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Two-band description of resonant superfluidity in atomic Fermi gases
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Fermionic superfluidity in atomic Fermi gases across a Feshbach resonance is normally described by the
atom-molecule theory, which treats the closed channel as a noninteracting point boson. In this work we present
a theoretical description of the resonant superfluidity in analogy to the two-band superconductors. We employ
the underlying two-channel scattering model of Feshbach resonance where the closed channel is treated as a
composite boson with binding energy ε0 and the resonance is triggered by the microscopic interchannel coupling
U12. The binding energy ε0 naturally serves as an energy scale of the system, which has been sent to infinity in
the atom-molecule theory. We show that the atom-molecule theory can be viewed as a leading-order low-energy
effective theory of the underlying fermionic theory in the limit ε0 → ∞ and U12 → 0, while keeping the
phenomenological atom-molecule coupling finite. The resulting two-band description of the superfluid state is in
analogy to the BCS theory of two-band superconductors. In the dilute limit ε0 → ∞, the two-band description
recovers precisely the atom-molecule theory. The two-band theory provides a natural approach to study the
corrections because of a finite binding energy ε0 in realistic experimental systems. For broad and moderate
resonances, the correction is not important for current experimental densities. However, for extremely narrow
resonance, we find that the correction becomes significant. The finite binding energy correction could be important
for the stability of homogeneous polarized superfluid against phase separation in imbalanced Fermi gases across
a narrow Feshbach resonance.
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I. INTRODUCTION

It is widely accepted that a crossover from the BCS
superfluidity to the Bose-Einstein condensation (BEC) of
molecules can be realized in an attractive Fermi gas by
tuning the attraction from weak to strong [1]. This interesting
phenomenon has been experimentally observed in ultracold
Fermi gases of alkali-metal atoms [2] (such as 6Li and 40K). In
these experiments, the attractive strength is effectively tuned
by means of the Feshbach resonances (FRs). The basic mech-
anism of the FR is the coupling between different scattering
channels in alkali-metal atoms in a magnetic field [3,4].

The scattering channels of the alkali-metal atoms are
characterized by the eigenstates of the single-particle hyperfine
Hamiltonian in a magnetic field B. The main contribution to
the atom-atom interaction is the electrostatic central potential
which also induces the couplings among different scattering
channels. Because of these interchannel coupling, a FR
occurs when the bound-state level of a certain closed channel
coincides with the threshold of a certain open channel. A
schematic plot for this mechanism is shown in Fig. 1. In the
vicinity of an s-wave FR, the low-energy scattering amplitude
for the open channel is given by

f (p) = 1

p cot δ(p) − ip
, (1)

where the scattering phase shift can be well parametrized
as [3,4]

p cot δ(p) = − 1

abg

E − γ (B − B0)

E − γ (B − B0) + γB�

. (2)

Here E = p2/M is the scattering energy, with M being the
atom mass, B0 is the resonance point, B� is the resonance
width, γ is the difference of the magnetic moments between

the two-channels, and abg is the background scattering length.
The units � = kB = 1 will be used throughout. The magnetic
detuning δ(B) = γ (B − B0) then tunes the effective scattering
length of the open channel. Near the FR, p cot δ(p) can be
expanded as

p cot δ(p) � − 1

aeff
+ 1

2
reffp

2 + · · · , (3)

with an effective scattering length

aeff = abg

(
1 − B�

B − B0

)
(4)

and a negative effective range

reff = − 2

MabgγB�

. (5)

For many-body systems with total density n, we normally
define a Fermi wave vector kF = (3π2n)1/3 and corresponding
Fermi energy εF = k2

F/(2M). So far, most of the experimental
studies focus on broad resonances, where kF|reff| � 1. In
this case, the many-body physics near the FR is universal
and can be well described by a single-channel model. The
universal many-body physics can be obtained from Monte
Carlo simulations [5] by using any short-ranged potential
with the same scattering length aeff and negligible effective
range. Recently, resonantly interacting Fermi gas with a large
effective range has been experimentally realized by using the
narrow resonance of 6Li at B � 543.3 G [6].

For general resonances, a popular effective model is the
atom-molecule model [7–10], which precisely reproduces the
low-energy scattering amplitude parametrized by (2). The
model Hamiltonian can be written as

H = Hf + Hb + Hfb, (6)
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FIG. 1. (Color online) A schematic plot for the mechanism of
FR. The red and blue solid lines show the potential energy (in proper
units) as a function of the distance (in proper units) for the closed and
open channels, respectively. The red and blue dashed lines show the
scattering thresholds for the closed and open channels, respectively.
The closed channel has a bound state with binding energy ε0. This
bound-state level can be tuned by changing the magnetic field. When
it coincides with the scattering threshold of the open channel, a FR
occurs.

where the atom part,

Hf =
∑

σ=↑,↓

∫
d3rψ†

σ

(
− ∇2

2M

)
ψσ + u0

∫
d3rψ†

↑ψ
†
↓ψ↓ψ↑,

(7)
the molecule part,

Hb =
∫

d3rφ†
m

(
− ∇2

4M
+ δ0

)
φm, (8)

and the atom-molecule coupling part,

Hbf = g0

∫
d3r(φ†

mψ↓ψ↑ + φmψ
†
↑ψ

†
↓). (9)

Here ψσ denotes the open-channel fermions and φm denotes
the closed-channel molecules. The couplings g0 and u0 and the
detuning δ0 are bare quantities. They should be renormalized
by using the physical background scattering length abg,
resonance width B�, and detuning δ = γ (B − B0). In this
model, the closed channel is treated as a point boson and the
FR is triggered by the atom-molecule coupling g0.

