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Transverse collisional instabilities of a Bose-Einstein condensate in a driven one-dimensional lattice
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Motivated by recent experiments, we analyze the stability of a three-dimensional Bose-Einstein condensate
loaded in a periodically driven one-dimensional optical lattice. Such periodically driven systems do not have
a thermodynamic ground state but may have a long-lived steady state which is an eigenstate of a “Floquet
Hamiltonian.” We explore collisional instabilities of the Floquet ground state which transfer energy into the
transverse modes. We calculate decay rates, finding that the lifetime scales as the inverse square of the scattering
length and inverse of the peak three-dimensional density. These rates can be controlled by adding additional
transverse potentials.
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I. INTRODUCTION

In recent years, rapid progress has been made in quan-
tum simulation, whereby one engineers a quantum system
to study important phenomena experimentally [1–5]. Peri-
odically driven quantum systems (Floquet systems) are a
particularly versatile platform for such simulations [6,7] and
have already been used to explore a variety of rich physics. This
program has been particularly successful in cold atoms, where
periodic driving has been integral to studying models of clas-
sical frustrated magnetism, and models of topological matter
[8–21]. These periodically driven systems have seen extensive
theoretical modeling [22–55]. Some of these experiments have
experienced unexpected heating [16]. In an earlier paper, we
began addressing the sources of this heating by studying
collisions within a one-dimensional Bose-Einstein condensate
(BEC) in a shaken optical lattice [56]. We found that, in the
presence of strong transverse confinement, interactions can
drive instabilities but that there were large parameter ranges
where the system was stable. Here we extend that work to
the regime where there is no transverse confinement. The
additional decay channels generally lead to more dissipation
and diffusive dynamics.

In this paper, we consider two paradigmatic examples of
Floquet systems in which a three-dimensional BEC is loaded
into a modulated one-dimensional lattice. The difference lies in
the nature of the drive: We consider (a) amplitude modulation
of lattice depth (similar to the setup in Refs. [17–19]) and
(b) lattice shaking (similar to the setup in Refs. [20,21]).
These two protocols are illustrated schematically in Fig. 1. We
solve the Schrödinger equation for both systems and treat the
interatomic interactions perturbatively. Our analysis is along
the lines of Ref. [56], where we used Fermi’s golden rule
to study the tight confinement limit. This kinetic approach
can be contrasted with quantum coherent arguments such as
those used by Creffield [57]. Creffield used the Bogoliubov
equations to look at a dynamical instability of a BEC in a
shaken one-dimensional optical lattice. These decay channels
are important when the interactions are strong. We consider
a different limit: for most recent experiments, the interaction
strengths are too low for the interaction-driven modification of

*sc2385@cornell.edu
†em256@cornell.edu

the dispersion to be relevant; rather, the physics is dominated
by the energy- and momentum-conserving scattering processes
which are accounted for through our kinetic equations. In a
field-theoretic formulation this corresponds to keeping only
the imaginary part of the self-energy.

In Sec. II, we analyze the stability of a BEC in an
amplitude-modulated tilted optical lattice. A similar analysis
can be used for Raman-driven lattices, such as those used
to realize the Harper Hamiltonian [16,19]. It also applies to
the study of density-induced tunneling [58] and is related
to earlier studies of Bloch oscillations [59]. In Sec. III, we
study the stability of a BEC loaded in a shaken optical lattice.
This system can be mapped onto a classical spin model which
exhibits a paramagnetic-ferromagnetic phase transition as well
as a roton-maxon excitation spectrum [20,21]. In both Secs. II
and III, we obtain analytical results for the lifetime of the
BEC. Finally, in Sec. IV, we discuss the general form of the
dissipation rate in driven systems.

