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A fully analytical theory of a traveling soliton in a one-dimensional fermionic superfluid is developed within
the framework of time-dependent self-consistent Bogoliubov—de Gennes equations, which are solved exactly
in the Andreev approximation. The soliton manifests itself in a kinklike profile of the superconducting order
parameter and hosts a pair of Andreev bound states in its core. They adjust to the soliton’s motion and play an
important role in its stabilization. A phase jump across the soliton and its energy decrease with the soliton’s
velocity and vanish at the critical velocity, corresponding to the Landau criterion, where the soliton starts emitting
quasiparticles and becomes unstable. The “inertial” and “gravitational” masses of the soliton are calculated and
the former is shown to be orders of magnitude larger than the latter. This results in a slow motion of the soliton
in a harmonic trap, reminiscent of the observed behavior of a solitonlike texture in related experiments in cold
fermion gases [T. Yefsah et al., Nature (London) 499, 426 (2013)]. Furthermore, we calculate the full nonlinear
dispersion relation of the soliton and solve the classical equations of motion in a trap. The strong nonlinearity at
high velocities gives rise to anharmonic oscillatory motion of the soliton. A careful analysis of this anharmonicity

may provide a means to experimentally measure the nonlinear soliton spectrum in superfluids.
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I. INTRODUCTION

Solitons are fascinating nonlinear phenomena that occur in
a diverse array of classical and quantum systems (see, e.g.,
Ref. [1] and references therein). In particular, they are known
to exist in quantum superfluids and have been demonstrated
experimentally in Bose-Einstein condensates (BECs) using
various methods including phase imprinting [2,3], density
engineering [4,5], and matter-wave interference [6] methods.
A rich theoretical literature on solitons in BECs has also
developed [7,8] and it includes both numerical and analytical
solutions of Gross-Pitaevskii equations in excellent agreement
with both each other and experiment.

Fermionic superfluids also support solitons, i.e., phase
jumps in the order parameter field. These objects are more
interesting and complicated than Gross-Pitaevskii solitons be-
cause they can host and carry localized fermionic excitations,
i.e., Andreev bound states (ABSs). Consequently, a description
of these nonlinear phase excitations is more complicated:
There exists no closed equation for the bosonic order parameter
field and inclusion of the fermionic degrees of freedom is es-
sential. At the technical level, one has to solve two-component
Bogoliubov—de Gennes (BdG) equations supplemented with
a nonlinear self-consistency constraint. This class of problem
in one dimension has been studied extensively in the context
of the Gross-Neveu model of quantum-field theory [9-16],
organic polymers [17-21], and mesoscopic superconductivity
[22-25] (see also Ref. [26] for the Eilenberger approach
to a related problem of phase slips in one-dimensional
superconductors). Using remarkable connections to the inverse
scattering method and supersymmetric quantum mechanics,
exact analytical solutions were found to describe static soliton
textures.

More recently, numerical analyses of static and moving
solitons in neutral fermionic superfluids within the crossover
from BEC to Bardeen-Cooper-Schrieffer (BCS) regimes were
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developed [27-34]. On the experimental side, Yefsah et al.
reported an observation of an oscillating solitonic vortex
(which is actually a three-dimensional vortexlike texture,
which tends to the soliton in the limit of the true one-
dimensional confinement) in a strongly interacting fermionic
superfluid in an elongated trap [35,36] (see also [37] for a
discussion of stability of solitonlike textures). These develop-
ments, along with potential connections to Majorana fermions
(which may be carried by solitons in one-dimensional topolog-
ical superfluids [38,39]), make the problem of a fundamental
understanding of soliton dynamics in one-dimensional paired
Fermi systems of significant importance and interest.

Here we develop an analytic theory of a traveling soliton
in a one-dimensional paired superfluid in the weak-coupling
BCS regime. We show that the time-dependent BdG equations
are exactly solvable in the Andreev approximation to describe
a uniformly moving solitary wave of the BCS order parameter
and derive a dependence of the soliton’s energy and phase
discontinuity across it on its velocity. The two latter quantities
are shown to decrease monotonically with velocity and vanish
at the Landau critical velocity. It is also shown that the ABSs,
carried by the soliton, adjust to its motion and play an important
role in its stabilization. The “inertial” and “gravitational”
masses of the soliton are calculated and the former is shown
to be orders of magnitude larger than the latter. This results in
a slow motion of the soliton in a harmonic trap, reminiscent of
what has been observed in the relevant experiment [35,36]. At
high velocities, the nonlinearity of soliton spectrum becomes
essential and leads to anharmonic oscillations, expressed in
terms of elliptic functions.

The rest of the paper is organized as follows. In Sec. II
the time-dependent Bogoliubov—de Gennes equations are
introduced. In Sec. III we construct their self-consistent
solution, which describes a moving solitary wave. Section IV
is devoted to soliton energetics. In Sec. V we consider soliton
dynamics in a trap, calculate the soliton’s effective masses,
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and solve the classical equations of motion including the full
nonlinear spectrum. We summarize in Sec. VL.