Another idea to study the narrow resonance is to use a
well plus barrier potential [11] which can reproduce a large
and negative effective range. However, it is essentially a
single-channel model which lacks the information of the closed
channel. Actually, it has been shown that the closed channel
dominates in the narrow resonance limit [10]. In this paper,
we go back to the underlying two-channel Hamiltonian which
treats both the open and the closed channels as fermions [12].
We show that the (renormalized) atom-molecule coupling g is
related to the underlying inter-channel coupling U12 and the
closed-channel binding energy ε0 through

g = U12

√
(Mε0)3/2

2π
. (10)

The binding energy ε0 of the closed-channel bound state,
which serves as a natural energy scale of the system, is
automatically sent to infinity in the atom-molecule model. We
show explicitly that the atom-molecule model can be viewed as
a low-energy effective theory of the underlying two-channel
theory in the limit ε0 → ∞ and U12 → 0, while keeping g

finite. For many-body physics, the resonant Fermi gas can
be viewed as a two-band superfluid with a large band offset
ε0. Therefore, the underlying two-channel Hamiltonian will be
referred to as a two-band model in this paper. In the dilute limit
εF/ε0 → 0, the prediction of the many-body physics becomes
essentially the same as the atom-molecule model. However,
in realistic experimental systems, the ratio εF/ε0 is small but
finite. For broad and moderate resonances, the correction due
to nonvanishing εF/ε0 is not important. However, for extremely
narrow resonance, this correction becomes significant.

The paper is organized as follows. In Sec. II we briefly
review the atom-molecule model description of resonant
superfluidity. In Sec. III we calculate the low-energy scattering
amplitude in a two-band model and show that the atom-
molecule model can be viewed as a low-energy effective
theory. We formulate the resonant Fermi gas as a two-band
superfluid in Sec. IV and study its dilute limit in Sec. V. We
apply the two-band description to study the narrow resonance
of 6Li in Sec. VI. The paper is summarized in Sec. VII.

II. REVIEW: ATOM-MOLECULE THEORY

In this section, we briefly review the atom-molecule theory
of resonant superfluidity in atomic Fermi gases. We introduce
the renormalization of the atom-molecule model and its
description of the superfluid state [8–10].

A. Renormalization of the model

To renormalize the model, we first calculate the two-
body scattering amplitude f (p). The Lippmann-Schwinger
equation for two-fermion scattering can be expressed by using
an energy-dependent interaction vertex,

V (E) = u0 + g2
0

E − δ0
. (11)

The resulting T matrix reads

T (E) = V (E)

1 − V (E)
(E)
, (12)

where the two-particle bubble function 
(E) is given by


(E) =
∑

k

1

E + iε − 2εk
. (13)

The integral over k is divergent and we introduce a cutoff �.
Completing the integral we obtain


(E) = −M�

2π2
+ M

4π

√
−M(E + iε). (14)

The scattering amplitude f (p) = − M
4π

T (E) takes the form of
Eq. (1), where p cot δ(p) reads

p cot δ(p) = −2�

π
− 4π

M

(
u0 + g2

0

E − δ0

)−1

. (15)
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Next we match the above result to the physical result (2).
The renormalizability of the model requires that the equality

−2�

π
− 4π

M

[
u0(�) + g2

0(�)

E − δ0(�)

]−1

= − 1

abg

E − δ

E − δ + γB�

(16)

holds for an arbitrary value of the scattering energy E through
proper cutoff dependence of the bare couplings and the
detuning. Defining the renormalized couplings u = 4πabg/M ,
g = √

γB�u, and detuning δ = γ (B − B0), we obtain

u0(�) = u

1 − η(�)u
,

g0(�) = g

1 − η(�)u
, (17)

δ0(�) = δ + g2η(�)

1 − η(�)u
,

where η(�) = M�/(2π2). When the background scattering
length is neglected, i.e., u = 0, only the detuning needs
renormalization. In this case, we have g0 = g and δ0 =
δ + g2η(�).

B. Superfluid state

The partition function of the many-body system can be
expressed as

Z =
∫

[dψ][dψ†][dφm][dφ†
m] exp (−Sψ,φ), (18)

where the action Seff reads

Sψ,φ =
∫

dx
∑

σ=↑,↓
ψ†

σ (x)(∂τ − μ)ψσ (x)

+
∫

dx φ†
m(x)(∂τ − 2μ)φm(x) +

∫ β

0
dτH. (19)

Here x = (τ,r), with τ being the imaginary time, and β =
1/T , with T being the temperature of the system. Here we have
introduced the chemical potential μ which is conjugate to the
total particle number. To decouple the four-fermion interaction
term, we introduce an auxiliary field ϕ(x) = u0ψ↓(x)ψ↑(x).
By performing the Hubbard-Stratonovich transformation, we
obtain

Z =
∫

[dϕ][dϕ†][dφm][dφ†
m] exp (−Seff), (20)

where the effective action reads

Seff =
∫

dx φ†
m(x)

(
∂τ − ∇2

4M
+ δ0 − 2μ

)
φm(x)

−
∫

dx
|ϕ(x)|2

u0
−

∫
dx Tr ln G−1[ϕ,φm], (21)

with the inverse fermion Green’s function given by

G−1 =
(

−∂τ + ∇2

2M
+ μ ϕ + g0φm

ϕ† + g0φ
†
m −∂τ − ∇2

2M
− μ

)
δ(x − x ′). (22)

In the superfluid phase, the two boson fields φm and ϕ

generate nonzero expectation values. We define

�b = g0〈φm(x)〉, �f = 〈ϕ(x)〉. (23)

In the mean-field approximation, the grand potential at T = 0
is given by

�0 = δ0 − 2μ

g2
0

|�b|2 − |�f|2
u0

+
∑

|k|<�

(ξk − Ek), (24)

where ξk = εk − μ and Ek =
√

ξ 2
k + |�|2, with � = �b +

�f . The next step is to remove the cutoff dependence by using
the physical quantities u, g, and δ.

To renormalize the grand potential, we note that �b and �f

are cutoff dependent and therefore not physical quantities [8].
To show this, we use the stationary condition

∂�0

∂�∗
b

= δ0 − 2μ

g2
0

�b −
∑

k

�

2Ek
= 0,

(25)
∂�0

∂�∗
f

= −�f

u0
−

∑
k

�

2Ek
= 0,

to obtain

�b = g2
0

2μ − δ0

�f

u0
. (26)

Then we have

�b = g2
0

/
(2μ − δ0)

u0 + g2
0

/
(2μ − δ0)

�,

(27)
�f = u0

u0 + g2
0

/
(2μ − δ0)

�.