II. AMPLITUDE-MODULATED LATTICE

In this section, we consider a BEC in a deep tilted
one-dimensional optical lattice. Adjacent sites are offset by
an energy � � J , suppressing tunneling (with J being
the nearest-neighbor tunneling matrix element). There is no
transverse confinement, yielding a one-dimensional array of
pancakes. The lattice depth is then modulated at a frequency
ω (≈ �) so that tunneling is restored between the pancakes.
The Hamiltonian describing this system is

H =
∫

d2r⊥
∑

j

−[J + 2� cos(ωt)](a†
j+1aj + a

†
j aj+1)

+�ja
†
j aj + g

2
a
†
j a

†
j aj aj + �

2

2m
∇⊥a

†
j∇⊥aj . (1)

The constant � parameterizes the modulation of the hopping
matrix element. The transverse spatial components are sup-
pressed: aj = aj (r⊥), where r⊥ = (x,y) and ∇⊥ = x̂∂x + ŷ∂y .
The coupling constant is

g = 4π�
2as

m

∫
dz φ(z)4

= 4π�
2as

md
, (2)

1050-2947/2015/91(2)/023624(7) 023624-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.91.023624


SAYAN CHOUDHURY AND ERICH J. MUELLER PHYSICAL REVIEW A 91, 023624 (2015)

(a)

(b)

FIG. 1. (Color online) The two protocols of lattice driving: (a) an
amplitude-modulated tilted lattice and (b) a shaken lattice.

where φ(z) is the Wannier wave function in the z direction,
normalized so that

∫ |φ|2dz = 1 and a is the lattice spacing.
This equation defines d, the size of the Wannier state, and is
valid if d � as [60].

Depending on how one sets up the problem, the φ(z) used
in Eq. (2) will be either the Wannier states of the static lattice,
some time average of the instantaneous eigenstates, or even
some time-dependent function which yields an oscillating g.
The distinction will be important if the drive frequency is
resonant with a band-changing collision or if the modulation
amplitude is large. Similarly, the relationship between J,�,
and the lattice parameters may be renormalized by large-
amplitude driving, and the time dependence of the parameters
may not be sinusoidal. For most present experiments, where
the amplitude of oscillations is small, these effects can be
ignored.

As in [61], we now perform a gauge transformation to
replace the tilt with a time-dependent phase:

aj = bj e
−i�jt . (3)

The operators bj will evolve with a new Hamiltonian H ′,
chosen so that

i∂tbj = [bj ,H
′]. (4)

Specializing to the resonant case ω = �, we Fourier transform
this equation, yielding

H ′ =
∑

k

εk(t)b†kbk + g

2V

∑
k1,k2,k3

b
†
k1

b
†
k2

bk3bk4 , (5)

where k4 = k1 + k2 − k3, k = {kz,k⊥}, and g = ga, where
a is the lattice spacing. The instantaneous single-particle

dispersion is given by

εk(t) = −2� cos(kz) − 2� cos(kz − 2�t)

− 2J cos(kz − �t) + �
2k2

⊥
2m

, (6)

where V is the system volume and bk = ∑
j bj exp(ikj ). The

best interpretation of this dispersion comes from looking at
the group velocity of a wave packet, ∂ε/∂k. There is a drift
term vd = ∂ε/∂kz = 2� sin(kz) and an oscillating part vm =
∂ε/∂kz = −4�� sin(kz − 2�t) − 2J sin(kz − �t), which is
analogous to micromotion in ion traps [62].

We wish to explore the behavior of a condensate at k = 0.
To this end, we break our Hamiltonian into three terms H ′ =
H0 + H1 + H2,

H0 =
∑

k

εk(t)b†kbk + g

2V
b
†
0b

†
0b0b0 + 2g

V

∑
k �=0

b
†
0b

†
kbkb0, (7)

H1 = α
g

2V

∑
k �=0

b
†
−kb

†
kb0b0 + H.c., (8)

H2 = H − H1 − H0, (9)

where α = 1 is a formal parameter we will use for perturbation
theory. As α is accompanied by a factor of the interaction
strength gN/V , this expansion is equivalent to perturbation
theory in g. Here H0 contains the single-particle physics
and the Hartree-Fock terms, H1 contains interaction terms
corresponding to atoms scattering from the condensate to
finite-momentum states, and H2 contains terms where a
condensed atom and a noncondensed atom scatter or two
noncondensed atoms scatter. H2 does not contribute at the
lowest order in perturbation theory, as there are initially no
noncondensed atoms.