II. TIME-DEPENDENT MEAN-FIELD THEORY

We start with the BCS model for a one-dimensional uniform
superfluid, written in the Heisenberg representation

H = /dx [Z Wle(po)Wy — V\yiwjxpm} G))
o

Here ¥, = Y, (x,1) [\l'j[ = \Ilot(x,t)] is the annihilation (cre-
ation) Heisenberg operator for fermions, which can be written
in the Nambu representation ¥ = {‘llT,\IlI}T; e(p) = (ﬁf —
Pp2)/2m is the kinetic energy of fermions; and V and vr are the
attractive interaction and density of states on the Fermi level,
leading to the dimensionless coupling constant A = Vg < 1,
which is a small parameter in the weak-coupling BCS regime.
The operators satisfy the equation of motion i 7o, ¥V = [H, V],
which in the time-dependent mean-field approach [40] with
the order parameter A(x,?) = —V (¥ (x,1)¥4(x,?)) reduces
to

A(x,t)

iho,W(x,1) = < €(P) Ceth

At t) ) v (@)

The matrix operator in the above equation is the time-
dependent BAG Hamiltonian. We seek a uniformly moving so-
lution, where the order parameter and field operators are func-
tions of the single variable z = x + vgt. In the weak-coupling
regime, the semiclassical (Andreev) approximation [41],
which treats separately the left- (« = —1) and right-moving
(¢ = +1) fermions, can be employed. We present the field
operator in the form W(x,r) =), ¥ (z)b expli(aprz —
€ t)/h], where the sum is over time-dependent Bogoliubov
quasiparticle states, described by the operators b;, with
the energies €, and wave functions ¥ (z) = {uj;‘(z),v,‘f(z)}T.
The ansatz for W (x,t) satisfies the equation of motion (2) if the
Bogoliubov states satisfy Kg,(z)¥, (z) = €27 (z) with the
effective Hamiltonian

K()l — avFﬁZ + aUspF A(Z) (3)
BdG A*(2) —avgpp; + avspr )’

which does not have an explicit time dependence and corre-
sponds to the frame of reference moving together with the
soliton. It differs from the time-dependent Hamiltonian in the
original laboratory frame

o O“)Flax
BdG ™ \ A*(x 4+ vgt)

by the energy shift §¢* = avgpp. As aresult, in this comoving
frame, we assume Bogoliubov quasiparticles to be in thermal
equilibrium and the self-consistent equation for the order
parameter becomes

AR) ==V Y ul@[ve )] ne(el). (5)

A(x + vst)) (4)

_avFﬁx

where ng(ey) is the thermal Fermi-Dirac distribution function.
The equation has a uniform solution, corresponding to the
BCS superfluid state with the uniform order parameter Ay ~
Erexp[—1/A], but it also has nontrivial solitonic solutions.
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FIG. 1. (Color online) Spatial profiles of the (a) absolute value
and (b) phase of the order parameter, plotted for different soliton
velocities vs. Energy spectra of the BAG Hamiltonians in the (c)
laboratory frame Hpys and (d) comoving frame Kpgg. Closed
and open circles denote occupied and empty Bogoliubov states,
respective. Incomplete circles correspond to a decreasing number of
states in the continuous Bogoliubov bands due to the ABSs splitting
from them. In a solitonic state, the energies of the ABSs corresponding
to Kpqgg are exactly zero, while their energies corresponding to Hgyg
are split and shifted away from zero by v pg.

Note that we have reduced the time-dependent many-body
problem to a time-independent one with the energy shift §¢* of
Bogoliubov quasiparticle energies. The shift does not change
the general structure of the BAG Hamiltonian and enables
us to use the machinery developed in the context of static
solitons. Nevertheless, since energy shifts for right and left
Fermi points have opposite signs, they modify the energetics of
the solitonic solutions in a nontrivial fashion and are essential
for the following.

III. SOLITONIC SOLUTIONS

In the Andreev approximation, the problem [see Egs. (3)
and (5)] maps to the Gross-Neveu model, for which self-
consistent solitonic solutions can be found exactly [9,10]. Par-
ticularly, it was shown that both BdG equations (3) and Eq. (5)
are simultaneously satisfied if the order parameter yields a
reflectionless potential for Bogoliubov quasiparticles. In that
case, the BdG equations reduce to a pair of supersymmetric
Schrodinger equations [see Eq. (7) below], which can be solved
exactly. A family of reflectionless potentials, corresponding to
a single localized soliton, can be parametrized by a phase jump
2¢ across it as

A(z) = Aofcos(¢) + i sin(@) tanh[sin(p)z¢ ]} (6)

Here z; = z/&p, where & = hvg/Ay is the coherence length.
The spatial dependences of the order parameter phase and
modulus are presented in Fig. 1. At2¢ = 0 the solitonic texture
vanishes and the order parameter profile becomes uniform.
Introducing f{(z) = u®(z) £ v*(z), the BAG equations can be
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reduced to a pair of equations

[—h2v583 +1A@)P iathafd—im] L= o
that have supersymmetric structure (see Ref. [42] for a
review). In particular, they can be presented as HY ff = Ef{
with the effective energy E =€? — A7 and Hamiltonians
Hf = AZ A%, which are a product of the ladder operators
AY = —ihvpd; & ai Ay(z). Here the imaginary part of the
order parameter A,(z) plays the role of the superpotential
W(z) [42]. The presence of a kink in its spatial dependence,
where the order parameter changes sharply from —Ag sin(¢)
to Agsin(¢), guarantees the existence of a localized solution
for one of these equations (7). Using the explicit profile of the
order parameter (6), we cast the BdG equations into the form

[1#2202 — 83+ €] = 0

2 sin?
R I R PR
‘ cosh”[sin(¢)z¢]

