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In the present contribution, we explore a host of different stationary states, namely dark-bright solitons and their
lattices, that arise in the context of multicomponent atomic Bose-Einstein condensates. The latter are modeled by
systems of coupled Gross-Pitaevskii equations with general interaction (nonlinearity) coefficients gij . It is found
that in some particular parameter ranges such solutions can be obtained in analytical form, however, numerically
they are computed as existing in a far wider parametric range. Many features of the solutions under study, such
as their analytical form without the trap or the stability and dynamical properties of one dark-bright soliton even
in the presence of the trap are obtained analytically and corroborated numerically. Additional features, such as
the stability of soliton lattice homogeneous states or their existence and stability in the presence of the trap, are
examined numerically.
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I. INTRODUCTION

Dark-bright (DB) solitons constitute exact solutions of the
completely integrable, defocusing, two-component Manakov
model [1], i.e., the vector variant of the nonlinear Schrödinger
equation [2]. These structures exist in the presence of equal
nonlinear interactions within and between components. As
such, they can be thought of as symbiotic structures, since
the bright components thereof would not be sustainable in
defocusing settings, and only emerge because of the effective
potential well created by the dark soliton component through
the interspecies interaction.

Taking advantage of the ratios of inter- and intraspecies
interactions between Bose-condensed hyperfine spin states
of atomic 87Rb, being very proximal to unity, dark-bright
solitons were proposed as being experimentally relevant in
atomic Bose-Einstein condensates (BECs) even since 2001
[3]. However, this possibility was at a somewhat dormant
stage until 2008, when the Hamburg group was able to
produce experimentally such coherent structures using phase-
imprinting techniques [4], and to illustrate their robustness in
87Rb BECs. The above mentioned as well as subsequent efforts
revealed a number of exciting characteristics of these nonlinear
entities. For instance, it was shown that DB solitary waves
oscillate in a trap with a reduced frequency in comparison to
their dark single-component counterparts due to the presence
of the bright filling component [3–5]. Dark-bright soliton trains
were created by inducing counterflow between two miscible
BECs past a critical velocity [6]. Molecules of a few DB
solitary waves were observed in related experiments, and
offered the seed for detailed investigations of the interactions
between DB solitons [7–9]. Furthermore, beating (in time)
dark-dark solitons, which turn out to be SO(2) rotated
versions of DB solitons were also predicted and observed in
experiments [10,11], further adding to the richness of this
multicomponent setting. In addition, the interaction of such
states with potential barriers was experimentally explored [12].
It should also be noted that two-dimensional generalizations
of these structures have been considered, both in the context
of dark-bright rings [13] and in that of vortex-bright solitary
waves [14,15].

Our aim in the present work is to present a set of analytical
solutions and numerical results both for individual DB solitary
waves and also for lattices of such waves, for arbitrary
nonlinear coefficients (within suitable bounds). This is relevant
for a number of reasons not only theoretically, but also
experimentally. On the one hand, not all atomic species have
as nearly equal inter- and intraspecies interaction scattering
length, as is the case with Rubidium. Perhaps even more
importantly, the now well-established technique of Feshbach
resonance [16] (see also Refs. [17] for work in two-component
BECs) can be used to detune the nonlinear coefficients from
this degenerate case of equal strength and, thus, it is relevant
to appreciate the potential robustness (or lack thereof) of these
nonlinear waves in such settings.

We start by presenting DB solitary waves in explicit
analytical form and identify the algebraic conditions that need
to be satisfied for the relevant solutions to exist. We solve such
algebraic equations for the characteristic properties of the so-
lutions and offer an interpretation of the resulting expressions.
In addition, we extract conditions under which such families of
solutions will be possible to sustain. In addition to identifying
the relevant solutions in explicit numerical computations, we
are able to more importantly establish their potential existence
and robustness in the experimentally relevant setting of trapped
binary condensates. Whenever possible, our considerations
will be fully analytical. Examples of this type will concern,
e.g., the explicit form of the DB solitary waves and their
lattices for general coefficients, or the analysis of the motion
of a single DB for general interactions in the presence of the
trap. However, other aspects of our considerations, such as the
stability of the lattices of such waves in either the homogeneous
or the trapped state will be developed by numerical methods.
The combination of both types of tools will provide us with a
broad understanding of the existence, stability, and dynamical
properties of the single DB solitary waves and their multiple
DB generalizations as a function of the nonlinear interatomic
interaction strengths.

We should note that although in the BEC literature, we are
not aware of any investigations along these analytical lines (the
closest analysis which offers numerical borders of existence
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of single dark-bright solitons consists of the work of [18]);
in the optics literature, there are some similar studies that we
now highlight. First, it should be noted that these cases do
not consider the framework of a harmonic trap, which is less
physically relevant in that context. A study of DB solitary
waves for general coefficients has been conducted in the work
of [19], while periodic solutions, yet solely for the limit of
equal nonlinear interactions were obtained in [20].

Our presentation will be structured as follows: In Sec. II,
we will provide the relevant model setup and present the well-
known DB soliton solutions, as introduced in the Manakov
limit (see, e.g., Ref. [3]). We will also explore lattices of
such solitary waves in the homogeneous case near that limit
and present our analytical results for the stability and motion
of a single DB solitary wave in the presence of the trap. In
Sec. III, we present our numerical considerations, confirming
the existence of both single and multiple DB solitary wave
solutions, both in the vicinity, as well as far from the Manakov
limit, both in the absence, as well as in the presence of
the parabolic trap confining the atoms. Finally, in Sec. IV,
we summarize our findings and propose some challenges for
future work.

II. MODEL SETUP AND ANALYTICAL CONSIDERATIONS

We commence our analysis by considering a two-
component elongated (along the x direction) repulsive BEC,
composed of two different hyperfine states of the same alkali-
metal isotope. We focus on the experimentally tractable setting
of a highly anisotropic trap, i.e., the longitudinal and transverse
trapping frequencies are such that ωx � ω⊥. In this case, the
system at hand can be described at the mean-field level by two
coupled Gross-Pitaevskii equations (GPEs) of the form [21],

i�∂tψj =
(

− �
2

2m
∂2
xψj + V (x) − μj +

2∑
k=1

gjk|ψk|2
)

ψj .

