dimension. The dispersion E(k) is shown using a
solid line. We consider the process whereby a quasiparticle (γ ) can
decay by coupling to a resonant transition between two quasiparticles
(ν and μ) mediated by the underlying condensate. By conserva-
tion of total particle number, this reduces the overall condensate
density.

system, the condensate number can change by collisions
with quasiparticles, whose number is not conserved. The
dominant collision processes involve two-body scattering,
where a condensate atom collides with a quasiparticle to
produce two new quasiparticles. In equilibrium, the rates
for this process and its reverse (whereby two quasiparticles
collide to produce a condensate atom and a quasiparticle) are
identical but opposite in sign, and the condensate number
is conserved. However, out of equilibrium, these processes
do not cancel, and induce changes in the condensate atom
number.

In general, the theoretical problem of how the condensate
interacts with the thermal gas is an extremely challenging
one, but an understanding of the precise mechanisms for
equilibration is paramount to current experiments in optical
lattices. Briefly, a condensate can relax by colliding with
thermal atoms in two ways: At the mean-field level, the
condensate introduces fluctuations in the thermal cloud which
in turn lead to a damping of the condensate. This process is
termed Landau damping, which is what we calculate. There is
a second process where the condensate atoms exchange energy
with the thermal atoms via collisions [42,43]. Although we do
not calculate this process here, it is roughly of the same order
as the Landau damping mechanism we compute [43]. A third
process is called Belieav damping, whereby a noncondensed
atom collides with a condensate atom and decays into two
noncondensed atoms with lower energy. This mechanism is
dominant at very low temperatures and its rate decreases
rapidly with temperature. Calculating the Landau damping
rate thus suffices to estimate the time scales for equilibration
in lattices.

Our treatment of Landau damping directly follows that of
Tsuchiya and Griffin [44], who computed the damping rate for
a homogeneous lattice Bose gas. Physically, this rate corre-
sponds to the annihilation of a Bogoliubov quasiparticle and
a condensate atom to produce two Bogoliubov quasiparticles
(Fig. 9). By conservation of total particle number, integrating
the damping rate over all momenta yields the rate at which
the condensate fraction changes via Landau damping. For a
homogeneous gas, the Landau damping rate for a quasiparticle
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at momentum �q is given by [44]

�(�q) = πn0

∑
�p,�k

|M�q,�k; �p|2δ{ε(�q)

− [ε( �p) − ε(�k)]}{f 0[ε(�k)] − f 0[ε( �p)]},
M�q,�k; �p = 2U√

LD

∑
�G

[(u�qu �p + v�qv �p − v�qu �p)u�k

− (u�qu �p + v�qv �p − u�qv �p)v�k]δ(�q + �k − �p − �G),

(7)

where D is the dimension, L is the length of one side of the
system, n0 is the condensate density, the �G are reciprocal lattice
vectors (which incorporate umklapp scattering), f 0(x) =
[exp(βx) − 1]−1 is the Bose distribution at temperature
kBT = 1/β, and ε(�k) are the usual Bogoliubov quasiparticle
dispersions in a lattice of the form in Eq. (3). The Bogoliubov

coefficients u�k an v�k are given by u�k =
√

1
2 ( ε�k+Un0

ε(�k)
+ 1) and

v�k =
√

1
2 ( ε�k+Un0

ε(�k)
− 1). The delta functions enforce energy and

momentum conservation.
The detailed derivation of this result can be found in

Ref. [44] and is not repeated here. Note that a key assumption
in this theory is that thermal (i.e., noncondensed) gas is in
local equilibrium, which is enforced on short time scales by
collisions between thermal atoms. We emphasize here that
we are not modeling the full far-from-equilibrium problem of
relaxation of condensed and noncondensed atoms following a
lattice ramp. Rather, we compute the time scales for relaxation
when the condensate density departs slightly from its equilib-
rium value at a given lattice depth. This near-equilibrium com-
putation is the first step in gaining a systematic understanding
of relaxation times in generic nonequilibrium situations.

We numerically compute the damping rate for all momenta
�q ranging from −π/d � qi � π/d, where i = {x,y,z}, and d

is the lattice constant. We discretize momenta in steps of π/L,
where L is the system size, defined as where the total density
vanishes. The finite system size also sets an infrared cutoff,
qmin = π/L, which renders the one-dimensional integrals con-
vergent. We have checked numerically that this cutoff is small
enough that changing qmin does not introduce significant errors.
The total damping rate is given by �L = ∑

�q �(�q)/�, where
� is the system size. Using a simple rate equation dδn0/dt =
−�Lδn0, where δn0(t) = n0(t) − n

eq
0 , we obtain an estimate

for the relaxation time τLD = 1/�L of the condensate.
To compute the damping rate, we require three quantities:

the condensate density n0, lattice depth s, and the temperature
T . For a given lattice depth s and temperature T , we use n0

from exact QMC simulations discussed in Sec. III to compute
the different Landau damping rate. Using the relation between
temperature and entropy per particle, we obtain the damping
rate as a function of entropy per particle for different lattice
depths.

