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Second-order interaction corrections to the Fermi surface and the quasiparticle properties
of dipolar fermions in three dimensions
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We calculate the renormalized Fermi surface and the quasiparticle properties in the Fermi liquid phase of
three-dimensional dipolar fermions to second order in the dipole-dipole interaction. Using parameters relevant to
an ultracold gas of erbium atoms, we find that the second-order corrections typically renormalize the Hartree-Fock
results by less than 1%. On the other hand, if we use the second-order correction to the compressibility to estimate
the regime of stability of the system, the point of instability is already reached for a significantly smaller interaction
strength than in the Hartree-Fock approximation.

DOI: 10.1103/PhysRevA.91.023612 PACS number(s): 03.75.Ss, 67.85.−d, 71.10.Ay

I. INTRODUCTION

During the last decade, the field of ultracold fermionic gases
with large dipole-dipole interaction has seen rapid advances.
Atomic dipolar gases have been created using 53Cr [1],
161Dy [2,3], and 167Er [4,5], while molecular dipolar gases have
been realized with RbCs [6], LiCs [7–9], NaLi [10], NaK [11],
and KRb [12–16]. This has caused a surge of theoretical
interest in these systems [17–27]. Calculations in two [19–21]
and three [19,22–27] dimensions have led to the prediction
that in the regime where the Fermi liquid phase is stable,
the anisotropy of the dipolar interaction leads to a nematic
deformation of the Fermi surface as well as to anisotropic
quasiparticle properties. Very recently this prediction has
partly been confirmed experimentally for a three-dimensional
system by Aikawa et al. [5], who cooled fermionic 167Er atoms,
confined in a three-dimensional harmonic trap, well below
the Fermi temperature TF and probed them via time-of-flight
measurements. They found that the Fermi surface indeed
elongates along the direction of the external field, in good
agreement with theoretical predictions.

Due to the partly attractive nature of the dipole-dipole
interaction, it is expected that for a strong enough interaction
(or high enough density) the normal Fermi liquid phase
becomes unstable, giving rise to superfluid [28–32], liquid
crystalline [24,33–36], density wave [37–40], or Wigner
crystal phases [41,42]. In contrast, for a rapidly rotating
2D system of dipolar fermions the Wigner crystal phase is
possibly the ground state for low densities, while for higher
densities it turns into a Laughlin liquid state [43,44]. Further
studies focused on finite-temperature effects [27,45–48],
dynamical properties in the collisionless and hydrodynamic
regimes [49–55], bilayer configurations [56–59], and quench
dynamics [60]. However, less attention has been paid to the
quasiparticle properties in the Fermi liquid phase beyond the
mean-field level. While this has been studied for isotropic two-
dimensional systems [41,61], to our knowledge no comparable
work exists in three dimensions. Liu and Yin [62] computed
an approximation for the correlation energy and the resulting
corrections to the stability limit of the system; however, they
did not obtain corrections to the quasiparticle properties.

This has motivated us to calculate the self-energy �(k,ω)
of three-dimensional dipolar fermions to second order in the
interaction, which is the lowest order where the self-energy

acquires a frequency dependence, leading to a reduced quasi-
particle weight and a finite lifetime of the quasiparticles. But
also the shape of the Fermi surface and the renormalized Fermi
velocity receive second-order corrections which are not taken
into account in a self-consistent Hartree-Fock approximation.
The purpose of this work is to give a quantitative estimate of
the size of these second-order effects. Moreover, we shall also
calculate the renormalized chemical potential as a function of
the density to second order in the interaction, which allows us
to estimate the compressibility and thus the interaction strength
where the normal Fermi liquid phase of the dipolar many-body
system becomes unstable in the density-density channel.

II. FIRST-ORDER SELF-ENERGY

Before embarking on the calculation of the second-order
self-energy, it is instructive to review the evaluation of the
self-energy to first order in the interaction [19,25]. We consider
a system of single-component fermions which interact via
dipolar forces in three dimensions and assume that the dipole
moments d = d d̂ are aligned by an external magnetic or
electric field in direction d̂. The system is then described by
the second-quantized Hamiltonian

H =
∫

d3r ψ̂†(r)

(
− ∇2

2m

)
ψ̂(r)

+ 1

2

∫
d3r

∫
d3r ′ ψ̂†(r)ψ̂(r)U (r − r ′)ψ̂†(r ′)ψ̂(r ′),

(1)

where ψ̂(r) annihilates a fermion at position r and we set
� = 1 throughout the paper. The dipole-dipole interaction is
given by

U (r) = d2

|r|3 [1 − 3(d̂ · r̂)2] = −2d2

|r|3 P2(d̂ · r̂), (2)

with r̂ = r/|r| and the second Legendre polynomial P2(x) =
(3x2 − 1)/2. Assuming that the system is confined to a
box with volume V with periodic boundary conditions, it
is convenient to expand the field operators in plane waves,
ψ̂(r) = 1√