(1)

In this model, ψj (x,t) (j = 1,2) denote the mean-field wave
functions of the two components (normalized to the numbers of
atoms Nj = ∫ +∞

−∞ |ψj |2dx), m is the atomic mass, and μj are
the chemical potentials; furthermore, gjk = 2�ω⊥ajk are the
effective one-dimensional (1D) coupling constants, with ajk

denoting the three s-wave scattering lengths (a12 = a21) which
account for collisions between atoms belonging to the same
(ajj ) or different (ajk,j �= k) species. The external trapping
potential is parabolic, of the form V (x) = (1/2)mω2

xx
2. Intro-

ducing normalized densities |uj |2 = 2a|ψj |2, and measuring
length, time, and energy in units of a⊥ = √

�/ (mω⊥), ω−1
⊥

and �ω⊥, respectively, Eq. (1) is expressed in the following
dimensionless form:

i∂tu1 = − 1
2∂2

xu1 + V (x)u1 + (g11|u1|2 + g12|u2|2 − μ1)u1,

(2)

i∂tu2 = − 1
2∂2

xu2 + V (x)u2 + (g12|u2|2 + g22|u1|2 − μ2)u2.

(3)

The normalized external potential in Eqs. (2) and (3) assumes
the form,

V (x) = 1
2�2x2, (4)

where � = ωx/ω⊥ represents the normalized trap strength.
It is important to note here that from the point of view

of BEC applications, we are considering a regime where,
typically, the two-component system will bear a few thousand
atoms. Such a consideration is necessary in order to ensure
that quantum fluctuations can be neglected: Indeed, in such
a case, the recent works [22,23] for dark and bright solitons,
respectively, clearly suggest that the role of quantum fluctua-
tions should be negligible—cf. in particular Fig. 5 of Ref. [22]
and Fig. 6 of Ref. [23]. The latter clearly illustrates that the
uncertainty in the position and momenta of the wave rapidly
approaches its saturation value for a little over 1000 atoms. In
that respect, in the numerical results that we present below,
we consider the case of a 87Rb BEC mixture (of atomic
mass m = 144 × 10−27 kg and scattering lengths aij ≈ 100a0,
where a0 is the Bohr radius) and use the following parameter
values: normalized trap strengths � = 0.1 or � = 0.02 (corre-
sponding to a longitudinal trapping frequency ωx = 2π × 8 Hz
and transverse trapping frequencies ω⊥ = 2π × 80 Hz and
ω⊥ = 2π × 400 Hz, respectively), as well as normalized
chemical potentials μ1,2 (j = 1,2) and scattering lengths gij

(i,j = 1,2) of order unity. For such a choice, the number of
atoms of the condensate ranges, approximately, from 4000 to
9000, for � = 0.1 and � = 0.02, respectively. Hence, within
our operating parameters, the mean-field description is a quite
relevant one for the corresponding BEC system.

A. Single DB soliton in the homogeneous system

We will now illustrate that solitary waves of the DB type
can in fact be found in an explicit analytical form even outside
of the very special integrable regime of gij = 1, where inverse
scattering theory provides such explicit solutions [2]. To that
effect, we will consider the analytically tractable case of
V (x) = 0 (and subsequently illustrate how our results are
modified in the presence of a trap) in Eqs. (2) and (3), but
maintain as general coefficients as possible; namely gij will
be arbitrary and will only be constrained by the conditions for
the existence of our solutions in what follows.

We now seek real, standing-wave solutions of Eqs. (2) and
(3), with ∂tuj = 0, and obtain

μ1u1 = − 1
2u′′

1 + (
g11u

2
1 + g12u

2
2

)
u1, (5)

μ2u2 = − 1
2u′′

2 + (
g12u

2
1 + g22u

2
2

)
u2, (6)

where primes denote differentiation with respect to x. We now
try explicit analytical solutions in the form of a dark (black)
solitary wave for u1 and a bright solitary wave for u2, namely,

u1 = A1 tanh(bx), (7)

u2 = A2sech(bx), (8)

where A1 and A2 denote the amplitudes of the dark and bright
component, respectively, while b stands for the common in-
verse width. Inserting the above expressions into the equations
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of motion, we find that the latter are satisfied provided that
a number of algebraic conditions hold. More specifically, to
satisfy Eq. (5), we need

μ1 = b2 + g12A
2
2, (9)

b2 = g11A
2
1 − g12A

2
2, (10)

while to satisfy Eq. (6), we need to have

μ2 = −b2

2
+ g12A

2
1, (11)

b2 = g12A
2
1 − g22A

2
2. (12)

We can now suggest a simple way to view the relevant
solvability conditions: One can solve Eqs. (9), (10), and (12)
as three linear equations in three unknowns (A2

1, A2
2, and b2),

provided that the interactions strengths gij and the chemical
potential μ1 are set. Then, the remaining Eq. (11) can be
used as a closure condition, self-consistently determining the
chemical potential of the second (bright) component. In this
viewpoint, the analytical solution at hand has the amplitude
parameters A1 and A2 determined as

A2
1 = μ1

g11
, (13)

A2
2 = μ1

g11

g11 − g12

g12 − g22
, (14)

and the inverse width parameter b is determined by

b2 = μ1

g11

g11g22 − g2
12

g22 − g12
, (15)

while Eq. (11), with input from (15) and (13) completes the
calculation.

Some important—and physically relevant—conclusions
can be already drawn by this calculation about the nature of
the exact solitary waves obtained through the above calculation
and the constraints on the existence parameters. In particular,
it can be directly seen from Eq. (14) that the bright component
can only exist when

min(g11,g22) < g12 < max(g11,g22). (16)

Furthermore, it is interesting to also infer from Eq. (15)
that if g22 > g12 (i.e., the second component possesses the
largest scattering length, while the dark soliton is in the first
component), then such exact DB solitons will only exist for
miscible components, namely for g11g22 > g2

12. On the other
hand, if g22 < g12 (i.e., if the first component possesses the
largest scattering length and is the one holding the dark
soliton), then the above explicit DB solitons will solely exist
for immiscible components, i.e., for g11g22 < g2

12.