Our derivation of the damping rate assumes that all of
the condensate atoms are at �q = 0. While this is true in a
weakly interacting homogeneous system at low temperature,
the presence of a trap and strong correlations modifies this
picture significantly, as momentum is no longer a good

quantum number. The condensate therefore develops a spread
in momentum, which we have computed numerically using
QMC for a given temperature and lattice depth.

To incorporate trap and interaction effects into our damping
calculations, we produce the Landau damping rate in two
cases: (1) We assume all the condensate atoms are at �q = 0.
This yields an upper bound on the damping rate. (2) We obtain
a lower bound on the damping rate by assuming that the total
condensate number is equal to only the contribution to the
momentum distribution at �q = 0. The experimentally observed
damping rate must be between these two bounds.

The results of our calculations presented in Fig. 10 paint
a fascinating picture. At low entropy, the lower bound
on the Landau damping time ranges from 200 ms to 10 ms
from the lowest to highest lattice depth s = 6ER to s = 12,
while the upper bound varies roughly from 1 s to 100 ms. At
the highest S/N , the Landau damping time is at least 20 times
larger than the Hubbard tunneling time h/t . The decrease in the
damping time for higher lattice potential depth is consistent
with the increase in interaction strength. For s = 6, where
the system can be treated as weakly interacting, the two
bounds coincide at low entropy because the condensate largely
resides at zero momentum. Interactions induce a significant
broadening of the condensate momentum distribution, which
leads to a large difference between the upper and lower bounds
at higher s. This is particularly stark at high entropies per
particle, because the condensate is almost entirely absent.
Note that for n0 = 0, �L → ∞. Strictly speaking, this theory
is not accurate when the condensate number is small, either
because of nonzero temperature or strong interactions. At high
temperatures, interactions between noncondensate atoms play
an important role that is not captured by our approach. For the
strongly interacting case, quantum depletion reduces n0 and
the Bogoliubov spectrum, which is the underlying assumption
in this theory, is not valid. Therefore the upper bounds in the
damping time at S/NkB = 1 for s = 10 and 12 may not be
correct.

Comparing the predicted Landau damping times to the
100 ms lattice turn-on used for the data in Fig. 8 is complicated
by the lack of equilibrium in the lattice. Generally, the damping
time exceeds 100 ms at the highest S/N , where the discrepancy
between the QMC and experimental f0 is greatest. This implies
that the lattice turn-on time used for Fig. 7 was nonadiabatic,
since times much longer than τLD are required to achieve
equilibrium in the lattice. The predicted Landau damping time
is also long at low S/N , but n0 changes less in this regime as
the lattice is turned on, and thus the impact of nonadiabatic
behavior is less apparent. Diabaticity with respect to Landau
damping at high S/N explains the experimental observation
that the peak and condensate fraction in the lattice is higher
than the equilibrium prediction, since the condensate does not
have sufficient time to decay as the lattice is turned on.

The upper bound on the damping time in combination with
the heating rate from the lattice light implies that adiabaticity
may be impossible to achieve under certain conditions. At
s = 6, for example, the upper bound on the Landau damping
time at S/N > 1 is close to 1 s. This time is longer than
the heating time scale observed for the data shown in Fig. 8.
Differentiating between heating and thermalization becomes
more challenging at higher s, since the characteristic energy
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FIG. 10. Estimates of the lower (empty circles) and upper bound (filled circles) of the decay time associated with Landau damping vs
entropy per particle for s = 6,8,10,12 [(a)–(d)].

scale t drops rapidly, but the heating rate from the lattice light
grows linearly with s.

VI. CONCLUSIONS

In conclusion, we have experimentally and theoretically
investigated peak fraction in the superfluid regime of a cubic
lattice for varied entropy per particle and lattice potential
depth. Qualitatively, the experimentally observed peak fraction
behaved as theoretically expected: lower initial entropies led
to higher peak fractions, and higher lattice depths (lower
t/U ) resulted in lower peak fractions. However, we did not
find quantitative agreement with exact QMC simulations at
high entropy per particle. We observe that the condensate is
metastable, and that nonzero peak fraction persists above the
critical temperature for superfluidity for times much longer
than the Hubbard time scales. We have investigated the time
scales for relaxation of the condensate by calculating the
Landau damping time in the lattice. Our calculations indicate
that the relaxation time is comparable or greater than typical
lattice turn-on times. The Landau relaxation time is also longer
than the time scale associated with heating from the lattice
light, which may make adiabaticity impossible to achieve.

Going forward, our theory-experiment comparison points
to the urgent need to carefully understand time scales for
dynamics in strongly correlated optical lattice experiments.
Furthermore, using this model as a starting point, one can
envision branching out to situations where competing theories
disagree, break down, or do not even exist. A canonical
example is that of strongly correlated systems far from
equilibrium, where the very paradigms for how to think about
these systems are only now being developed. In addition
to being of fundamental importance, questions of nonequi-
librium dynamics serve a practical purpose in cold atom
experiments, which are largely isolated from the environment.
Understanding the mechanisms for driving these systems to
equilibrium is thus essential in order to understand time scales
for maintaining adiabaticity.
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