The equation for fJ is trivial and contains only a continuous
spectrum with plane-wave solutions, while the equation for f
has both the continuous states and an extra bound state. The

®)

continuous solutions have energy €, = y/(hvgk)? + Aj =

y €, where y = =1 corresponds to the Bogoliubov particles
and holes, which are given by

€ + oA
u%, ()= | X |:1 +
vk 4L6yk
Vo (2) = Eyk—}—O(A[ o hvgk + i A»(2) oike
vk 4L€yk )

€yk +al
Andreev bound states, localized on the soliton, have the energy
€aps = —aAgcos ¢ and are described by the wave functions

. _ 1 [sin(¢) 1 1
Vans(2) = 2\/570cosh[sin(¢)25] <—a>' (o

The energies of ABSs are sensitive to the phase jump across the
soliton, while the dispersion law of Bogoliubov quasiparticles
remains unchanged in the presence of the soliton compared to
the uniform BCS state. However, the solitonic texture modifies
the density of states of the Bogoliubov particles and holes.
Indeed, for the sake of a qualitative argument, consider an
adiabatic insertion of a soliton from the uniform state. In this
adiabatic process, the Andreev bound states are split from
the continuous particle and hole bands, but the total number
of fermionic states is conserved. Therefore, the continuous
bands for each Fermi point have one state less compared to the
uniform superfluid.

The presence of a soliton distorts boundary conditions,
which can no longer be considered as simple periodic, and
modifies the momentum quantization. Indeed, while all local
physical observables [e.g., the fermion current j(z) and density
p(z)] are periodic functions of the coordinate in a closed
system [e.g., j(z+ L/2)= j(z—L/2) and p(z+ L/2) =
p(z — L/2)], the order parameter is not periodic because
it has a global phase discontinuity across the soliton and
A(z + L/2) = A(z — L/2)e*¢. Here L is the system length.

thk + iAz(Z)i| eikz
€yk + a Ay ’
)
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We have generalized the periodic boundary conditions for
a system with a soliton (see Appendix A for their detailed
derivation) and they are given by

V(4 L/2) = [cos(@) + i sin(p)o- 1Yy, (z — L/2). (11)

They reduce to simple periodic boundary conditions ¥, (z +
L/2) =y} (z— L/2) if the phase jump ¢ =0 when the
soliton vanishes and the order parameter becomes uniform.
Using the explicit form of the wave functions (9), we obtain
the quantization condition for the quasiparticle momentum
k,L + 9;? (k,) = 2mn, where n is integer and

9;‘(16) = arg[e; cos(P) + ay Ag — iay hvpk sin(¢p)]  (12)

is a phase shift (the calculations are presented in Appendix B).
Using these phase shifts, we find the number of states Ny split
from the continuous bands as [17]

o0 o
R o - )
—o0 2w dk 2 2 =z

leading to NS = ¢ /m and N = (& — ¢)/m. Since there is the
only one ABS per Fermi point, the sum of these numbers is
N¢ + N2 = 1, which confirms the physical picture of ABSs
splitting off from the Bogoliubov bands. The total number of
states split from the valence and conduction bands is also an
integer: N + N- = land Nf + N} = 1.

The energies of the continuous states and ABSs in the co-
moving frame are shifted by §€* = av, pg. For the continuous
spectrum this shift is unimportant as long as vs < vr, where
vy = A/ pg is the critical velocity within the Landau criterion.
At v = vg, the continuous bands touch the zero energy level
and the soliton can lower its energy by emitting Bogoliubov
excitations and becomes unstable. For localized states, the
energy shift is crucial since it governs both the energy and
occupation of these states.

So far the phase jump across a soliton 2¢ has been treated as
an independent parameter characterizing the shape of the order
parameter within the family of reflectionless potentials, given
by Eq. (6). However, its value is fixed by the self-consistent
equation for the order parameter (5), which we have not
take into account yet. Due to the self-consistency constraint,
the phase jump becomes dependent on the soliton velocity
vs. Using semiclassical wave functions (9) and (10), the
self-consistent equation for the order parameter (5) can be
rewritten as

13)

A(z) =

VA sin ¢ dk A(2)
én T +V [ ——-
4hve  cosh®[sin(¢)zs] 2m €
VAym —2¢ sin ¢
4hvp 7w cosh®[sin(¢)ze]’

(14)

where dn=n, —n_=nglvspr — Agcos(¢)] — np[—vspr +
Ay cos(¢)] is the difference between the occupation numbers
of the ABS, which are influenced by the soliton’s motion. The
latter two terms originate from the continuous Bogoliubov
states and for them we can set the temperature to zero.
However, the zero-temperature limit for the ABS is delicate
because it implies T < |vspr — Agcos(¢)|, which cannot
hold when the corresponding energies vanish, while Fermi
distribution functions in the zero-temperature limit become
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FIG. 2. (Color online) Velocity dependence of (a) the phase jump
across the soliton 2¢, (b) energies of the ABSs €}gg  localized on
the soliton, (c) the ABSs’ occupation numbers nygs , and (d) energy
of the moving soliton in the laboratory frame E;.

nonmonotonic. The self-consistent equation (14) is satisfied if
sin(¢)[wr — 2¢p — wén] = 0. (15)

This equation has the trivial solution 2¢p = 0, which corre-
sponds to a uniform BCS state with no solitons. It also has a
single nontrivial solution, corresponding to a traveling soliton
with the phase jump across it, which in the zero-temperature
limit takes the simple form

vL

2¢s = 2 arccos <£> . (16)