We will imagine that at time t = 0 we are in the state

|0〉 = (b†0)N√
N !

|vac〉, (10)

which is an eigenstate of H0. We will perturbatively calculate
how |ψ(t)〉 evolves. To lowest order,

|ψ(t)〉 = e−i
E0 t

�

[
|0〉 +

∑
k

ck(t)|k〉 + · · ·
]

, (11)

where the state |k〉 is given by

|k〉 = b
†
kb

†
−k

(b†0)N−2

√
(N − 2)!

|vac〉 (12)

and the coefficient is

ck(t) = �k

i�

∫ t

0
dτ exp

[
−i

∫ t

τ

2
Ek(s)

�
ds

]
, (13)

whose amplitude is given by

�k = 〈k|H1|0〉/α = gn

2
. (14)

In Eq. (13), the (Hartree-Fock) excitation energy is

Ek(t) = εk(t) + gn − ε0(t). (15)
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Performing the integral in the exponent yields

∫ t

τ

Ek(s) ds = E
(0)
k (t − τ )

+ �

�
[sin(kz − 2�τ ) − sin(kz − 2�t)]

+ 2J

�
[sin(kz − �τ ) − sin(kz − �t)], (16)

where the “effective dispersion” is

E
(0)
k = 2�[1 − cos(kz)] + gn + k2

⊥
2m

. (17)

This energy corresponds to the spectrum one would obtain
from Floquet theory. It takes the form of a tight-binding
model along z with a nearest-neighbor hopping of strength
�. The resonant modulation has restored hopping. We now
expand Eq. (13) in powers of J/� and �/�. Neglecting
off-resonant terms and making the standard approximation
sin2(xt)/(xt)2 ≈ 2πtδ(x), we find

|ck|2 ≈ |�k|2
�

�2

�2
t 2πδ

(
E

(0)
k − �

)
+ |�k|2

�

4J 2

�2
t 2πδ

(
E

(0)
k − �/2

)
, (18)

which is analogous to Fermi’s golden rule. The result can also
be derived using the formulation in Ref. [63]. The first term
proportional to �2 is naturally interpreted as coming from a
pair of particles absorbing a lattice vibration. The second term
involves one particle “hopping downhill” with the potential
energy converted to transverse motion.

We now calculate the total rate of scattering out of the
condensate. The relevant time scale is

1

τ
= 1

N0
∂tN0 = 2

N
∂t

∑
k

|ck|2

= 1

τ2
+ 1

τ1
, (19)

1

τ2
= 2|�k|2

N�

�2

�2

∑
k

2πδ(E(0)
k − �),

1

τ1
= 2|�k|2

N�

4J 2

�2

∑
k

2πδ(E(0)
k − �/2). (20)

The sums over k are straightforward. We first note that because
� is small, the dependence of E

(0)
k on kz is weak and can be

neglected. Thus the sum over k just yields a constant

ρ(ν) =
∑

k

2πδ
(
E

(0)
k − ν

)

≈ V

a

∫
d2k⊥
(2π )2

2πδ

(
k2
⊥

2m
+ gn − ν

)

= V m

a
. (21)

Putting in the factors of �, the total rate of scattering out of the
condensate is

1

τ
= g2nm

2a�3

�2 + 4J 2

�2

= gn
2πas

�d

�2 + 4J 2

�2
. (22)

Some typical numbers are gn/h ∼ 300 Hz, � ∼ 40 Hz,
J ∼ 5 Hz, � ∼ 1 kHz, and d ∼ 75 nm. For 87Rb, the
scattering length is as ∼ 5 nm. Thus the lifetime of the BEC
is about 750 ms.