B. Lattices of DB solitons

We now consider two types of lattice generalizations of the
relevant single DB soliton solutions. In the first one, the dark
solitons generalize into the form of a Jacobi elliptic function
solution of the sn-type, while the bright solitons generalize
into a cn-type solution. This suggests that the adjacent solitary
waves in this structure are out-of-phase with respect to each
other. In the second generalization, while the dark solitons

preserve the same type of structure, the bright ones are now
of the dn-type, amounting to in-phase bright solitons in the
second component.

1. DB soliton lattice with out-of-phase bright neighbors

In this case, for the system of Eqs. (5) and (6), we use the
ansatz of the form,

u1 = A1sn(bx,k), (17)

u2 = A2cn(bx,k), (18)

where k is the elliptic modulus. In this case, the two resulting
algebraic equations stemming from Eq. (5) read

μ1 = 1 + k2

2
b2 + g12A

2
2, (19)

k2b2 = g11A
2
1 − g12A

2
2. (20)

Similarly, the conditions stemming from Eq. (6) are

μ2 = 1 − 2k2

2
b2 + g12A

2
1, (21)

k2b2 = g12A
2
1 − g22A

2
2. (22)

It is interesting to observe that the special limit case of the
hyperbolic functions, namely k → 1, naturally asymptotes to
the single DB equations’ limit of Eqs. (9)–(12). The other rel-
evant limit is the trigonometric one of k → 0, which provides
sinusoidal and cosinusoidal solutions, respectively, for the two
components; nevertheless, direct inspection of the equations
illustrates that this is so only at the transition threshold between
miscibility and immiscibility (since it can be directly inferred
that such solutions only exist for g11g22 = g2

12).
Once again, assuming that Eqs. (19), (20), and (22)

constitute a linear system for A2
1, A2

2, and b2, while Eq. (21)
determines μ2 (for fixed μ1 and gij ), we find the amplitudes:

A2
1 = 2k2(g12 − g22)μ1(

g2
12 − g11g22

) + k2
(
2g11g12 − g2

12 − g11g22
) , (23)

A2
2 = 2k2(g11 − g12)μ1(

g2
12 − g11g22

) + k2
(
2g11g12 − g2

12 − g11g22
) , (24)

while the (inverse) width parameter b is given by

b2 = 2
(
g11g22 − g2

12

)
μ1(

g2
12 − g11g22

) + k2
(
2g11g12 − g2

12 − g11g22
) . (25)

It is again relevant to attempt to extract the conditions
under which these solutions exist. In particular, the product of
Eqs. (23) and (24) yields that Eq. (16) is still valid. The product
of each of Eqs. (23) and (24) with Eq. (25) yields once again the
conclusion that for the lattice solutions to exist the following
must be true: If the dark soliton lattice is in the component with
the smaller scattering length, the hyperfine states need to be
miscible (i.e., for g11 < g12 < g22, it must be g2

12 < g11g22).
On the other hand, if the dark lattice is in the component
with the larger scattering length, then the states should be
immiscible (i.e., for g22 < g12 < g11, it must be g2

12 > g11g22).
Nevertheless, an additional, more complex condition emerges
from the denominator De = (g2

12 − g11g22) + k2(2g11g12 −
g2

12 − g11g22) of the expressions of Eq. (23)–(25). In particular,
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for g11 < g12 < g22, it must be that De < 0, while for g22 <

g12 < g11, the opposite must be true, namely De > 0. By
considering this denominator as a binomial in g12, it is clear
that g12 should be outside the interval of its roots for De > 0
and inside the same interval for De < 0.

It is important to note here that no constraint has, a priori,
been placed on the additional parameter, i.e., the elliptic
modulus k appearing in the equations above, aside from the
requirement that De < 0 or De > 0, depending on the ordering
of the scattering lengths. Nevertheless, k is a crucial parameter
since it controls the separation between the solitary waves,
which for the above solution is given by s = 2K(k)/b, where
K denotes the complete elliptic integral of the first kind.

2. DB soliton lattice with in-phase bright neighbors

We now consider the case where the first component still
has the same profile as in the previous lattice example, namely
u1 = A1sn(bx,k), while the second component has the form,

u2 = A2dn(bx,k). (26)

In this case, the solvability conditions from Eq. (5) become

μ1 = 1 + k2

2
b2 + g12A

2
2, (27)

k2b2 = g11A
2
1 − k2g12A

2
2, (28)

while those stemming from Eq. (6) acquire the form,

μ2 = 2 − k2

2
b2 + g12

k2
A2

1, (29)

k2b2 = g12A
2
1 − k2g22A

2
2. (30)

Once again the hyperbolic function limit k → 1 yields the
familiar form of the DB solitary wave solvability conditions.
In this case, the trigonometric limit k → 0 does not represent
a multicomponent solution.

Solving in the familiar way Eqs. (27), (28), and (30), we
obtain the amplitudes,

A2
1 = 2k2(g12 − g22)μ1

2g11g12 − g2
12 − g11g22 + k2

(
g2

12 − g11g22
) , (31)

A2
2 = 2k2(g11 − g12)μ1

2g11g12 − g2
12 − g11g22 + k2

(
g2

12 − g11g22
) , (32)

while the inverse width b parameter is obtained by

b2 = 2
(
g2

12 − g11g22
)
μ1

2g11g12 − g2
12 − g11g22 + k2

(
g2

12 − g11g22
) . (33)

In addition to the constraints of the single DB solitary
wave [obtained as in the previous subsection by pairwise
multiplication of Eqs. (31)–(33)], an additional constraint
stems from the denominator D̃e = 2g11g12 − g2

12 − g11g22 +
k2(g2

12 − g11g22), which should be such that if g11 < g12 <

g22, then D̃e < 0, while if g11 > g12 > g22, then D̃e > 0.
Once again, this can be viewed as a binomial in g12 with the
corresponding condition being translated as a statement about
the placement of g12 in comparison to its roots. In this case, too,

the separation between adjacent solitary waves is controlled
by k, with the relevant distance being s = 2K(k)/b.