Therefore, �b and �f are cutoff dependent. To renormalize the
grand potential, we should regard them as dependent quantities
and express the grand potential in terms of the finite quantity
�. Finally, we obtain

�0(�) = − |�|2
u0 + g2

0

/
(2μ − δ0)

+
∑

|k|<�

(ξk − Ek). (28)

Using the fact that

1

u0 + g2
0

/
(2μ − δ0)

= 1

ueff
− η(�), (29)

we obtain a cutoff-independent expression,

�0(�) = −|�|2
ueff

+
∑

k

(
ξk − Ek + |�|2

2εk

)
, (30)

where

ueff = u + g2

2μ − δ
. (31)

The gap equation can be derived from ∂�0/∂� = 0. We
have

1

ueff
=

∑
k

(
1

2εk
− 1

2Ek

)
. (32)
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Meanwhile, the total density n is obtained through n =
−∂�0/∂μ. We obtain

n =
∑

k

(
1 − ξk

Ek

)
+ nm, (33)

where the contribution from the closed channel is given by

nm = 2|�|2
g2

(
1 − u

ueff

)2

. (34)

From the above coupled equations, we can solve the pairing
gap �, the chemical potential μ, and the closed-channel
fraction nm/n at given detuning δ. For sufficiently large
coupling g, the result reproduces the universality predicted
by the single-channel model. For finite temperature properties
and beyond-mean-field treatment, we refer to Refs. [8–10].

III. A TWO-BAND MODEL FOR FESHBACH RESONANCE

The precise prediction of the FRs relies on solving the
microscopic multichannel scattering problem with known
microscopic interaction potentials. However, the scattering
problem near a specific FR can be attributed to an effective two-
channel problem. Let us consider a two-channel Hamiltonian
H = H0 + Hint [12], where

H0 =
∑

n=1,2

∑
σ=↑,↓

∫
d3rψ†

nσ (r)

(
− ∇2

2M
+ εnσ

)
ψnσ (r). (35)

Here n = 1 and n = 2 correspond to the open channel and the
closed channel, respectively. The interaction part is

Hint =
∑

m,n=1,2

∫
d3r

∫
d3r′ϕ†

m(r)Vmn(|r − r′|)ϕn(r′), (36)

where we use the notation

ϕn(r) = ψn↓(r)ψn↑(r). (37)

In this second quantization form, the thresholds εn
th = εn↑ +

εn↓ are put into the free part H0. Therefore, the interaction
potential V (|r − r′|) → 0 for |r − r′| → ∞. It includes both
intra- and interchannel interactions.

The threshold energies εnσ can be further simplified.
Without loss of generality, we set

ε1↑ = ε1↓ = 0, ε2↑ = ε2↓ = 1
2εth. (38)

For a many-body system, the difference between εn↑ and εn↓
can be absorbed into the definition of the chemical potentials.

A. Low-energy scattering amplitude

The effective range r0 of the microscopic potential V (|r −
r′|) introduces an energy scale

εr = 1

Mr2
0

. (39)

At low scattering energy E � εr, the shape of the microscopic
interaction potential V (|r − r′|) is not important. It can be
safely replaced with a contact one V δ(r − r′). For many-body
physics, this means that all kinds of short-ranged potential
V (|r − r′|) lead to the same predictions in the dilute limit
kFr0 → 0 [12]. By making use of the contact potential, the

Lippmann-Schwinger equation of the scattering T matrix
becomes an algebra equation,(

T11(E) T12(E)

T21(E) T22(E)

)−1

=
(

V11 V12

V21 V22

)−1

−
(B1(E) 0

0 B2(E)

)
, (40)

where the two-particle bubble functions are given by

Bn(E) =
∑

k

1

E + iε − εn
th − 2εk

. (41)

Here ε = 0+ and εk = k2/(2M). Note that we have set
ε1

th = 0 and ε2
th ≡ εth(B) without loss of generality. The cost

of the contact interaction is that the integral over the fermion
momentum k becomes divergent. We introduce a cutoff � for
|k| and obtain

Bn(E) = −M�

2π2
+ 
n(E), (42)

where


1(E) = M

4π

√
−M(E + iε),

(43)


2(E) = M

4π

√
−M(E + iε − εth).

The divergence can be removed by using the renormalized
coupling matrix U . It is related to the bare coupling matrix V

by [12](
U11 U12

U21 U22

)−1

=
(

V11 V12

V21 V22

)−1

+
(

η(�) 0

0 η(�)

)
. (44)

Without loss of generality, we set U12 = U21 > 0. Then the
Lippmann-Schwinger equation becomes cutoff independent,(

T11(E) T12(E)

T21(E) T22(E)

)−1

=
(

U11 U12

U21 U22

)−1

−
(


1(E) 0

0 
2(E)

)
. (45)

Next we relate the elements of U to physical observables.
In general, both the coupling U and the threshold energy εth

depend on the magnetic field B. However, near the FR we
may safely neglect the B dependence of the coupling U . The
threshold energy εth can be well parametrized as

εth(B) = ε0 + δ(B), (46)

where ε0 is the binding energy of the closed-channel molecule
and δ(B) = γ (B − B0) is the magnetic detuning. The binding
energy ε0 serves as another energy scale of the system. For
an atomic system, we normally have the hierarchy ε0 � εr.
For the problem of FR, low-energy scattering means that
the scattering energy E � ε0. This is actually the simplest
model for FR in atomic systems. If we know the explicit B

dependence of the microscopic interaction potential V (|r −
r′|) and the threshold energy εth, we can have better description
of the B dependence [12].
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Solving the Lippmann-Schwinger equation, we obtain the T matrix for the open channel,

T −1
11 (E) =

[
U11 + U 2

12
2(E)

1 − U22
2(E)

]−1

− 
1(E). (47)

A FR occurring at B = B0 requires that T11(E = 0) diverges at B = B0. Since 
1(0) = 0, we obtain

1

U22
= 
2(0) = M

4π

√
Mε0. (48)