Note that the energies of ABSs are zero in the comoving
frame, while in the laboratory frame they are split in energy by
€xps.s = — Vs pr. The occupation numbers of ABSs adjust to
the soliton motion and are not equal. The occupation numbers
can be calculated from Eq. (15) as

1 1 s(Us
Napss = 3 +to |:§ - ¢j(: )] (17)

The dependences of phase jump across the soliton, energies,
and occupations of ABSs on velocity v, are presented in
Figs. 2(a)-2(c). The soliton at rest has a phase jump of 2¢y = 7
across it, while ABSs have zero energies and are equally
occupied nipg = 1/2, as have been previously derived
[17,20]. The phase jump decreases with velocity vg until the
critical one vy, is reached. The splitting of ABS energies 2v, pr
and the difference between their occupations éng = 1 — 2¢/m
gradually increase with the soliton’s velocity.

The total occupation of the ABS is equal to one (i.e.,
Nips.s + Mapss = 1), which coincides with the number of
states split off from the lower Bogoliubov band (i.e., N* +
NZ = 1). This means that within the Andreev approximation
there is neither a deficit nor an excess of fermionic matter in the
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soliton core compared to the uniform state § Ny = 0. It should
be noted that in the local-density approximation, the deficit
(or excess) of fermions determines the interaction strength
of the soliton with a trap potential, confining the superfluid,
and its sign is crucial for soliton dynamics. Below we show
that more general thermodynamic arguments give a small but
finite value for |8 Ng| ~ Ao/LEF [see Eq. (26)], which can be
both positive or negative, depending on the sign of the energy
derivative of the density of states, which in turn is determined
by the (true) dimensionality of the system and geometry of the
Fermi surface.

IV. SOLITON ENERGETICS

In equilibrium, the self-consistency constraint corresponds
to an extremum or a saddle point of the free energy of
the system (energy in the zero-temperature limit). Our time-
dependent approach involves a mapping of the time-dependent
Hamiltonian Hpg4g in the laboratory frame (4) on a time-
independent model (3) with a distorted BdG Hamiltonian
Kgag, with the velocity of the soliton v playing the role of
an external parameter. The corresponding energy EX(¢,v;) in
the comoving frame achieves an extremum as a function of ¢,
corresponding to the solution (16). However, the actual energy
of the solitonic state in the laboratory frame EH(¢,v;) differs
from EX(¢,v), as discussed below.

The difference between EX(¢,v;) in the solitonic state and
that in the uniform BCS state can be presented as the sum
EX = FE, + Eé( + EEBS, where Ea comes directly from the
nonuniformity of the order parameter

Ea = %/dz[m(z)l2 — AF)- (18)

The contribution EX originates from filled continuous Bogoli-
ubov states and can be calculated using Eq. (12) as [17]

36k
K __ o a K + -
Ef = Z |:N_Ao + ;9_ m } upr(NT = ND), (19)
with the last term here coming from the asymmetry between
the states split from the continuum at the right and left Fermi
points. Finally, the contribution EX; originates from the ABS

and is given by
Ejps = [vspr — Ag cos(¢)]on. (20)

Putting all three terms together (detailed calculations are
presented in Appendix C), we arrive at the soliton energy
in the comoving frame

K ZAO . b4
E™(p,v5) = T[Sln(@ + (E - ¢> COS(¢):|

2¢
— Vs PR (1 - 7) — |vspr — Agcos(¢)]. (21)

For a soliton at rest, the energy has a clear maximum at2¢ = 7.
At a finite velocity, the energy maximum shifts and follows the
curve corresponding to Eq. (16). This, however, does not imply
that the corresponding solution is unstable and/or unphysical.
If we fix a phase jump across the soliton, which is a global
constraint, the solution found self-consistently from the BdG
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FIG. 3. (Color online) Dependence of the energy EX on the phase
discontinuity across the soliton 2¢ and its velocity vs. The dependence
has a clear maximum, corresponding to the relation (16), which
holds when the BAG equations and the self-consistency equation
are satisfied simultaneously.

equations becomes a minimum of the corresponding energy
functional [17] (e.g., distorting the shape of the solitary wave
would always increase the system’s energy, as long as global
boundary conditions are preserved). This means that the soliton
is stable against local perturbations, which was confirmed
in numerical simulations of the BdG equations [29-31].
Interestingly, at a finite velocity, there appear additional local
minima of EX(¢,v;), gradually emerging from the trivial
solutions 2¢p = 0,27 (see Fig. 3). However, they do not satisfy
the self-consistency constraint (14) and hence are locally
unstable.

The energy of the system in the laboratory frame EY (¢, v;)
following from the Hamiltonian (4) can be calculated in the
same manner as above (the calculations are presented in
Appendix C) and is given by

2A Vg 2
E, = ER(gy(v9).v) = — [1 - (—) . (22)
T UL
The energy of the soliton atrestis E5(0) = 2A /. It gradually
decreases with the velocity vy and vanishes at the critical
velocity vi, as presented in Fig. 2(d).