C. Dynamics of a single DB soliton in the trap

Finally, from the point of view of analytical considerations,
another case that can be studied is that of the dynamics of a
single DB soliton in the presence of a parabolic trap. Here,
we will resort to the use of Hamiltonian perturbation theory in
order to appreciate the effect of the trap on the soliton dynamics
(see, e.g., [7,24] and the review [25]). More specifically, we
start by casting Eqs. (2) and (3) into the following form:

i∂tud = − 1
2∂2

xud + V (x)ud + (|ud |2 + g̃12|ub|2 − μd )ud,

(34)

i∂tub = − 1
2∂2

xub + V (x)ub + (g̃12|ub|2 + g̃22|ud |2 − μb)ub.

(35)

In the above equations, we have used the notation u1 = ud

and u2 = ub (and also μ1 = μd and μ2 = μb), indicating that
the component 1 (2) will be supporting a dark (bright) soliton
and g̃12 = α12/α11 = α21/α11, g̃22 = α22/α11. Assuming that
the dark soliton is on top of a Thomas-Fermi (TF) cloud
characterized by the density |uTF|2 = μd − V (x), we may
substitute the density |ud |2 in Eqs. (34) and (35) by |ud |2 →
|uTF|2|ud |2 [25]. Furthermore, introducing the transformations
t → μdt , x → √

μdx, |ub|2 → μ−1
d |ub|2, we cast Eqs. (34)

and (35) into the form:

i∂tud + 1
2∂2

xud − (|ud |2 + g̃12|ub|2 − 1)ud = Rd, (36)

i∂tub + 1
2∂2

xub − (g̃12|ud |2 + g̃22|ub|2 − μ̃)ub = Rb, (37)

where μ̃ = μb/μd , and the functional perturbations Rd and
Rb are given by

Rd ≡ (
2μ2

d

)−1
[2(1 − |ud |2)V (x)ud + V ′(x)∂xud ], (38)

Rb ≡ μ−2
d (1 − g̃12|ud |2)V (x)ub, (39)

with V ′(x) ≡ dV/dx. Equations (36) and (37) can be viewed
as a system of two coupled perturbed NLS equations, with
perturbations given by Eqs. (38) and (39). In the absence of
the perturbations it is clear that Eqs. (36) and (37) possess a
stationary single DB soliton [cf. Eqs. (7) and (8)]. However,
as we are interested in studying the dynamics of a moving
single DB soliton in the trap, it is convenient to consider here
another, nonstationary DB soliton solution of Eqs. (36) and
(37), which can be expressed as follows (see, e.g., Refs. [3,24]
for a similar solution, but in the Manakov limit of gij = 1):

ud (x,t) = cos φ tanh[D(x − x0(t))] + i sin φ, (40)

ub(x,t) = ηsech[D(x − x0(t))]

× exp[ikx + iθ (t) + i(μ̃ − 1)t]. (41)

Here, φ is the dark soliton’s phase angle, cos φ and η represent
the amplitudes of the dark and bright solitons, D and x0(t)
denote the inverse width and the center of the DB soliton, while
k = D tan φ = const and θ (t) are the wave number and phase
of the bright soliton, respectively. Notice that the dark soliton
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in the above solution may also be a “gray”—i.e., a moving one
(for 0 �= φ < π/2)—which becomes stationary (black) only in
the limiting case of φ = 0. In this limit, the solution of Eqs. (40)
and (41) coincides with the one given in Eqs. (7) and (8),
with μ1 = μd = 1, A1 = 1, A2 = η, and b = D (along with
the normalizations of the nonlinearity coefficients described
above).

Inserting Eqs. (40) and (41) into Eqs. (36) and (37), we find
that the soliton parameters should satisfy certain conditions—
similar to those given in Eqs. (9)–(12). In particular, to satisfy
Eq. (36), we need

D2 = cos2 φ − g̃12η
2, (42)

ẋ0 = D tan φ, (43)

while to satisfy Eq. (6), we need to have

D2 = g̃12 cos2 φ − g̃22η
2, (44)

θ (t) = 1
2 (D2 − k2)t + (1 − g̃12)t. (45)

It is clear that the closure conditions of the above equations,
namely,

η2 = g̃12 − 1

g̃22 − g̃12
, (46)

D2 = g̃22 − g̃2
12

g̃22 − g̃12
, (47)

are consistent with Eqs. (14) and (15). We also note that in
our considerations below we will use the following equation
connecting the number of atoms Nb of the bright soliton
with the amplitude η of the bright soliton, the dark-soliton
component’s chemical potential μd , and the inverse width D

of the above DB soliton:

Nb ≡
∫ +∞

−∞
|ub|2dx = 2

√
μdη

2

D
. (48)

Let us now assume that the DB soliton evolves adiabatically
in the presence of the small perturbation, and employ the
Hamiltonian approach of the perturbation theory for matter-
wave solitons to study the DB-soliton dynamics. We start
by considering the Hamiltonian (total energy) of the system
of Eqs. (36) and (37), when the perturbations are absent

(Rd = Rb = 0), namely,

E = 1

2

∫ +∞

−∞
Edx,

E = |∂xud |2 + |∂xub|2 + (|ud |2 − 1)2 + g̃22|ub|4
− 2μ̃|ub|2 + 2g̃12|ub|2|ud |2. (49)

The energy of the system, when calculated for the DB-soliton
solution of Eqs. (40) and (41), takes the following form:

E = 4
3D3 + 1

6χD2(2g̃12 + 3 tan2 φ + 1)

+ 1
6χ2D

(
g̃22 − g̃2

12

) + χ (g̃12 − μ̃), (50)

where χ = Nb/
√

μd .
Since we have considered an adiabatic evolution of the

DB soliton, we may assume that, in the presence of the
perturbations of Eqs. (38) and (39), the DB soliton parameters
become slowly-varying unknown functions of time t . Thus, the
DB soliton parameters become φ → φ(t), D → D(t), and, as
a result, Eqs. (42) and (43) are generalized to read

D2(t) = cos2 φ(t) − 1
2 g̃12χD(t), (51)