This equation clearly shows that the bound-state level of the closed channel coincides with the threshold of the open channel
when FR occurs. The scattering amplitude for the open channel is defined as f (p) = − M

4π
T11(E). At low scattering energy

E = p2/M � ε0, 
2(E) is real and 
1(E) = − M
4π

ip. Therefore, f (p) takes the form of Eq. (1), where p cot δ(p) is given by

p cot δ(p) = − 4π

MU11

√
Mε0 − √

M(ε0 + δ − E)
√

Mε0 − √
M(ε0 + δ − E) + U 2

12
U11U22

√
M(ε0 + δ − E)

. (49)

At low scattering energy E � ε0 and near the FR (δ � ε0), it
can be well approximated as

p cot δ(p) � − 4π

MU11

E − δ

E − δ + 2U 2
12

U11U22
ε0

. (50)

Thus, the coupling constants are related to the physical
observables through the following relations:

U11 = 4πabg

M
, U22 = 4π

M

1√
Mε0

, γB� = 2U 2
12

U11U22
ε0.

(51)

In terms of U12 and ε0, the effective range reff can be explicitly
expressed as

reff = − 16π2

M2U 2
12(Mε0)3/2

, (52)

which indicates that the effective range is always negative.
From Fig. 1, we find that the binding energy ε0 equals the
Zeeman energy splitting EZ at the resonance B = B0 [12];
i.e.,

ε0 = EZ(B = B0). (53)

B. Atom-molecule model as a low-energy effective theory

The phenomenological coupling g in the atom-molecule
model is related to physical observables as g = √

γB�u.
From Eq. (51) we can identify u = U11. Therefore, g can be
expressed in terms of ε0 and U12 as

g = U12

√
(Mε0)3/2

2π
. (54)

This expressions shows explicitly how the phenomenological
coupling g is related to the microscopic parameters. In the
following we show that the atom-molecule model can be
viewed as a low-energy effective theory in the limit ε0 → ∞
while keeping the phenomenological coupling g finite (hence,
U12 → 0). In this limit, we have U12 ∼ O(ε−3/4

0 ), U22 ∼
O(ε−1/2

0 ), and U11 ∼ O(1), which leads to U 2
12 � |U11U22|.

Therefore, the relations between U and V can be well
approximated as(

V11 − V 2
12

V22

)−1

=
(

U11 − U 2
12

U22

)−1

− η(�)

� 1

U11
− η(�),

(
V22 − V 2

12

V11

)−1

=
(

U22 − U 2
12

U11

)−1

− η(�) (55)

� 1

U22

(
1 + U 2

12

U11U22

)
− η(�),

V12

V22

(
V11 − V 2

12

V22

)−1

= U12

U11U22 − U 2
12

� U12

U11U22
.

Comparing with the atom-molecule model, we identify

u = U11, u0 = V11 − V 2
12

V22
. (56)

To arrive at the atom-molecule model, we introduce an
auxiliary field �m(x) = V22ψ2↓(x)ψ2↑(x) and integrate out
the closed-channel fermions. Then the effective action can be
expressed as Seff = Sf + Sb + Sbf , where

Sf =
∫

dx

⎡
⎣ ∑

σ=↑,↓
ψ†

σ (x)

(
∂τ − ∇2

2M
− μ

)
ψσ (x) +

(
V11 − V 2

12

V22

)
ψ

†
↑(x)ψ†

↓(x)ψ↓(x)ψ↑(x)

⎤
⎦ ,

Sb =
∫

dx

[
−|�m(x)|2

V22
− Trln

(
−∂τ + ∇2

2M
+ μ − 1

2εth �m(x)

�
†
m(x) −∂τ − ∇2

2M
− μ + 1

2εth

)]
, (57)

Sbf =
∫

dx
V12

V22
[�m(x)ψ†

↑(x)ψ†
↓(x) + �†

m(x)ψ↓(x)ψ↑(x)].
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Here we have introduced the chemical potential μ and used
ψσ ≡ ψ1σ to denote the open-channel fermions. Using the
fact V11 − V 2

12/V22 = u0 we find that the fermion part Sf

corresponds precisely to the atom part Hf of the atom-molecule
model.

Next we consider the molecule part Sb and the atom-
molecule coupling part Sbf . The inverse propagator for the
boson field �(x) is given by

D−1
m (x,x ′) = δ2Sb[�†

m,�m]

δ�
†
m(x)δ�m(x ′)

. (58)

In the momentum space, it can be explicitly evaluated as

D−1
m (ω,q) = − 1

V22
+

∑
k

1

ω + iε + 2μ − 1
2εq − εth − 2εk

.

(59)

At low energy, i.e., ω,εq � ε0, it can be expanded in terms of
ω and εq. We have

D−1
m (ω,q) � d0 + d1

(
ω − q2

4M

)
, (60)

where

d0 = M

4π

√
M(εth − 2μ) −

(
1

V22
+ M�

2π2

)
,

(61)

d1 = M2

8π
√

M(εth − 2μ)
.

It becomes evident in the following that the low-energy
expansion (59) corresponds to the leading-order expansion
in 1/

√
Mε0. For large ε0, we have δ,μ � ε0. Therefore, d0

and d1 can be well approximated as

d1 � α = M2

8π
√

Mε0
(62)

and

d0 � M

4π

√
M(εth − 2μ) − 1

U22

− U 2
12

U11U
2
22

+ V 2
12

V22
(
V11V22 − V 2

12

)
= M

4π
[
√

M(ε0 + δ − 2μ) −
√

Mε0]

+
(

V12

V22

)2 1

u0
−

(
U12

U22

)2 1

u

� α

[
δ − 2μ + 1

αu0

(
V12

V22

)2

− 1

αu

(
U12

U22

)2]
. (63)

Then we define a normalized molecule field,

φm(x) = √
α�m(x), (64)

which corresponds to the molecule field used in
the atom-molecule model. The effective actions

become

Sb �
∫

dx φ†
m(x)

[
∂τ − ∇2

4M
− 2μ

+ δ + 1

αu0

(
V12

V22

)2

− 1

αu

(
U12

U22

)2]
φm(x), (65)

Sbf �
∫

dx
1√
α

V12

V22
[φm(x)ψ†

↑(x)ψ†
↓(x) + H.c.].