V. SOLITON DYNAMICS IN A TRAP

For a superfluid in a trap, the confining potential makes
the soliton energy position dependent and drives its motion.
In the local-density approximation, the chemical potential of
fermions is Er(x) = Er — U(x), where U(x) = mw?x?/2 is
a harmonic trapping potential with frequency w. The energy
of a soliton with velocity vg and coordinate x, at vy < v, and
U (xs) < Ep can be approximated as

i,2 g 2,2
Ao  mv;  mswxg

E((vo,xg) = — + —=> 4 ———*
S( S S) T 2 2
where m! and mf are the inertial and gravitational masses,

which define the kinetic and potential energy of the soliton in

(23)
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the trap and are given by

4dm EF 2m o A0

i g - _— ~ —~
= ms =

) . 24
s T Ao b/ BEF ( )

The inertial mass of the soliton is always negative and is
considerably larger than a single fermion’s mass m. The
negative sign of the mass implies that any dissipation (which
can be introduced as E; = —I's|mi|v2, with T being a friction
coefficient) would accelerate the soliton until it achieves
the critical velocity and vanishes. The fermionic degrees of
freedom (both the continuous states and ABSs) can play
the role of a bath and lead to dissipation with Al'y ~
Agexp[—Ap/T] [43]. The dissipation is exponentially small
atlow temperatures 7 << A and can lead to a macroscopically
large soliton lifetime.

In contrast to the inertial mass, the sign of the gravitational
mass can be both positive and negative, depending on an
energy dependence of the fermionic density of states vg on
the Fermi level, which determines the derivative 0 A(/0 Er =
(Ag/A*)OA/IEr in Eq. (24). In particular, in a truly one-
dimensional fermionic superfluid (here we ignore the concep-
tual questions related to the possibility of superconductivity
in such systems), the density of states decreases with energy
dvp/d Er = —vp/2ER, which leads to a positive gravitational
mass mé ~ mAg/Aw Eg. Note that the latter is considerably
smaller than the mass of a single fermion m. According to
the equation of motion for a soliton Xy — ['sx — a)fxS =0, 1itis
accelerated away from the trap center with the rate

g

mg OYAN))

~ . 25
2 JiEn (25)

In the more realistic and experimentally relevant case of a
quasi-one-dimensional fermionic superfluid with a circular
Fermi surface (including a three-dimensional condensate in
an elongated trap, such as that studied in the experiment
in [35]), the density of states increases with the energy
dvp/dEr = vp/2Ep and the gravitational mass is negative
mé ~ —mAy/Am Eg. Note that it is also considerably smaller
than the mass of a single fermion m. The equation of motion
yields ¥y — [gxs + a)f)cS = 0, where wy, introduced in Eq. (25),
plays the role of an oscillation frequency of the soliton. Due to
dissipation, the soliton oscillates with an increasing amplitude,
until it achieves the critical velocity vy. A similar picture was
observed for solitonic vortices in Refs. [35,36].

The gravitational mass of the soliton m$ = m8 Ny(vs = 0)
is intimately connected with the excess or deficit of particles
8Ng(vs), which according to the general thermodynamic
relation is given by § Ny = —d E/d Er. The excess or deficit
of particles for one- (+) and quasi-one- (—) dimensional

superfluids is given by
v\ 2
1— (—s> .
UL

Its absolute value decreases with the soliton’s velocity vy
and vanishes at the critical velocity v_. Note that it is small
in the weak-coupling BCS limit and is not captured by
direct counting of the occupied states within the Andreev
approximation, which we discuss in Sec. III.

wg = W ’_1
my

A
JTEF

BN, ~ - (26)
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FIG. 4. (Color online) Dependences of the soliton’s coordinate
x, and the velocity v on a time ¢/ T, where T, = 27 /ws, for different
initial positions xo/x,. For xo/x, < 1 oscillations become harmonic,
while for xo/x, < 1 the nonlinearity of the equation of motion, given
in Eq. (27), becomes important. For x, > x, the soliton achieves the
critical velocity vi, and vanishes without reaching the trap center.

In both one- and quasi-one-dimensional systems, the abso-
lute value of the inertial mass is orders of magnitude larger than
the gravitational one, resulting in ws/@ < 1, which makes the
soliton motion remarkably slow. In particular, for the coupling
constant A & 0.3 and the trap period T = 27 /@ ~ 60 ms [35],
we have |m§/mi| ~ 103 and the period of soliton oscillations
T; ~ 1.9 s is macroscopically large.

Note that the notion of the soliton’s inertial mass is based
on the Taylor expansion of the nonlinear soliton spectrum
(22) on vf. While an effective mass is indeed a useful
intuitive concept, there is no need for this expansion, as the
classical equations of motion for a soliton in a trap can be
integrated exactly by taking into account the full nonlinear
energy spectrum (22) (which is especially important at high
soliton velocities, where the aforementioned approximation
breaks down). The corresponding soliton equation of motion
in a quasi-one-dimensional superfluid, accounting for the full
energy spectrum, is given by

Xs wszxs

= /o) T 1= (oo

If a soliton is created initially at rest vs(0) = O at a distance
x5(0) = x( from the trap center, it is pushed to the trap center
and its motion depends only on a single control parameter
Xo/Xxy, Where x, = \/EvL/a)S is the distance from the trap
center at which absolute value of potential energy is equal to
the maximal kinetic energy of the soliton E(0) = 2A/m. For

=0. (27)
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Xo = X, the initial potential energy is sufficient to accelerate
the soliton up to the critical velocity vr, within one cycle and the
soliton vanishes without reaching the trap center. For xy < x,
the soliton motion is oscillatory and the equation of motion
(27) can be integrated in terms of elliptic functions as