ẋ0(t) = D(t) tan φ(t), (52)

where we have used Eq. (48). The evolution system of the
parameters φ(t), D(t), and x0(t) can then be closed by means
of the evolution of the DB soliton energy. In particular, Eq. (50)
with Eqs. (51) and (52) leads to the evolution of the soliton
energy, dE/dt . In addition, the latter can be also found using
Eqs. (36) and (37) and their complex conjugates, namely,

dE

dt
= −2Re

{∫ +∞

−∞
(R∗

d∂tud + R∗
b∂tub)dx

}

= V ′(x)

μ2
d

[
2 sin φ cos3 φ − 2

3
g̃12χD sin φ cos φ

−χD tan φ

(
1 − g̃12

(
1 − cos2 φ

3

))]
. (53)

Equating the expressions for dE/dt , we can end up with the
following equation, describing the evolution of the DB soliton
parameters:

4D2Ḋ + 1

3
χDḊ(2g̃12 + 3 tan2 φ + 1) + χD2 tan φ sec2 φφ̇ + 1

6
χ2Ḋ

(
g̃22 − g̃2

12

)
= V ′(x)

μ2
d

[
2 sin φ cos3 φ − 2

3
g̃12χD sin φ cos φ − χD tan φ

(
1 − g̃12

(
1 − cos2 φ

3

) )]
. (54)

The above equation, together with Eqs. (51) and (52), form a
system of differential equations describing the evolution of the
soliton parameters φ, D, and x0. This system can be solved
approximately, upon considering solitons near the center of
the trap (i.e., x0 ≈ 0), and linearizing around the fixed point at

x0 = 0, φ0 = 0, D0 = χ

4
g̃12

(√
1 + 16

χ2g̃2
12

− 1

)
. (55)

We can now linearize Eqs. (54) and (51) and (52), using
the ansatz: x0 = X0, φ = φ1, and D = D0 + D1. To this end,
combining the resulting equation for X0, φ1, and D1, we can
end up with the following equation of motion for the soliton
center:

Ẍ0 = − R

W
V ′(X0), (56)
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where

R = D0(2 − g̃12χD0 + χD0(g̃12 − 1)), (57)

W = 8D2
0D̃0 − χD2

0 + 2
3D̃0D0χ (2g̃12 + 1)

+ 1
3χ2D̃0

(
g̃2

22 − g̃2
12

)
, (58)

and D̃0 = 1
2D0+ χ

2 g̃12
. Note that in the Manakov limit of g̃12 =

g̃22 = 1, Eq. (56) recovers the equation of motion for the
soliton center found in Ref. [3]:

Ẍ0 = −1

2
V ′(X0) + Nb

8
√

μ + (
Nb

4

)2
V ′(X0). (59)

In the general case of gij �= 1, Eq. (56) shows that, again, the
parabolic trap leads to a restoring linear force, although here it
is a considerably more complex one, that depends explicitly on
the g̃ij ’s. The consequences of this prediction will be further
assessed in the next section, where it will be compared to
numerical computations.

III. NUMERICAL RESULTS

A. Comparison of numerics with analytics

1. Dark-bright solitons and lattices thereof
in the homogeneous case

To illustrate the relevance and usefulness of our analysis,
we start the presentation of our numerical results by a
series of computations that compare the solutions identified
numerically with the corresponding analysis presented above
for the homogeneous BEC case, where the potential is absent
in Eqs. (2) and (3), i.e., V (x) = 0. In this context, we have
identified numerically exact solutions (up to a prescribed
precision typically set to 10−7), using a fixed point iteration
scheme of the Newton-Raphson type. In so doing, we have
confirmed that our analytical solutions are indeed numerically
exact, up to the local truncation error [of O(�x2), where �x

is the spatial grid discretization step that enters the numerical
computation].

This is shown for the case of the DB solitary wave in
Fig. 1, where we have fixed the parameters g11 = 1 (this
means that gij = g̃ij ) and g22 = 0.95 to the ones relevant for

87Rb; furthermore, the coefficient g12 is initialized weakly
on the immiscibile side at g12 = 0.975 (as is relevant for
this atomic gas), and the variation of the relevant solution
is followed over the range of parameters g12 ∈ [0.975,1].
To confirm that as the interspecies interaction is varied the
analytical solution is followed, we have used—as the simplest
nontrivial diagnostic—the amplitude of the bright component
A2 (for A1 the agreement is naturally excellent, but trivial,
as there is no functional dependence). This is shown in the
left panel of the figure, with the numerical results given by
the solid line, while the analytical expression of Eq. (14) is
shown by the dashed one. On the other hand, the right panel
illustrates the nature of the variation of the solution as the limit
of vanishing amplitude is approached; in this case, this limit
is g12 = g11, since g11 > g22 and the dark soliton is in the
component with the largest scattering length. For increasing
g12 approaching g11, the width of the dark soliton decreases
and, together with it, the width of the “trapped” bright soliton
bound state also decreases. In addition, the amplitude of
the bright soliton [proportional to

√
g11 − g12 according to

Eq. (14)] also decreases and tends to 0 at the relevant limit. It
should be noted here that not only the amplitude A2 but also the
full spatial form of the solutions shown on the right panel has
been found to be in excellent agreement with the theoretical
prediction. This is expected since the two only differ due to
the local truncation error of O(�x2) of the numerical method.

Similar diagnostics but now in the case of the soliton lattices
are shown in Figs. 2 and 3. The former presents the sn-cn
solutions, where the bright lattice bears out-of-phase nearest
neighbors, while the latter concerns the sn-dn case with the
bright solitons being all in-phase.