Using the relations between U and V in Eq. (54) we obtain

1√
α

V12

V22
= 1√

α

U12

U11U22
u0 = g

1 − η(�)u
= g0 (66)

and

δ + 1

αu0

(
V12

V22

)2

− 1

αu

(
U12

U22

)2

= δ + g2
0

u0
− g2

u
= δ + g2η(�)

1 − η(�)u
= δ0. (67)

Here we have used the definition of the atom-molecule
coupling,

g =
√

γB�u =
√

2U 2
12

U22
ε0 = U12

√
(Mε0)3/2

2π
. (68)

Therefore, we have shown that the atom-molecule model
is a low-energy effective theory of the two-band model in
the limit ε0 → ∞ (and hence U12 → 0), while keeping the
phenomenological atom-molecule coupling g finite. In the
atom-molecule model, the energy scale ε0 is hidden and is
automatically sent to infinity.

We can also work out the next-to-leading-order low-energy
expansion of the molecule part Sb. It is quartic in φm and
corresponds to the two-body interaction of the closed-channel
bound states. We have

SNLO
b = 1

2

4πam

2M

∫
dx |φm(x)|4, (69)

where am � 2/
√

Mε0 is the scattering length of the closed-
channel molecules. In the limit ε0 → ∞, this contribution
can be safely neglected. However, for realistic systems, ε0 is
large but finite, this term may be important for the stability of
polarized superfluidity [13].

IV. RESONANT FERMI GAS AS A
TWO-BAND SUPERFLUID

Starting from the two-channel Hamiltonian (35) and (36),
we naturally have a two-band description of the superfluid
state which is analogous to the BCS theory of two-band
superconductors [14,15]. The molecule binding energy ε0

appears explicitly in this theory as the band offset. In the dilute
limit εF/ε0 → 0, we expect that the two-band description
recovers the atom-molecule model description.
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A. Superfluid phase

Following the standard field theoretical treatment, we
introduce the auxiliary pairing fields

�(x) =
(

�1(x)

�2(x)

)
=

(
V11 V12

V21 V22

) (
ϕ1(x)

ϕ2(x)

)
, (70)

where x = (τ,r), with τ being the imaginary time, apply the
Hubbard-Stratonovich transformation, and integrate out the
fermion fields. The partition function of the system can be
expressed as

Z =
∫

[d�†][d�] exp (−Seff). (71)

The effective action Seff reads

Seff = −
∫

dx �†(x)V −1�(x) −
∑

n=1,2

Tr ln G−1
n [�n(x)],

(72)

where the inverse fermion Green’s functions are given by

G−1
n =

(
−∂τ + ∇2

2M
+ μn �n(x)

�∗
n(x) −∂τ − ∇2

2M
− μn

)
δ(x − x ′).

(73)

Here we have defined μ1 = μ and μ2 = μ − εth/2, with μ

being the fermion chemical potential.
In the superfluid phase, the pairing fields have nonzero

expectation values. We write

�n(x) = �n + φn(x), (74)

where the constants �1 and �2 serve as the order parameters
of superfluidity. Note that both �1 and �2 are superpositions
of the pair potentials ϕ1 and ϕ2. The order parameters �1

and �2 are both finite quantities, in contrast to the atom-
molecule model. The effective action can be expanded in terms
of the fluctuations φn(x). In the following, we evaluate the
effective action up to the Gaussian fluctuations, i.e., Seff �
S0 + Sg. First, we consider the mean-field part S0. It can be
evaluated as S0 = βV�0, where the grand potential �0 is

given by

�0 = −�†U−1� +
∑

n=1,2

∑
k

(
ξnk − Enk + |�n|2

2εk

)

− 2T
∑

n=1,2

∑
k

ln (1 + e−Enk/T ). (75)

Here � = (�1,�2)T and the dispersions are defined as ξnk =
εk − μn and Enk =

√
(ξnk)2 + |�n|2. Note that we have used

the renormalized coupling U . The grand potential �0 here
is free from the cutoff � for arbitrary values of �1 and �2.
Therefore, �1 and �2 are two independent physical quantities
in the present two-band theory.

The contribution from Gaussian fluctuations is given by

Sg = 1

2

∑
Q

φ†(−Q)M(Q)φ(Q), (76)

where Q = (iων,q), with ων = 2νπ/T (ν integer) and
φ†(−Q) = (φ∗

1 (Q),φ1(−Q),φ∗
2 (Q),φ2(−Q)). The inverse bo-

son propagator M(Q) is a 4 × 4 matrix and can be expressed
as

M(Q) = −U−1 ⊗ I2 + H(Q), (77)

where I2 is a 2 × 2 identity matrix. The matrix H(Q) can be
expressed as

H(Q) = diag(H1(Q),H2(Q)). (78)

The two blocks Hn(Q) are 2 × 2 matrices. Their elements
satisfies H 11

n (Q) = H 22
n (−Q) and H 12

n (Q) = H 21
n (Q). Using

the fermion propagator Gn(K), we have

H 11
n (Q) =

∑
K

G22
n (K)G11

n (K + Q),

(79)
H 12

n (Q) =
∑
K

G12
n (K)G21

n (K + Q),

where Gn(K) can be obtained from

G−1
n (K) =

(
iωm − ξnk �n

�∗
n iωm − ξnk

)
. (80)

Here K = (iωm,k), with ωm = (2m + 1)π/T (m integer).
Their explicit forms are given by

Hn11(Q) =
∑

k

[
(1 − fn+ − fn−)

(
u2

n+u2
n−

iων − En+ − En−
− υ2

n+υ2
n−

iων + En+ + En−

)

+ 1

2εk
+ (fn+ − fn−)

(
υ2

n+u2
n−

iων + En+ − En−
− u2

n+υ2
n−

iων − En+ + En−

)]
, (81)

Hn12(Q) =
∑

k

|�n|2
2En+En−

[
(1 − fn+ − fn−)

En+ + En−
(En+ + En−)2 − (iων)2

+ (fn+ − fn−)
En+ − En−

(En+ − En−)2 − (iων)2

]
.