III. SHAKEN LATTICE

In this section, we look at the stability of a three-
dimensional BEC loaded into a shaken one-dimensional
optical lattice. We considered the strictly one-dimensional
version in Ref. [56]. We are motivated by the setup in Ref. [21],
where Ha et al. load a three-dimensional BEC of 133Cs atoms
in a one-dimensional lattice and then shake the lattice at a
frequency resonant with the zero-energy band gap of the first
two bands. This results in a strong mixing of the first two
bands (schematically illustrated in Fig. 2). For our analysis,

FIG. 2. (Color online) Schematic showing first (top) and second
(bottom) Floquet quasienergy bands of an optical lattice: ε is the
single-particle energy, k is the quasimomentum, and a is the lattice
spacing. Since Floquet energies are only defined modulo the shaking
quanta �ω, the energy of the second band has been shifted down by
�ω. Alternatively, this shift can be interpreted as working in a dressed
basis, where the energy includes a contribution from the phonons.
The mixing between the bands depends on the shaking amplitude.
Dashed curves correspond to weak shaking, where the first band has
its minimum at k = 0. Solid curves correspond to strong shaking,
where there are two minima at k = ±k0 �= 0.
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we label the Bloch band connected adiabatically to the first
Bloch band in the limit of zero shaking as the ground band. As
is evident from Fig. 2, due to level repulsion between the Bloch
bands, the ground band exhibits a bifurcation from having one
minimum at {k = 0} to two minima at {k⊥ = 0,k = k0 �= 0}.
This is analogous to the paramagnetic-ferromagnetic phase
transition in Landau theory for classical spin models. In the
paramagnetic regime the bosons always condense at k = 0,
while in the ferromagnetic regime, the bosons condense
at some finite momentum {k⊥ = 0,k �= 0}. Here we first
perturbatively analyze the stability of a BEC against collisions
in the limit of weak forcing amplitude. This gives an intuitive
picture about how the scattering rate varies with amplitude. We
then numerically calculate collision rates for larger shaking
amplitudes spanning the experimentally interesting critical
region. We find that the linearized theory overestimates the
damping but gives the correct order of magnitude.

A. Model

In the frame comoving with the lattice, the tight-binding
Hamiltonian describing the system can be written as H0(t) +
Hint:

H0(t) =
∫

d2r⊥
∑
ij

( − t
(1)
ij a

†
i aj + t

(2)
ij b

†
i bj + H.c.

)

+
∑

j

F cos(ωt)[zj (a†
j aj + b

†
j bj ) + χja

†
j bj

+χ∗
j b

†
j aj ] + �

2

2m
(∇⊥a

†
j∇⊥aj + ∇⊥b

†
j∇⊥bj ), (23)

Hint =
∫

d2r⊥
∑

i

g1

2
a
†
i a

†
i aiai + g2

2
b
†
i b

†
i bibi

+ 2g12a
†
i b

†
i aibi + H ′, (24)

where

χj =
∫

dz zw∗
1(z − zj )w2(z − zj ),

t
(1)
ij =

∫
dz w∗

1(z − zi)

(−�
2

2m

d2

dz2
+ V (z)

)
w∗

1(z − zj ),

t
(2)
ij =

∫
dz w∗

2(z − zi)

(−�
2

2m

d2

dx2
+ V (z)

)
w∗

2(z − zj ),

with V (z) = V0 sin2( 2πz
λL

) and H ′ being off-resonant. It should
also be noted that χj is independent of j , so we can call it χ .
If necessary, more bands can be included.

We now perform a basis rotation: |ψ〉 → Uc(t)|ψ〉 with

Uc(t) = exp

⎛
⎝− i

�

∫ t

0

∑
j

zjF0 cos(ωt)(a†
j aj + b

†
j bj )

⎞
⎠ .

(25)

Under this unitary transformation, the Hamiltonian becomes

H ′
0(t) = UcH0(t)U−1

c − i�Uc∂tU
−1
c

=
∑
ij

[ − J
(1)
ij (t)a†

i aj + J
(2)
ij (t)b†i bj + H.c.