V2x, F(e x2 >+2 (2x2 = x3)
i \2-g Vv,

*
x5 X
X |E|\0,——— | —F|0,———— = wst, (28
[ ( 2x$—x§) ( 2x$—x5>] oty (28)

where F(0,x}/(2x2 — x3)) and E(6,x3/(2x2 — x2)) are in-
complete elliptic integrals of the first and second kinds,
respectively, and 0 = arccos(x;/x,). The time dependences of
the soliton’s coordinate and velocity, originating from Eq. (28),
are presented in Fig. 4. For xy < x, the oscillatory motion
becomes harmonic, while for xo < x, the nonlinearity of the
equation of motion (27) becomes important and the soliton
trajectory becomes visibly different from simple harmonic.
Experimental observation of such anharmonic oscillations can
reveal deviations of the soliton dispersion law from the simple
quadratic spectrum Eg = miv?/2.

VI. CONCLUSION

This paper has developed an analytical theory of a moving
soliton in a paired fermionic superfluid. The main results are
the dependences of the phase jump across the soliton, its
energy, and the deficit of particles in the core on the soliton
velocity. The only approximation used in solving the time-
dependent self-consistent Bogoliubov—de Gennes equations is
the Andreev approximation, which involves linearization of
the fermion spectrum in the vicinity of the Fermi points. The
approximation allows a one-to-one correspondence with the
Gross-Neveu model, for which static solitonic solutions have
been studied in detail. We extend the theory to the dynamic
situation of a moving soliton. The Andreev approximation is
well justified in the weak-coupling regime A < 1 and remains
reasonable at A < 1, making our extrapolated analytical results
of value in that case as well.

Solitons in fermionic superfluids appear due to a subtle in-
terplay between the bosonic superconducting order parameter
and fermionic quasiparticles. This is in contrast to bosonic
superfluids, where the Gross-Pitaevskii solitons are structure-
less. Nevertheless, it was shown that the internal structure
of solitons and their physics evolve smoothly between these
regimes across the BEC-BCS crossover. In particular, solitons
in three-dimensional fermionic superfluids were recently
investigated numerically in the crossover regime using time-
dependent BAdG equations [27-32]. The numerical treatment
works in the crossover regime —1 < (akp)~' < 1, where a
is the fermion scattering length, but seems to break down
in the weak-coupling BCS limit (akg)~' <« —1 (where our
analytical results are asymptotically exact). This circumstance
does not allow us to perform a full comparison between the
existing numerical results and our analytical results. However,
the velocity dependences of the soliton profile, energy, phase
jump, and the deficit of particles calculated here are in good
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qualitative agreement with the ones obtained numerically on
the BCS side of the crossover. Our results can provide a useful
reference point for possible future numerical simulations of
solitons in this limit.

The internal structure of solitons in a bosonic superfluid
differs from their fermionic counterpart, but the two types
of solitons have much in common. In particular, the velocity
dependences of the phase jump 2¢;, energy Eg, and profile
of the order parameter W(z) for bosonic superfluid have a
form [8]

4h 213/2
2¢s = arccos <E), E, = Mo |:1 — (5> } ,
c 3 c

(29)

v .. . z
NG cos(¢) + i sin(¢) tanh |:s1n(¢)5\/§i|
similar to the ones in the fermionic case [see Egs. (16), (22),
and (6)]. In Eqgs. (29), ny is the equilibrium concentration of
the bosonic condensate far from the soliton, & is its coherence
(healing) length, and the critical velocity c¢ is the speed of
sound in the bosonic superfluid (in contrast to the fermionic
critical velocity v, which is the Landau critical velocity, where
the emission of fermionic quasiparticles commences). Also, in
contrast to the fermionic superfluid, the notch in the bosonic
order parameter W(z) results in an equivalent notch in the
particle density. As a result, the Gross-Pitaevskii soliton is

accompanied by a macroscopically large deficit of particles

)

[cf. Eq. (26)]. The inertial and gravitational masses of the
bosonic soliton are both negative and their values are connected
asm! = 2m¢. The soliton oscillation frequency differs from the
trap frequency by a factor of V2, ie, w3 =w / V2. This result
is in strong qualitative contrast with the order of magnitude
difference between the soliton masses in the BCS fermionic
superfluid. There w; < w and the motion of the soliton is much
slower than that of a bosonic soliton put in the same trap.

Zhl’l()
mc

SNy = (30)
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APPENDIX A: GENERALIZED PERIODIC BOUNDARY
CONDITIONS

Bogoliubov—de Gennes equations (3) require appropriate
boundary conditions. For a uniform superfluid, the simple
periodic boundary conditions ¥, (z + L/2) = ¥, (z — L/2)
(with L being the system size) apply. However, they cannot be
used in the presence of a soliton since the order parameter is no
longer a periodic function of the coordinate. Indeed, while all
local physical observables [e.g., the fermion current j(z) and
density p(z)] are periodic functions of the coordinate in the
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closed system [j(z + L/2) = j(z — L/2) and p(z + L/2) =
p(z — L/2)], the order parameter is not periodic because
it has a global phase discontinuity across the soliton and
Az + L/2) = A(z — L/2)e*.