The notations in the above expressions are defined as En± =
Enk±q/2, u2

n± = 1
2 (1 + ξn±/En±), υ2

n± = 1
2 (1 − ξn±/En±), and

fn± = f (En±), with f (E) ≡ 1/(eE/T + 1) being the Fermi-
Dirac distribution. The contribution of the Gaussian fluctua-

tions to the grand potential can be formally expressed as

�g = 1

2β

∑
Q

ln det M(Q). (82)
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The order parameters �n and the chemical potential μ

should be determined by the stationary condition or the
gap equation ∂�0/∂�n = 0 together with the constraint for
the total density n = −∂�t/∂μ, where �t = �0 + �g is the
grand potential including Gaussian fluctuations [16]. The gap
equation can be expressed as[(

U11 U12

U21 U22

)−1

−
(

F1(�1) 0

0 F2(�2)

)] (
�1

�2

)
= 0,

(83)

where Fn is given by

Fn(�n) =
∑

k

[
2f (Enk) − 1

2Enk
+ 1

2εk

]
. (84)

We conclude that �1 and �2 vanish at the same critical
temperature, in analogy to the BCS theory of two-band
superconductors [14]. Meanwhile, the number equation is
given by

n = n1 + n2 + ng, (85)

where ng = −∂�g/∂μ is the fluctuation contribution and

nn =
∑

k

{
1 − ξnk

Enk
[1 − 2f (Enk)]

}
. (86)

Note that the gap equation can also be expressed as[
U11 + U 2

12F2(�2)

1 − U22F2(�2)

]−1

= F1(�1),

(87)
�2

�1
= U12

U11 − F2(�2) det U
.

The first equation shows explicitly the resonance effect on
the open channel. As we show below, these equations become
essentially the same as the atom-molecule model in the dilute
limit εF/ε0 → 0.

B. Superfluid transition temperature

The superfluid order parameters �1 and �2 vanish simul-
taneously at some critical temperature Tc. At a given chemical
potential μ, the critical temperature is determined by

det

[(
U11 U12

U21 U22

)−1

−
(

F1(0) 0

0 F2(0)

)]
= 0. (88)

After some manipulations, we obtain[
U11 + U 2

12F2(0)

1 − U22F2(0)

]−1

= F1(0). (89)

To express Tc in terms of the density n or εF, we
need to solve the chemical potential μ through the number
equation n = n1 + n2 + ng. The mean-field contributions can
be simplified as

nn = 2
∑

k

f (εk − μn). (90)

We have n2 � 0 for Tc � ε0. The fluctuation contribution ng

is given by ng = −∂�g/∂μ. For vanishing order parameters,

the effective action Sg can be simplified as

Sg =
∑
Q

φ†(−Q)�−1(Q)φ(Q). (91)

Here φ†(−Q) = (φ∗
1 (Q),φ∗

2 (Q)) and the inverse boson propa-
gator �−1(Q) becomes a 2 × 2 matrix,

�−1(Q) = −
(

U11 U12

U21 U22

)−1

+
(

χ1(Q) 0

0 χ2(Q)

)
, (92)

where the pairing susceptibilities χn(Q) reads

χn(Q) =
∑

k

[
1 − f (ξnk+q/2) − f (ξnk−q/2)

iων + 2μn − q2

4M
− 2εk

+ 1

2εk

]
. (93)

We note that the superfluid transition temperature is also
given by det �−1(0,0) = 0, which is the generalized Thouless
criterion for two-band systems. Finally, the contribution �g

can be expressed as

�g = −
∑

q

∫ ∞

−∞

dω

π

1

eβω − 1
[δ1(ω,q) + δ2(ω,q)], (94)

where δn(ω,q) = −Im ln[�−1
n (ω + iε,q)], with the two vertex

functions given by

�−1
1 (iων,q) = −

[
U11 + U 2

12χ2(Q)

1 − U22χ2(Q)

]−1

+ χ1(Q),

(95)

�−1
2 (iων,q) = −

(
U22 − U 2

12

U11

)−1

+ χ2(Q).

The first contribution corresponds to the usual Nozières–
Schmitt-Rink (NSR) approach with an energy-dependent scat-
tering length [17]. The second contribution can be attributed
to the presence of the closed channel. Actually, for ε0 → ∞,
we have

U 2
12χ2(Q)

1 − U22χ2(Q)
� g2

iων − q2

4M
+ 2μ − δ

,

(96)

�−1
2 (iων,q) � −α

(
iων − q2

4M
+ 2μ − δ + γB�

)
.

We expect that the term γB� in �−1
2 (iων,q) controls

the closed-channel contribution. For broad resonance with
γB� � εF, this contribution can be safely neglected and we
recover the single-channel description.

V. DILUTE LIMIT: ε0 → ∞
In this section, we study the dilute limit of the two-band the-

ory. The dilute limit means ε0/εF → ∞. The closed-channel
binding energy ε0 is equal to the Zeeman energy splitting at
the resonance B = B0 [12]. Considering the resonance occurs
at high magnetic field, we estimate ε0 ∼ γB0. For the 6Li
atom, its broad resonance and the narrow resonance occur at
B = 834.1 G and B = 543.25 G, respectively. The typical
density of atoms realized in current experiments is 1013–1014

cm−3. Therefore, we estimate that the ratio ε0/εF is of order
103 in current experimental systems, which satisfies well the
dilute condition εF � ε0.

023622-8



TWO-BAND DESCRIPTION OF RESONANT . . . PHYSICAL REVIEW A 91, 023622 (2015)

For the sake of simplicity, we focus on the zero-temperature
case and employ the mean-field theory. We show that in the
mean-field approximation, the predictions from the two-band
theory become essentially the same as the atom-molecule
model in the dilute limit. The coupled gap equations for the
pairing gaps �1 and �2 can be expressed as

1

U11 + C(�2)
= F1(�1),

(97)
�2

�1
= C(�2)

U11 + C(�2)

1

U12F2(�2)
,

where C(�2) is defined as

C(�2) = U 2
12F2(�2)

1 − U22F2(�2)
. (98)

The quantity C shows explicitly the resonance effect on
the open channel. Note that �1 and �2 are both complex
quantities. Without loss of generality, we set �1 to be real and
positive. From the second equation we find that �2 is also real.