2. Single DB soliton in the presence of a trap

Our other analytical prediction concerns Eq. (56) providing
a prediction for the frequency of oscillation of a DB soliton
in the presence of a parabolic trap. While the equation more
generally connects the DB motion through an effective mass
to the gradient of the trapping potential, in the present setting
we will restrict our considerations to the linear restoring force
in the case of a harmonic trap. To examine the validity of this
prediction, we find the numerically exact (up to the prescribed
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FIG. 1. (Color online) A prototypical example of the comparison of the solution obtained analytically as a function of continuation in g12

for fixed g11 = 1 and g22 = 0.95, starting with the relevant parameters for 87Rb of g12 = 0.975 and approaching the limit of g12 → g11. The
comparison made here concerns the amplitude A2 of the bright soliton. The dashed line contains the analytical prediction of Eq. (14), while
the solid line is the fully numerical result obtained as a result of a fixed point iteration in a grid of spacing �x = 0.2. The very slight (nearly
imperceptible) disparity stems from local truncation error [of O(�x2)] of the numerical method. The right panel contains the numerically
obtained (but matching the analytical up to the local truncation error) dark-bright soliton for g12 = 0.975 (thicker lines; solid for the dark and
dashed for the bright) and for g12 = 0.995 (thinner lines).
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FIG. 2. (Color online) The same diagnostics as for the single dark-bright soliton of Fig. 1 are used but now for the case of the sn-cn solution
branch.

accuracy discussed above) solitary wave for different values
of g12 (we now fix μd and μb, while varying g12) and compare
the spectrum of the linearization around it with the frequency
predicted by Eq. (56). As argued in our earlier work (see,
e.g., [7] for gij = 1), the spectrum of the linearization around
a DB solitary wave should contain an anomalous, so-called
negative energy mode with a frequency associated with the
oscillational frequency of the DB within the parabolic trap.
Indeed, as is confirmed by Fig. 4, such a frequency is present
in this case as well and is found to be in very good agreement
with our theoretical prediction for this motion in the interval
g12 ∈ [0,2]. However, for lower values of the parameter, a
progressive discrepancy between the theoretical prediction and
the numerical result can be discerned, e.g., for g12 < 0.8.

In an attempt to appreciate the origin of this discrepancy, we
illustrate the form of the solution as g12 is decreased in Fig. 5.
From these findings, it is immediately evident that while our
DB ansatz correctly captures the relevant waveform near and
beyond the threshold for immiscibility, it is far less adequate
in describing the solitary wave on the miscible side. There, the
miscible interaction with the dark component rapidly widens
the bright counterpart (see especially the top left panel of
the figure for g12 = 0.6), clearly illustrating the inadequacy
of our hyperbolic secant waveform. This naturally justifies
the interval of good agreement between the theoretical and
numerical oscillation frequency result.

B. Further numerical findings

We now explore more broadly the nature of the solitary DB
waves and of the lattices thereof both in the absence and in
the presence of the trap for features and regimes which are not
captured by our analytical considerations.

In Fig. 6, we now fix the values of the chemical potentials
(at μd = 1.5 and μb = 1.23, and g22 will be set to 0.95
for computations hereafter) and vary the value of g12 from
0.8 (top left) to 0.9 (top right), to 1.1 (bottom left) to 1.3
(bottom right). We can see that even in this region of g12

which is outside the range of our analytically tractable lattice
solutions of the sn-cn type, such solutions can still be retrieved
numerically. In the immiscible regime, the solutions consist
of thin DB solitons, wherein the bright components of the
pair alternate in phase. The immiscibility leads the bright
component to lie very close to 0 density in between its spikes
due to the strong mutual repulsion with the finite density (in
these intermediate regions) dark component. However, as the
miscible limit is approached and eventually traversed, while
the dark component does not change significantly, the bright
component broadens considerably and starts approaching a
more “trigonometric” rather than “hyperbolic secant” type
shape between its local maxima and minima.

We subsequently also examined the linearization (so-called
Bogolyubov–Cde Gennes or BdG) spectrum around such a
periodic solution, in order to identify the stability of these
states. The conclusions of our analysis are shown in Fig. 7. The
spectrum is obtained with two methods. The first one, shown
in the left panel, concerns the direct eigenvalue computation
of the linearization matrix around the exact periodic solution
that is obtained from our Newton-Raphson method (with finite
differences applied for the spatial discretization). The second
plot of the right panel “enhances” this spectrum by considering
the so-called Hill’s method [26], taking direct advantage of the
fact that the solution is periodic to resolve more adequately the
perturbation wave numbers associated with the unit cell of its
periodicity. This enhancement of the finite difference method
by its combination with the Hill method has been described in
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FIG. 3. (Color online) The same diagnostics as for the single dark-bright soliton of Fig. 1 are used but now for the case of the sn-dn solution
branch.
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FIG. 4. (Color online) The figure shows the numerical oscillation
frequency through BdG analysis (blue solid lines) versus the analyti-
cal predictions using the Hamiltonian perturbation theory in Eq. (56)
(green dashed line), while the red star represents the prediction
from [3] for g11 = g12 = g22 = 1. Here g22 = 1, � = 0.1, μd = 1.5,
μb = 1.0, and dx = 0.001. Notice that the spectrum in addition to
this anomalous mode of oscillation, bears a large number of modes
(nearly flat) associated with the dark component and a similarly large
number of modes associated with the bright component (bearing a
rapid variation). The theoretical prediction for the anomalous mode is
very good roughly for g12 ∈ [0.8,2], while it becomes progressively
worse for lower parameter values.

[26] and is directly applied here. We can see that the spectrum
contains as a part the linearization spectrum of the left panel,
but also fills in additional eigenvalues due to its ability to more
finely probe the perturbation wave numbers in comparison
to the standard finite difference scheme. The details of Hill’s
method are described in the Appendix.

The relevant conclusions are also interesting from a
physical point of view. It can already be seen from the
imaginary parts of the relevant eigenfrequencies that there is a
drastic change of the eigenvalue behavior and of their relative
frequency spacing as the miscible threshold is approached.
However, more critically for our stability purposes, we can
observe that there is an interval of g12’s in the vicinity of the
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FIG. 5. (Color online) This shows the profile of the (single wave)
stationary solution for different g12. The parameters are the same as
in Fig. 4.
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FIG. 6. (Color online) The figure shows the stationary profile of
the sn-cn-type periodic solution for g12 = 0.8,0.9,1.1,1.3 on the top
left, top right, bottom left, and bottom right panel, respectively. The
chemical potentials used are μd = 1.5 and μb = 1.23.

miscibility-immiscibility threshold, and especially so weakly
on the immiscible side (i.e., for 1 < g12 < 1.2 or so), where
the relevant periodic solution is least unstable. We should
remind the reader that in the Hamiltonian system considered
herein, instability (at the linearization level) arises whenever
an eigenmode exists with Re(λ) �= 0. Hence, the potential
manipulation of the relevant interspecies interaction coefficient
would be most likely to produce such long-lived solutions on
the weakly immiscible side.