]

+
∑

j

F cos(ωt)(χa
†
j bj + χ∗b†j aj ) +

∑
k⊥

�
2k2

⊥
2m

=
∑

k

∑
m

cos(mka)
[ − J (1)

m (t)a†
kak − J (2)

m (t)b†kbk
]

+
∑

k

F0 cos(ωt)(χa
†
kbk + χ∗b†kak) +

∑
k⊥

�
2k2

⊥
2m

,

(26)

where

J σ
ij (t) = tσij exp

[
−iF0

cos(ωt)

�ω
(zi − zj )

]

= tσij exp

[
−iF0

cos(ωt)

�ω
a(i − j )

]
, (27)

a = λL/2 is the lattice spacing, and χ = χ∗ for a suitable
choice of phase for ak and bk .

Thus, in the limit of F/(�ω)  1, the Hamiltonian describ-
ing the system is H = Hsp + Hint, where

Hsp =
∑

k

ε
(1)
k a

†
kak + ε

(2)
k b

†
kbk + χF cos(ωt)(a†

kbk + b
†
kak),

(28)

Hint =
∫

d2r⊥
∑

i

g1

2
a
†
i a

†
i aiai + g2

2
b
†
i b

†
i bibi

+ 2g12a
†
i b

†
i aibi + H ′. (29)

Here ε
(1)
k (ε(2)

k ) is the dispersion of the first (second) band and
ak (bk) is the annihilation operator for particles in the first
(second band).

We make the transformation bk → exp(−iωt)bk and dis-
card far-off-resonant terms (making the rotating-wave approx-
imation) to simplify the single-particle terms:

H
(sp)
RWA =

∑
k

ε
(1)
k a

†
kak + ε

(2)
k b

†
kbk + χF (a†

kbk + b
†
kak). (30)

Here k = {k,k⊥}, ε
(1)
k = ε

(1)
k + (�k⊥)2/(2m), ε

(2)
k = ε

(2)
k +

(�k⊥)2/(2m) − �ω. We diagonalize this quadratic form,
writing

H
(sp)
RWA =

∑
k

ε
(1)
k a

†
kak + ε

(2)
k b

†
kbk. (31)

The dressed dispersions ε
(1)
k and ε

(2)
k are shown as solid lines in

Fig. 2. The bare dispersions ε
(1)
k and ε

(2)
k are shown as dashed

lines. We treat H (sp)
RWA both perturbatively and nonperturbatively

to obtain scattering rates in the next two sections.

B. Perturbation theory

For small forcing amplitudes, we gain insight with a
perturbative expansion in F . To linear order in F , the dressed
operators are

a
†
k = a

†
k − (χF )/

(
ε

(2)
k − ε

(1)
k

)
b
†
k, (32)

b
†
k = b

†
k + (χF )/

(
ε

(2)
k − ε

(1)
k

)
a
†
k. (33)
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Because we have made the rotating-wave approximation,
we have a time-independent problem and can simply apply
Fermi’s golden rule. The standard procedure yields a scattering
rate:

dN

dt
=

∫
dk

2π

∫
d2k⊥
(2π )2

|〈ψf |Hint|ψi〉|2σ,

σ = 2π

�
δ

(
ε

(1)
k + ε

(2)
k + (�k⊥)2

m
− 2ε

(1)
0

)
. (34)

The initial and final states are

|ψi〉 = (a†
0)N√
N !

|0〉,
(35)

|ψf 〉 = b
†
ka

†
−k

(a†
0)(N−2)

√
N − 2!

|0〉.
Here |ψi〉 represents all particles in the condensate, while |ψf 〉
has one particle with momentum k in the dressed b band and
one with momentum −k in the ground band.

The transverse integrals are elementary and yield

dN

dt
= m

2�3
n2

∫
dk

2π

(
g1

�k

− 2
g12

�0

)2

(χF )2, (36)

where �k = (ε(2)
k − ε

(1)
k ), �0 = (ε(2)

0 − ε
(1)
0 ), and g = ga.