In the dilute limit εF � ε0, we expect that |δ|,|μ| � ε0 near
the FR. Meanwhile, we also assume that |�2| � ε0. While
this is not evident at present, we prove it self-consistently.
Therefore, for ε0 → ∞, the function F2(�2) asymptotically
behaves as

F2(�2) = M

4π

√
M(ε0 + δ − 2μ)[1 + O(α2)], (99)

where α = |�2|/ε0. Then we obtain

lim
ε0→∞ C(�2) = lim

ε0→∞
MU 2

12

4π

√
M(ε0 + δ − 2μ)

1 −
√

M(ε0+δ−2μ)√
Mε0

= g2

2μ − δ
≡ C∞, (100)

where the atom-molecule coupling g is given by

g = lim
U12→0

lim
ε0→∞ U12

√
(Mε0)3/2

2π
. (101)

Thus, the first gap equation becomes essentially the same as
the gap equation of the atom-molecule model.

For the second equation, in the dilute limit we have

�2

�1
= C∞

U11 + C∞

2
√

2π

gM
(Mε0)1/4[1 + O(α2)], (102)

For ε0 → ∞, we have �2 → ∞ but �2/ε0 → 0. Using this
result, we can simplify the number equation. In the mean-field
theory, the number equation is given by n = n1 + n2, where
n1 and n2 are the contributions from the open channel and
closed channel, respectively. Since �2/ε0 → 0 for ε0 → ∞,
we can expand the closed-channel contribution n2 in powers of
|�2|/|μ2|. Therefore, the number density of the closed channel
asymptotically behaves as

n2 = π

8

|�2|2
|μ2|2

(2M|μ2|)3/2

2π2
[1 + O(α2)]. (103)
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FIG. 2. The dependence of the pairing gaps �1 (a) and �2 (b), the chemical potential μ (c), and the closed-channel fraction n2/n (d) on the
coupling g (scaled by gF = √

2πkF/M) at the resonance (δ = 0). The coupling g is determined by g = U12(Mε0)3/4/
√

2π , with ε0 = 103εF.
The background scattering length is set to be kFabg = 0.1.
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Using the relation (102), we obtain

lim
ε0→∞ n2 = 2|�1|2

g2

( C∞
U11 + C∞

)2

. (104)

This is the same as the closed-channel contribution nm in
the atom-molecule model. Therefore, in the dilute limit, the
pairing gap �2 can be eliminated and the predictions become
the same as the atom-molecule model.

For the grand potential �0, by using the asymptotical
behavior

∑
k

(
ξ2k − E2k + |�2|2

2εk

)
= M|�2|2

4π

√
M(ε0 + δ − 2μ)

× [1 + O(α2)] (105)

and the relation (102), we can show that it recovers the result
(30) of the atom-molecule model.

In realistic experimental systems, the ratio ε0/εF is large
but finite. We expect that the predictions from the two-band
theory agree with the atom-molecule model in addition to a tiny
correction, which should be of order O(εF /ε0). In Fig. 2 we
show the evolution of the pairing gaps, the chemical potential,
and the closed-channel fraction with the interchannel coupling
U12 at the resonance for ε0 = 103εF and kFabg = 0.1. In the
plots, we have also used the atom-molecule coupling g, which
is determined by g = U12(Mε0)3/4/

√
2π and scaled by gF =√

2πkF/M . The effective range parameter kFreff is related to

the coupling as

kFreff = −4

(
g

gF

)−2

. (106)

For sufficiently large coupling U12 or g, where |kFreff| � 1,
the system enters the universal regime. In this regime we have
n2 → 0 and hence the open channel dominates. The open-
channel pairing gap �1 and the chemical potential μ agree with
the universal values �1 = 0.6864εF and μ = 0.5906εF from
the single-channel model. From the numerical results shown
in Fig. 2, we find that the crossover from the broad to narrow
resonances occurs at |kFreff| ∼ 1. We have also compared the
results with the predictions from the atom-molecule model
with the same coupling g. For ε0 = 103εF, we find that the two-
band predictions already agree well with the predictions from
the atom-molecule model. For broad and moderate resonances,
the corrections to the pairing gap �1 and the chemical potential
μ are tiny. Our results agree with a recent multichannel
approach to the pairing in atomic Fermi gases where the open
and closed channels have one hyperfine state in common [18].
On the other hand, we find from our numerical analysis that
the correction to the (dimensionless) chemical potential μ/εF

is generally of order O(εF/ε0) for εF/ε0 ∼ 10−3. We notice
that μ/εF → 0 in the narrow resonance limit. Therefore, for
extremely narrow resonance, this tiny correction may become
significant because the chemical potential itself is also tiny.
We focus on the extremely narrow resonance in the next
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FIG. 3. The dependence of the pairing gaps �1 (a) and �2 (b), the chemical potential μ (c), and the open-channel fraction n1/n (d) on
the parameter y = ε0/(γB0) (d) at the resonance. In the calculations we set the density parameter x = εF/(γB�) = 1, which corresponds
to g/gF = 0.25 or kFreff = −63. The dashed lines are the predictions from atom-molecule theory, which coincides with the dilute limit
(ε0/εF → ∞) of the two-band theory.
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section. On the other hand, at high density where εF ∼ ε0,
medium effects on the closed channel become significant and
the atom-molecule model becomes invalid. Unfortunately, this
high-density regime is not accessible in current experiments
of atomic Fermi gases.