V

∑
k eik·rck. Then the Hamiltonian (1) can be
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FIG. 1. (Color online) For the explicit evaluation of the self-
energy we choose our coordinate system such that the z axis points in
the direction d̂ of the dipoles and the x axis lies in the plane spanned
by d̂ and k̂. We call d̂ · k̂ = cos α, k⊥ = sin α x̂, and parametrize the
integration vector p in Eq. (12) as p = p[cos θ d̂ + sin θ (cos ϕ x̂ +
sin ϕ ŷ)].

written in momentum space as follows,

H =
∑

k

εkc
†
kck + 1

2V

∑
q

Uqρ−qρq, (3)

where εk = k2/(2m) is the free fermion dispersion, the
operators ρq = ∑

k c
†
kck+q represent the Fourier components

of the density, and

Uq =
∫

d3re−iq·rU (r) = 8πd2

3
P2(d̂ · q̂) (4)

is the Fourier transform of the interaction. Here and below
the unit vectors are denoted by q̂ = q/|q|. Due to the explicit
breaking of the rotational invariance by the dipolar interaction,
the self-energy �(k,ω) not only depends on the absolute value
|k| of the momentum k, but also on the angle α between the
two vectors d and k shown in Fig. 1.

To first order in the interaction, the irreducible self-energy
is given by

�(1)(k) =
∫

d3q

(2π )3
(U0 − Uq)f (εk+q), (5)

where f (ε) = [eβ(ε−μ) + 1]−1 is the Fermi function at inverse
temperature β and chemical potential μ, and we have taken
the limit V → ∞ to replace the sum over q by an integral.
The first-order Hartree and Fock diagrams taken into account
in Eq. (5) are shown in Fig. 2(a). Since the limit q → 0 of
Uq is ambiguous, we follow Fregoso et al. [24] and define
U0 in terms of the angular average of Uq . This amounts to
formally setting U0 → 0 so that all Hartree bubbles vanish.
We may improve the first-order approximation by replacing
εk+q → εk+q + �(k + q) on the right-hand side of Eq. (5), so
that we obtain

�HF(k) =
∫

d3q

(2π )3
(U0 − Uq)f (εk+q + �HF(k + q)), (6)

known as the self-consistent Hartree-Fock approximation.
Diagrammatically, this equation amounts to an infinite resum-
mation of perturbation theory, where the bare propagators in
the first-order diagrams shown in Fig. 2(a) are replaced by

FIG. 2. Relevant Feynman diagrams: (a) first-order Hartree-Fock
diagrams; (b) second-order diagrams generated by the self-consistent
Hartree-Fock approximation; (c) additional (frequency dependent)
second-order diagrams. Here solid lines denote the bare propagator
while wavy lines denote the dipole-dipole interaction.

self-consistent propagators

GHF(k,ω) = 1

ω − εk + μ − �HF(k)
. (7)

The angular dependence of the first-order self-energy
�(1)(k) can be extracted analytically by means of a suitable
rotation of the integration variables. Since we shall use
the same procedure for the evaluation of the second-order
self-energy, let us explain this in some detail. The dependence
of the integral in Eq. (5) on the angular part k̂ of k enters in
the form

I (k̂,d̂) =
∫

d3q

(2π )3
A(d̂ · q̂)B(k̂ · q), (8)

where the functions A and B denote the different factors of
the integrand resulting from the substitution of Eq. (4) into
Eq. (5). Let us now define rotated integration variables p =
eα×q, where we have represented the rotation of a vector q
around an axis α̂ = α/|α| with angle α = |α| in terms of an
exponentiated cross product,

eα×q = α̂(α̂ · q) + α̂ × q sin α − α̂ × (α̂ × q) cos α. (9)

Choosing α such that the corresponding rotation maps the
direction k̂ into the direction d̂ of the dipoles (see Fig. 1), we
have

d̂ = eα× k̂, α̂ = k̂ × d̂

|k̂ × d̂| , (10)

where cos α = k‖ = k̂ · d̂. We may always choose the angle
α such that 0 � α � π and therefore sin α = k⊥ = |k̂ × d̂|.
Next, we use the invariance of the scalar products under
rotations and obtain

I (k̂,d̂) =
∫

d3p

(2π )3
A((eα× d̂) · p̂)B(d̂ · p). (11)

With these definitions eα× d̂ = d̂(d̂ · k̂) − k⊥, where k⊥ =
k̂ − d̂(d̂ · k̂) is the component of the unit vector k̂ perpen-
dicular to d̂ as shown in Fig. 1. We obtain

I (k̂,d̂) =
∫

d3p

(2π )3
A((d̂ · p̂)(d̂ · k̂) − p⊥ · k⊥)B(d̂ · p),

(12)
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where again p⊥ = p̂ − d̂(d̂ · p̂). Using the coordinate system
and the spherical coordinates defined in Fig. 1 we arrive at the
following expression for the integral (8),