Here we generalize the simple periodic boundary conditions
to the system with a soliton. The general form of boundary
conditions is

V(2 + L/2) = By (z — L/2), (A1)

where B}‘f (@) is a matrix (whose explicit form is to be
determined) that depends on the phase jump across the soliton.
We assume that boundary conditions do not mix states with
different quantum numbers and omit the corresponding indices
o, v, and k, which become redundant. First, we require that
the fermion current and density

J@ =9y @), pk)=1+v"(2)o:¥(z)

are periodic functions. These conditions lead to the constraints
B'B = 1 and B, B = o.. The former implies that the matrix
B is unitary, while the latter allows us to parametrize it by two
phases @ and © as

(A2)

B = ¢'®[cos(®) + i sin(®)o,]. (A3)

Next, assuming the state ¥(z — L/2) to be an eigenvector of
the BAG Hamiltonian Kpyg(z — L/2)Y(z — L/2) = ey (z —
L/2), we demand that the spatially translated state y(z + L/2)
is an eigenvector of the translated BAG Hamiltonian Kpyg(z +
L/2)Y(z+ L/2) = eyr(z + L/2). Note that, due to the pres-
ence of the phase jump A(z + L/2) = A(z — L/2)e*?, the
Hamiltonian is not invariant under translation. Using the
explicit form of the BAG Hamiltonian (3), we arrive at

Blo B = o, cos(¢) + oy sin(¢),
1§Toy1§ = 0y cos(¢p) — o, sin(¢).

The ansatz (A3) satisfies (A4) if ® = ¢. Finally, we notice
that the superfluid state with the order parameter (6) becomes
equivalent to the uniform BCS state at ¢ =0 since the
soliton profile (6) vanishes. Therefore, we must require that
B(¢ = 0) = 1 since B = 1 corresponds to the simple periodic
boundary conditions. This constraint fixes the remaining
parameter ® = 0 and determines the unitary matrix E(qﬁ) as

B(¢) = cos(¢) + i sin(¢)o. (AS)

The matrix does not depend on the set of indices «, k, and y
for a continuous Bogoliubov state.

Let us remark that the boundary condition (AS) can be
straightforwardly generalized to the presence of a soliton
train (not relevant here, but of importance to studies of
inhomogeneous superconducting states). There the boundary
conditions would have the same form as Eq. (AS), but with 2¢
replaced by the whole phase jump across the train.

(A4)

APPENDIX B: MOMENTUM QUANTIZATION
AND PHASE SHIFTS

The simple periodic boundary conditions that can be used
for a uniform superfluid determine the standard momentum
quantization rule k,L = 2mn. In the presence of a soliton,
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momentum quantization is modified and follows from the
appropriate boundary conditions (AS).

J

The functions f7, , in the solitonic state are given by

Substitution of (B2) into (B1) leads to

for the right Fermi point and to
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Let us rewrite the boundary conditions in terms of the

functions f7, . = uj, £, as

F 2@+ L/2) = cos(@) foh +(z — L/2) + i sin(¢) f5 -(z — L/2). (B1)
" _ Eyk+(¥A] ikz " _ Eyk+OlA] hvgk + i A»(2) ikz

fiea® = [T Fia@) = o [ S — o e (B2)

[e,x + Ag cos(@)]e’ /% = [e,1 + Ag cos(@)] cos(@)e /2 + i[hvgk — i Ag sin(¢)] sin(¢)e <172,
. _ . (B3)

[hvek + i Ag sin(@)]e™ ' = [hvpk — i Ag sin(@)] cos(¢)e *F-/2 +i[e,r + Ag cos(p)] sin(p)e ¥1/2

[eyx — Ao cos()le™ /% = [, — Agcos(p)] cos(pe /2 — illvpk — i Ag sin(e)] sin(¢p)e /2,

(B4)

[hvgk + i Ag sin(p)]e™ E/* = [hvgk — i Ag sin(@)] cos(p)e -2 — i€, — Agcos(¢)] sin(gp)e FE/2

for the left Fermi point. Each pair of equations can be
reduced to exp[ikL + i 0}‘3‘ (k)] = 1, which yields a momentum
quantizationrule k, L + 0}‘} (k,) = 2mn.Here 6’)‘} (k)is the phase
shift, which is given by

Qg(k) = arg[eg cos(¢) + ay Ay — iy hugk sin(¢)].  (BS)

The dependence of the phase shifts on momentum is presented
in Fig. 5. Their asymptotic values at infinite momenta are given
by

Oy (00) = —¢, 05(c0) = ¢,
(B6)
05(—00) = ¢, 05(—00) = —¢.
o/ 1.2 T .eg v T v T
05
0.6- 7]
2]
=
S 0.0
(0]
n
©
e
% 0.6-
_12 N 1 N 1 N 1 N
8 4 0 4 8

Momentum kv /A,

FIG. 5. (Color online) Phase shifts 67 (k), 65 (k), and 0 [defined
in Egs. (B5) and (B9)] plotted as a function of momentum (here the
specific value of the phase jump across the soliton is taken to be
2¢ = m). The dependence remains qualitatively the same for other
values of the phase discontinuity.

(

The number of states split from the left- and right-moving
continuous Bogoliubov bands can be calculated with the help
of these phase shifts as

o f“ dk doS ¢
Not = - = —,
oo 2 dk b4

< dk do2 ®BD
N£’=—/ __5‘—1_9

@ o 2m dk T
Since there is only one ABS per Fermi point, the total splitting
from the continuous bands is equal to N + N{ = 1. The total
number of states split from the Bogoliubov states with negative
energies is also equal to N~ + N™ = 1.