While Eq. (36) can always be integrated numerically, we have
found a sequence of approximations which lets us analytically
estimate the scattering rate. First, we approximate the Wannier
functions as w1(x) = ( 1

d2
1 π

)1/4 exp(−x2/2d2
1 ) and w2(x) =

( 1
πd2

1
)3/4x exp(−x2/2d2

1 ), where d1 = a/[π (V0)1/4] (with V0

being the lattice depth expressed in units of ER). Within this
approximation, g1 ≈ 2g12, where g1 = (4π�

2asa)/(md), with
d = d1

√
2π being the size of the Wannier state and as being the

scattering length. This is a good approximation as a numerical
calculation using the exact Wannier states for the lattice in
Ref. [20,21] yields g1 = (1/0.41) g12.

As a second approximation, we note that, except for k near
0, �k � �0. The contribution of those parts to the integral
in Eq. (36) is small, allowing us to neglect the k dependence
of the integrand. Hence we see that the rate of scattering is
approximately

dN

dt
≈ (g1n)2

(
χF

�0

)2
V m

2a�3
. (37)

This gives the time scale for the scattering as

τ = N
dN
dt

≈ 2�
3a

mg2
1n

(
�0

χF

)2

. (38)

Stronger interactions, higher density, and larger forcing am-
plitudes all increase the scattering rate.

C. Beyond perturbation theory

In this section, we extend our results to larger F . This allows
us to probe the critical and ferromagnetic region. Generically,
we write

a
†
k = uka

†
k + vkb

†
k, (39)

b
†
k = −vka

†
k + ukb

†
k, (40)

with |uk|2 + |vk|2 = 1. In particular,

uk = 1√
1 + |γk|2

, vk = gk√
1 + |γk|2

,

1

γk

=
√

4F 2χ2 + δε2
k + δεk

2χF
,

δεk = ε
(1)
k − ε

(2)
k .

One can invert the above relationships to obtain

a
†
k = uka

†
k − vkb

†
k, (41)

b
†
k = vka

†
k + ukb

†
k. (42)

For F < Fc (WITH Fc being the critical shaking force), we
use Eq. (35) as our initial and final states. For F > Fc, we use

|ψi〉 = (a†
k0

)N√
N !

|0〉,

∣∣ψ (1)
f

〉 = b
†
k0+ka

†
k0−k

(a†
k0

)(N−2)

√
N − 2!

|0〉, (43)

∣∣ψ (2)
f

〉 = b
†
k0+kb

†
k0−k

(a†
0)(N−2)

√
N − 2!

|0〉.

The states are analogous to those in Eq. (35). In particular,
|ψi〉 has all particles in a finite-momentum condensate (k0 =
{k = k0,k⊥ = 0}).

The scattering rate is then

dN

dt
=

∫
dk

2π

∫
d2k⊥
(2π )2

∣∣〈ψ (1)
f

∣∣Hint|ψi〉
∣∣2

σ12

+
∫

dk

2π

∫
d2k⊥
(2π )2

∣∣〈ψ (2)
f

∣∣Hint|ψi〉
∣∣2

σ22, (44)

where

σ12 = 2π

�
δ

(
ε

(1)
k0−k + ε

(2)
k0+k + (�k⊥)2

m
− 2ε

(1)
k0

)
,

σ22 = 2π

�
δ

(
ε

(2)
k0−k + ε

(2)
k0+k + (�k⊥)2

m
− 2ε

(1)
k0

)
.

In general, g12 = αg1 and g2 = βg1. Approximating the
Wannier functions with the harmonic oscillator wave func-
tions would yield α = 1/2 and β = 3/4. Rather than using
this approximation, we numerically calculate the maximally
localized Wannier functions for the experimental lattice depth
of V = 7ER and find that α = 0.41 and β = 0.6.