Similar results, still without a trap (i.e., in the homogeneous
BEC realm) are shown for the lattice solution where the
bright solitons are in-phase (the sn-dn lattice) in Fig. 8. This
solution is also found to exist for more general conditions
than the ones for which it is traced analytically earlier.
Here, we fix μd = 1.5 and μb = 0.975 and again vary g12.
Again a variation is discernible as the miscibility-immiscibility
threshold is traversed to wider bright solitary waves, while on
the immiscible side these are well separated and far narrower.
The stability is again computed with the two methods (finite
difference method for the linearization eigenvalue computation
and also its variant incorporating the Hill’s approach). As is
shown in Fig. 9, once again there appears a minimal growth rate
(and hence a maximal life time of the pertinent waveforms) to
be applicable weakly on the immiscible side (yet fairly closely
to the miscibility-immiscibility threshold). As one proceeds
deeper on the immiscible or for that matter on the miscible
side, the solutions become more strongly unstable and hence
less likely to be observable even transiently.

An additional comment is due here. Given that both the
sn-cn and our sn-dn solutions presented above are generally
unstable with Re(λ) > 0, a natural follow-up question becomes
that of their lifetime (and hence of their potential experimental
observability). A typical ballpark estimate of this sort can be
obtained by the time of the instability manifestation, a typical
estimate of which is given by 1/Re(λ), respectively, for each
of these solutions. Based on this quantity and the rescaling of
time according to ω−1

⊥ , one can then obtain a lifetime estimate
in dimensional units. For instance, assuming a transverse
trapping frequency ω⊥ = 2π × 80 Hz, the instability growth
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FIG. 7. (Color online) The left panel shows the spectrum of the sn-cn periodic solution as a function of g12 for μd = 1.5 and μb = 1.23
using a finite difference method. The right panel shows the same spectrum, but also when applying the so-called Hill’s method (using different
wave numbers through imposing a suitable phase θ at the edge of a single period and considering—in this case 11—different values of θ ).

rate of 0.02 which appears as the rough minimum for the
sn-dn waveform per the right panel of Fig. 9 corresponds
to a lifetime of about 100 ms. In the case of the sn-cn
solution of Fig. 7, the corresponding minimum appears to
be approximately around one order of magnitude lower, hence
assuming a Re(λ) = 0.002, we can infer lifetimes of the order
of about 1 s. Both of these are certainly within the realm of
experimental observability (and adequate temporal resolution)
with current imaging techniques. A similar procedure can
be used for the trapped variants of the waveforms examined
below.

We now turn to the consideration of trapped variants of
the lattice solutions, as an extension of both the single DB
trapped solution, but also the homogeneous BEC lattices of
sn-cn and sn-dn waveforms. Our numerical computations for
the two types of lattices are shown, respectively, in Figs. 10
and 11. In Fig. 10, we can observe the persistence of the
sn-cn lattice in the presence of the trap, although an intriguing
byproduct of the interplay between the presence of a finite
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FIG. 8. (Color online) This shows the stationary profile of the sn-
dn-type periodic solution for g12 = 0.7,0.9,1.1,1.3 on the top left, top
right, bottom left, and bottom right panel, respectively. The chemical
potentials are μd = 1.5 and μb = 0.975. For g12 < 0.7 when it is
small enough, we see the dn solutions will no longer touch the x axis,
but rather “lift up” above it.

� �= 0 and a progressively stronger interspecies interaction g12

is the gradual depletion of the outer bright peaks, eventually
(see bottom right for g12 = 1.3) in favor of a single peak at
the center. The stability results again illustrate that even in
the presence of the trap the instability growth rates of the
solution are again minimal in the vicinity of the miscibility-
immiscibility threshold (although in this case, the absolute
minimum of the growth rates appears to be shifted towards
the weakly miscible side). Fairly similar conclusions, both as
regard the “squeezing” (and eventual elimination) of the bright
peaks, as well as the minimal growth rates on the weakly
miscible side can be observed also for the trapped variant of
the sn-dn solution in Fig. 11.