VI. EXTREMELY NARROW RESONANCE

As we mentioned above, the tiny correction due to nonva-
nishing εF/ε0 may become remarkable for extremely narrow
resonance with g/gF � 1 or |kFreff| � 1, because the chem-
ical potential μ/εF itself becomes comparable with this tiny
correction. An intuitive picture is that, for extremely narrow
resonance, the closed-channel dominates and the system can
be regarded as a BEC of the closed-channel molecules. In
the atom-molecule model, the closed-channel molecules are
treated as noninteracting point bosons. However, in the present
two-band theory, the closed-channel molecules are treated as
composite bosons and theirs interactions are automatically
taken into account. The leading correction is the two-body
boson-boson interaction with a scattering length am, as we
have shown in Eq. (69). The interaction parameter kFam reads

kFam = 2kF√
Mε0

= 2

√
2εF

ε0
. (107)

For realistic value εF/ε0 ∼ 10−3, the above interaction param-
eter is generally of order 0.1. Therefore, for extremely narrow

resonance, the boson-boson interaction can lead to remarkable
correction to the chemical potential and the equations of state.

In the final part of this work, we apply the two-band theory
to study the narrow resonance of 6Li atoms at B0 = 543.25
G. The resonance width and the background scattering length
have been measured to be B� = 0.1 G and abg = 61.6aB [6].
For convenience, we define two parameters,

a = B�

B0
, b = γB�

εbg
, (108)

where εbg = 1/(Ma2
bg) is the energy associated with the

background scattering length. We also define the following
two variables:

x = εF

γB�

, y = ε0

γB0
. (109)

For the typical densities realized in recent experiments [6], we
have εF ∼ γB� and, hence, x ∼ 1. The binding energy ε0 is a
parameter in the two-band model and so far cannot be extracted
precisely. However, it is reasonable to estimate ε0 ∼ γB0 and,
hence, y ∼ 1. From the above parameters we obtain

kFabg =
√

2bx,
ε0

εF
= y

ax
,

(110)
U12

UF
=

(
a3bx2

y3

)1/4

,
g

gF
=

(
2b

x

)1/4

,
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FIG. 4. The dependence of the pairing gaps �1 (a) and �2 (b), the chemical potential μ (c), and the open-channel fraction n1/n (d) on
the parameter y = ε0/(γB0) (d) at the resonance. In the calculations we set the density parameter x = εF/(γB�) = 2.5, which corresponds
to g/gF = 0.2 or kFreff = −100. The dashed lines are the predictions from atom-molecule theory, which coincides with the dilute limit
(ε0/εF → ∞) of the two-band theory.
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FIG. 5. The dependence of the energy of the resonant superfluid
on the parameter y = ε0/(γB0) for x = 1 (a) and x = 2.5 (b). The
energy is scaled by the energy of the noninteracting two-component
Fermi gas, EFG = 3

5 NεF. The dashed lines are predictions from atom-
molecule theory, corresponding to the dilute limit ε0/εF → ∞.

where UF = 4π/(MkF). From the measurements we have
b = 2 × 10−3, which means that this resonance is extremely
narrow. In the following, we consider two typical densities,
x = 1 and x = 2.5, which correspond to two effective range
parameters kFreff = −63 and kFreff = −100, respectively.

In Figs. 3 and 4, we show the dependence of the pairing
gaps, the chemical potential, and the open-channel fraction on
the parameter y in the range 0.5 < y < 1.5 at the resonance
(δ = 0) for two typical densities x = 1 and x = 2.5. At both
densities, the finite-ε0 corrections to the open-channel pairing
gap �1 and the open-channel fraction n1/n are relatively small.
However, the correction to the chemical potential μ becomes
significant since the chemical potential itself is already very
small for such an extremely narrow resonance. In Fig. 5 we
also show the energy of the resonant superfluid at two typical
densities x = 1 and x = 2.5. For reasonable values of the
closed-channel binding energy, i.e., 0.5 < y < 1.5, we find
that the chemical potential and the energy predicted from the
two-band theory deviate significantly from those of the atom-
molecule model predictions. For smaller y, we find that the
deviation is larger. This can be understood by the fact that the
boson-boson interaction parameter kFam becomes larger for
smaller y. The atom-molecule model predictions correspond

to the limit y → ∞ of the two-band theory, which indicates
vanishing boson-boson interaction kFam → 0. However, for
extremely narrow resonance, the convergence to the atom-
molecule theory is very slow. From a numerical analysis, we
find that the two-band theory predictions converge to the results
from the atom-molecule theory at y ∼ 104.

VII. SUMMARY AND OUTLOOK

In summary, we have shown that a simple two-band theory
can describe the resonant superfluidity in atomic Fermi gases.
The atom-molecule model can be viewed as a low-energy
effective theory of the two-band model in the limit ε0 → ∞
and U12 → 0, while keeping the phenomenological atom-
molecule coupling g finite. Explicitly, the atom-molecule
coupling g is related to the microscopic parameters as g =
U12(Mε0)3/4/

√
2π . The two-band description of resonant

superfluidity is in analogy to the BCS theory of two-band
superconductors. The closed-channel binding energy ε0 pro-
vides a large band offset, which is automatically sent to infinity
in the atom-molecule model. In the dilute limit εF/ε0 → 0, we
find that the two-band theory reproduces precisely the atom-
molecule theory. Since the physical results do not depend on
the details of the microscopic interaction potential V (|r − r′|),
the simple two-band model could be a feasible model for future
Monte Carlo simulation of atomic Fermi gases across narrow
FRs.

In realistic experimental systems, the ratio εF/ε0 is small
but finite. The correction due to this small ratio physically
corresponds to the effect of boson-boson interaction in the
closed channel. For broad and moderate resonances, such
correction is relatively small and thus not important. However,
for extremely narrow resonance such as the resonance of
6Li at B = 543.25 G, the correction becomes significant.
The correction may also be important for the stability of
the homogeneous polarized superfluid state against phase
separation for population imbalanced systems (n1↑ �= n1↓). A
recent study of the polaron problem in highly polarized Fermi
gases across a narrow FR indicates that the highly polarized
mixture can be stable against phase separation if the value
kFam is nonvanishing [13], where am is the molecule-molecule
scattering length in the closed channel. On the other hand, it
has been shown that the polarized superfluid state can be stable
against phase separation in two-band Fermi superfluids [19].
Therefore, it is interesting to apply the two-band theory to
study the possibility of a stable polarized superfluid state across
a narrow FR.
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