For a calculation of the energy of a superfluid, which is
presented in Appendix C, it is useful to introduce the average
phase shift § = (0 + 6-)/2. Using the relations

€x cos(P) + ay Ag

cos (65) = ,
€r + ay Agcos(¢) (B8)
. (na oy sin(@)
sin (9]/) = — ,
€r + ay Agcos(¢)
the average phase shift  can be calculated as
_ 1+cos(@F +60-)  Agsin(p)
tan[0] = - — =
1 —cos(0F +6-) hvgk
(B9)

The dependence of the average phase shift § on the momentum
is presented in Fig. 5.

APPENDIX C: CALCULATION OF THE SOLITON
ENERGY IN THE COMOVING AND LABORATORY
FRAMES

The energies of a fermionic superfluid in the comoving
EX and laboratory E™ frames can be determined from the
Hamiltonians Kpq4g [defined in Eq. (3)] and Hggg [defined
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in Eq. (2)], respectively. The energies of Bogoliubov states
of Kpqg and Hpqg differ by the shift 6¢* = avspr, while the
occupation numbers are the same and correspond to Kgqgg,
since in the comoving frame the solitonic texture is time
independent and the superfluid achieves thermal equilibrium.
The difference in energy between a superfluid with a soliton
and the uniform BCS state can be presented as the sum

EXW = E, + EX® 4 B

The first term E, in this equation comes directly from the
nonuniformity of the order parameter; it does not depend on

J

Ef=>" |:N§A0+ZGE%%:|, EX=>"
k

o

o
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the energy shift and is given by

A2 — A} 2hvpAg sin ¢
En=|d;—m—2 =Y ————— *
s= [a2 =

(ChH

where we have eliminated the coupling constant V using
the self-consistency equation (5) for the uniform BCS state.
Contributions EX and EY originate from filled continuous
Bogoliubov states, whose occupations are not influenced by
the energy shift. Therefore, they can be calculated with the
help of phase shifts (12) as

de
[N:*Ao +3 6 a—k"} — v,pp(NF = N7). (C2)
k

The last term in EX originates from a difference in the number of states split from the right- and the left-moving filled bands.

The energy EM can be calculated as

®dk- d
EcHon-i-Z/ i
0

7 0O =

Here we have taken into account that the total number of
states split from the Bogoliubov hole bands for the right and
left Fermi points is N™ + N~ = 1 and introduced the average
phase shift & = (61 +07)/2 = arctan[ A sin(¢)/hvgk], cal-
culated in Appendix B. Combining with (C1) and performing
an integration, we arrive at

En+E = %[sm@) + (% = ¢>) cos<¢>)]

, (C4)
EA+E(I:(=EA+E(I;I—USPF(1——¢>

v

The last contributions EX¢ and EX;¢ originate from the ABSs.
Both the energies and occupations of the ABSs are influenced
by the energy shift §¢* = avspr. Hence, it is instructive to
consider them separately. In the comoving frame, the en-
ergy is given by EXpq = —[vspr — A cos(¢)] tanh{[vs pr —
Agcos(¢)]/T}. The zero-temperature limit 7 < |vspr —
Agcos(¢)| is well defined and the energy at T = 0 is given
by EKBS = —|vspr — Ag cos(¢)|. Combining all contributions
together, we get the energy of a superfluid with a soliton in the
comoving frame to be

EX(p.v,) = @[sm(@ + (% - ¢> cos<¢>)}

T

2¢
—Vs PF <1 - ?) — [vspe — Ag cos(p)]. (C5)

In the laboratory frame, the contribution of the ABS
is given by E};‘BS = Ay cos(¢) tanh{[vs pr — A cos(¢)]/T}.

2A0sin(¢) 2/00 %6@6 _ 2A¢sin(¢)
0 T dk -

/"o % 2hvpAgey sin(¢)
o 7 (Avpk)? + [Agsin(@)]?

(C3)

(

In the zero-temperature limit, it tends to El,¢=
—Agcos(¢)Oyu[Ag cos(¢p) — vspr] and the energy of the su-
perfluid in the laboratory frame is given by

EVg.v,) = %[sm@) + (% - ¢) cos<¢>}

—A¢ cos(9)Ou(Ag cos(¢) — vspr), (CO)
where ®y is Heaviside step function. However, in this case,
the zero-temperature limit is ill defined since EKBS (¢,vs) [and
hence EH(¢,v;) too] is not a smooth function of its arguments.
The energy has a jump across the line Ay cos(¢) — vspr = 0,
which corresponds to the solitonic profile (16). Hence the
calculation of the energy of a superfluid in the solitonic state,
which has the phase profile (16), requires a more delicate
approach. In the solitonic state, both energies expg ( = —avspr
and occupations of the ABS adjusts to the soliton’s motion.
Hence the contribution of the ABS is well defined Etyq =
€BS.s"ABS.s T €ABs.s"aBs,s and is given by

v v
Elgs = Bpr |:2 arccos <i> - rr] ,
b4 UL

where v, = A/ pr is the critical velocity within the Landau
criterion. Collecting all other contributions E(¢s(vs)) and
Eé{(qﬁs(vs),vs), we obtain the energy of the soliton in the
laboratory frame as

(€7

2
E(vs) = EM(¢s(vs),v5) = % 1— (—) . (CY)
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