IV. CONCLUSIONS AND FUTURE CHALLENGES

In the present work, we have revisited the theme of dark-
bright solitary waves in atomic Bose-Einstein condensates.
We have considered such nonlinear structures in the presence
of general interaction coefficients, motivated by the tunability
of the scattering lengths, by means of Feshbach resonances
which, in turn, permit a tunability of the intra- and interspecies
effective nonlinear interaction coefficients in the mean-field
picture. We have seen that remarkably the DB states in the
presence and absence of the trap persist for a very broad range
of interspecies interactions (this has been our principal control
parameter). Within a suitably narrow range, we have been able
to predict such a variation even analytically. We have also
analytically predicted the motion of these DB solitary waves,
identifying it as a harmonic oscillation within a parabolic trap.
However, we have also gone well beyond individual dark-
bright solitary waves, and have explored extended variants
thereof, in the form of DB soliton lattices. Such lattices were
predicted analytically in the form of cnoidal wave solutions
with the bright components forming adjacent in-phase or
out-of-phase pairs, i.e., sn-dn and sn-cn solutions, respectively.
While these solutions were found in the homogeneous BEC,
it was possible to computationally extend them even in the
trapped case. Finally, their stability was also numerically
explored, finding that they can be least unstable in the vicinity
of the miscibility-immiscibility threshold.
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FIG. 9. (Color online) The left panel shows the spectrum of the sn-dn periodic solution for μd = 1.5 and μb = 0.975 as a function of
g12 using the finite difference method. The right panel once again shows the same spectrum but with the Hill’s method (for 11 values of the
relevant angle θ ) incorporated in the computation. The relevant waveform is generically unstable, although it is most weakly so on the slightly
immiscible side.
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FIG. 10. (Color online) The left panel of the figure shows the stationary profile of trapped sn-cn-type solutions for g12 = 0.7,0.9,1.1,1.3
on the top left, top right, bottom left, and bottom right panel, respectively. The trapping frequency is � = 0.02, while the chemical potentials
are μd = 1.5 and μb = 1.12. When g12 is about 1.2, it is interesting to note that the combination of the trap and the immiscibility only permits
to one of the bright peaks (the central one) to persist, while the rest have disappeared. The right panel shows the linearization spectrum (again,
imaginary and real parts) as a function of g12.
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FIG. 11. (Color online) The left panel shows the stationary profile of sn-dn-type solutions in the presence of a trap, for g12 = 0.7,0.9,1.1,1.3
on the top left, top right, bottom left, and bottom right panel, respectively. The trap frequency is � = 0.02 and the chemical potentials are
μd = 1.5 and μb = 1.12. The right panel again shows the corresponding linearization eigenvalues as a function g12.
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Given the extensive level of control of recent experiments
on multicomponent, DB-soliton-bearing experiments (see,
for instance, [4–7,10–12]) and the ability to tune scattering
lengths by means of the Feshbach resonance mechanism
[17], we believe that the type of states and configurations
proposed herein should be well within experimental reach.
Additionally, it would be extremely interesting to generalize
relevant configurations in higher dimensions. So far, to the
best of our knowledge, only configurations of a single or
two [14,15] vortex-bright states have been proposed and the
pertinent understanding of their dynamics is purely numerical.
Obtaining an analytical description of their motion and
generalizing such states in the realm of lattices would be a
particularly interesting possibility in its own right, in a way
perhaps reminiscent of other types of multicomponent lattices
(of vortex molecules) such as the ones proposed in Ref. [27].
Relevant studies are currently in progress and will be reported
in future publications.

APPENDIX: FINITE DIFFERENCE, FINITE DIFFERENCE
WITH HILL AND HILL’S METHOD

In order to determine the linear stability of the stationary
solution (u1,0,u2,0), we assume a general perturbation around
it in the form,

ud = u1,0 + ε[a(x)eλt + b(x)∗eλ∗t ], (A1)

ub = u2,0 + ε[c(x)eλt + d(x)∗eλ∗t ], (A2)

and substitute in the dynamical equations, computing only the
O(ε) corrections. The relevant linear eigenvalue problem is
then written as

λ

⎛
⎜⎝

a

b

c

d

⎞
⎟⎠ =

⎛
⎜⎝

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

⎞
⎟⎠

⎛
⎜⎝

a

b

c

d

⎞
⎟⎠ ,

where λ, (a,b,c,d) are the eigenvalues and eigenvectors,
respectively. In particular, the matrix elements are

A11 = − 1
2∂xx − μd + V (x) + 2g11|u1,0|2 + g12|u2,0|2,

(A3)

A22 = −A11, (A4)

A33 = − 1
2∂xx − μb + V (x) + 2g22|u2,0|2 + g12|u1,0|2,

(A5)

A44 = −A33, (A6)

A12 = g11u
2
1,0, (A7)

A13 = g12u1,0u
∗
2,0, (A8)

A14 = g12u1,0u2,0, (A9)

A21 = −A∗
12, (A10)

A23 = −A∗
14, (A11)

A24 = −A∗
13, (A12)

A31 = A∗
13, (A13)

A32 = A14, (A14)

A34 = g22u
2
2,0, (A15)

A41 = −A∗
22, (A16)

A42 = −A32, (A17)

A43 = −A34. (A18)

Now we briefly discuss two methods for studying the
above linear eigenvalue problem. For the finite difference
method, we discretize the eigenvector and the Jacobian
matrix, i.e., work with the grid xn = x1 + (n − 1)�x.
For the eigenvectors (a,b,c,d), we then have
a(x) = [a(x1),a(x2), . . . ,a(xn)], b(x) = [b(x1),b(x2), . . . ,
b(xn)], c(x) = [c(x1),c(x2), . . . ,c(xn)], and d(x) =
[d(x1),d(x2), . . . ,d(xn)]. The resulting matrix eigenvalue-
eigenvector problem can thus be numerically solved.

For the finite difference method with Hill’s method incor-
porated [26], we select a number of values for θ ∈ [0,2π ),
and make the following changes based on the finite difference
method,

A11(1,n) → A11(1,n)eiθ , (A19)

A22(1,n) → A22(1,n)eiθ , (A20)

A33(1,n) → A33(1,n)eiθ , (A21)

A44(1,n) → A44(1,n)eiθ , (A22)

A11(n,1) → A11(n,1)e−iθ , (A23)

A22(n,1) → A22(n,1)e−iθ , (A24)

A33(n,1) → A33(n,1)e−iθ , (A25)

A44(n,1) → A44(n,1)e−iθ . (A26)

Then we evaluate the eigenvalues and eigenvectors of the
matrix A over a period of the periodic solution of interest and
superpose the relevant spectra obtained for different values
of θ .

In the present work, we computed the spectrum with finite
differences and finite differences incorporating Hill’s method
(over a period) and confirmed the agreement between the two.
When computing the spectrum with finite differences, only
a finite number of periods is used (due to the finiteness of
the computational domain needed to be employed), as is, e.g.,
shown for our sn-cn and sn-dn solutions, in the absence of
a trap. On the other hand, in the case of the Hill’s method
with finite differences, a finite number of values of θ is used
within the same period. In that light, the asymptotic limit
where the two methods would be equivalent would be that of
infinitely many phase factors in the Hill’s method (with finite
differences) and, correspondingly, infinitely many periods in
the true solution within the standard finite difference method.
Nevertheless, a glimpse of the correspondence of the results of
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the two solutions is given by our results here, i.e., in Figs. 7 and
9. Notice that, e.g., on the imaginary axis of the corresponding
sn-cn and sn-dn spectral plots, we only see a small fraction

of the spectrum, which in its fullness encompasses the entire
imaginary axis. As an additional alternative, one may also
consider the direct Hill’s method as described, e.g., in [26].
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