Extracting the dimensional factors,

τ = N
dN
dt

= 2�
3a

mg2
1n�

, (45)

where the dimensionless parameter � depends on the forcing
strength and can be expressed as

� =
∫

dk

2π
[| − uk0−kvk0+kuk0uk0 + α uk0+kvk0−kvk0vk0

+ 2 β(uk0+kuk0−kuk0vk0 − vk0+kvk0−kuk0vk0 )|2]

+ [|vk0−kvk0+kuk0uk0 + α uk0+kuk0−kvk0vk0

− 2 β(vk0+kuk0−kuk0vk0 + uk0+kvk0−kuk0vk0 )|2]. (46)
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FIG. 3. (Color online) Dimensionless decay rate � as a function
of amplitude of shaking F for ω = 5.5ER/� and V0 = 7.0ER . The
dotted line shows � calculated using Eq. (46), while the solid line
shows the function ( χF

�0
)2 corresponding to the rate in Eq. (38). The

kink shows the paramagnetic-ferromagnetic phase transition.

The dotted line in Fig. 3 shows � using α = 0.41 and
β = 0.6, corresponding to a lattice depth of V = 7ER .
There is a distinct kink in the � vs F plot, which shows the
paramagnetic-ferromagnetic phase transition. For all F , the
numerical calculation gives a smaller � than the perturbative
estimate in Eq. (37). For the experimental lattice depths,
d ∼ 100 nm, gn/h ∼ 150 Hz, as ∼ 1.5 nm, yielding τ ∼ 1 s
which matches experimental observations [20].

IV. GENERAL CONCLUSIONS

A. Form of the scattering rate

Generically, two-particle scattering will give a rate pro-
portional to g2n. The instabilities studied here relied upon
scattering into transverse modes. These rates can be modified
by tuning the density of these modes. For example, one could
imagine engineering band gaps with transverse optical lattices.
Note that such lattices may provide additional confinement and
increase the effective g, inadvertently increasing the decay
rate.

B. Diffusive dynamics

The same dissipation which causes the condensate to decay
can also lead to diffusive motion. Such diffusion may provide
another way to study this physics. We model the kinetics by a
Boltzmann equation:

∂n(z,p)

∂t
+ v(p)

∂n(z,p)

∂z
= n(z,p) − (n(z)/2π )

τ
. (47)

Here n(z,p) is the coarse-grained number of particles whose
position along the lattice direction is z and whose quasimo-
mentum in that direction is p, while n(z) = ∫

dp n(z,p) is the
linear density and the group velocity is v(p) = ∂ε/∂p. We have
integrated over the transverse directions. The τ appearing here
is exactly the same as in Eqs. (22), (38), and (45). The collision
term takes this simple form because atoms are scattered to
random values of momentum in the lattice direction after
a collision. Taking the zeroth and first moments of the
Boltzmann equation yields typical hydrodynamic equations

∂n(z)

∂t
+ ∂J

∂z
= 0, (48)

∂J

∂t
+ ∂

∂z
[〈v2〉n(z)] = J

τ
, (49)

where the current J is defined by J = ∫
dv v(p)n(z,p). In the

overdamped limit, these can be rewritten as a diffusion equa-
tion with diffusion constant D = 〈v2〉τ ∝ J 2

effτ , where Jeff is
the effective tunneling coefficient [see Eq. (17)]. Observing the
diffusive motion may be one way of experimentally measuring
τ , complementing more direct methods [64,65].

V. SUMMARY AND OUTLOOK

In this paper we analyzed the stability of a BEC in
a driven one-dimensional optical lattice with no transverse
confinement. We found that due to the presence of transverse
modes, the BEC would always be unstable, and we calculate
the decay rates. Experimentally, this instability would be
manifest in many forms, including heating and diffusive
dynamics. In previous work, we found that in the limit of
extremely tight transverse confinement the BEC has regimes
of stability.

Generally, experiments are neither in the tight-binding limit
nor in the limit with no transverse confinement. The results in
the present paper are applicable as long as the level spacing
of the quantum modes in the transverse direction (∼100 Hz
for the experiment in Ref. [21]) is small compared to the drive
frequency ω (∼7.3 kHz for the experiment in Ref. [21]). The
results from [56] apply in the opposite limit.
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