I (k̂,d̂) = 1

(2π )3

∫ ∞

0
dpp2

∫ π

0
dθ sin θ

∫ 2π

0
dϕ

×A(k‖ cos θ − k⊥ sin θ cos ϕ)B(p cos θ ). (13)

Applying this to Eq. (5) we find

�(1)(k) = − 8πd2

3(2π )2

∫ ∞

0
dpp2

∫ π

0
dθ sin θ

×
∫ 2π

0

dϕ

2π
P2(k‖ cos θ − k⊥ sin θ cos ϕ)

×f

(
εk + εp + kp

m
cos θ

)
. (14)

The ϕ integration can now be performed,∫ 2π

0

dϕ

2π
P2(k‖ cos θ − k⊥ sin θ cos ϕ) = P2(cos α)P2(cos θ ),

(15)
where we have used cos α = k‖ = k̂ · d̂. It is convenient to
introduce the dimensionless coupling constant

u = ν
8πd2

3
= 4π

nd2

EF0
= 4d2mkF0

3π
, (16)

where EF0 = k2
F0/(2m) is the Fermi energy of the noninter-

acting system, ν = mkF0/(2π2) is its density of states at the
Fermi energy, and n = k3

F0/(6π2) is the particle density in
three dimensions. In the limit of vanishing temperature we
obtain

�(1)(k)

μ
= −γ uP2(cos α)

∫ ∞

0

dpp2

(γ kF0)3

∫ π

0
dθ sin θ

×P2(cos θ )�

(
μ − εk − εp − kp

m
cos θ

)
, (17)

where �(x) represents the Heaviside step function. The
factor γ = γ (u) is defined in terms of the ratio between the
renormalized chemical potential and the bare Fermi energy,

γ 2 = μ

EF0
= μ

k2
F0/(2m)

. (18)

As usual, we work at fixed particle density, so that the
value of μ should be adjusted to keep the density constant
when the interaction is switched on. The explicit calculation
of the renormalized chemical potential will be discussed in
Sec. IV B where we shall show that γ = 1 − 0.10u2 + O(u3)
[see Eq. (43)], so that to first order in the interaction we may
set γ ≈ 1. For convenience we introduce the dimensionless
variables k̃ = k/(γ kF0) and p̃ = p/(γ kF0); the integrand in
Eq. (17) is then independent of μ. Performing the remaining
integrations one finally obtains [19,25]

�(1)(k)

μ
= −γ u

3
H (1)(k̃)P2(k̂ · d̂), (19)

where

H (1)(k̃)= 1

8k̃3

[
−3k̃ + 8k̃3 + 3k̃5 − 3

2
(k̃2 − 1)3 ln

∣∣∣∣ k̃ + 1

k̃ − 1

∣∣∣∣
]

(20)

is a positive, continuous function with H (1)(1) = 1. The
first-order result (19) implies that to lowest order in the
interaction the Fermi surface is distorted in the direction of
the external field which reflects the anisotropy of the interac-
tion. Moreover, the renormalized Fermi velocity acquires an
angular dependence. We postpone a more detailed discussion
to Sec. IV where we shall also discuss the results obtained in
second-order perturbation theory.

III. SECOND-ORDER SELF-ENERGY

To second order in the interaction, there are totally six
diagrams contributing to the self-energy which we show in
Figs. 2(b) and 2(c). The four diagrams in the group (b)
are implicitly taken into account via the Hartree-Fock self-
consistency condition in Eq. (6). The contribution of these
diagrams can therefore be calculated analytically; together
with the first-order contribution (20) we obtain at this level
of approximation

�HF(k)

μ
= −γ u

3
H (1)(k̃)P2(k̂ · d̂) + (γ u)2

[
− 1

60
H

(2)
0 (k̃)

+ 1

42
H

(2)
2 (k̃)P2(k̂ · d̂) − 1

140
H

(2)
4 (k̃)P4(k̂ · d̂)

]

+O(u3), (21)

where P4(x) = 1
8 [35x4 − 30x2 + 3] is the fourth Legendre

polynomial and the functions H (2)
n (k̃) = H (2)

n (k/(γ kF0)) are
given by

H
(2)
0 (k̃) = 1

4k̃

[
10k̃ − 6k̃3 + 3(k̃2 − 1)2 ln

∣∣∣∣ k̃ + 1

k̃ − 1

∣∣∣∣
]
, (22a)

H
(2)
2 (k̃) = 1

8k̃3

[
6k̃ − 4k̃3 + 6k̃5 − 3(k̃6 − k̃4 − k̃2 + 1)

× ln

∣∣∣∣ k̃ + 1

k̃ − 1

∣∣∣∣
]
, (22b)

H
(2)
4 (k̃) = 1

32k̃5

[
−210k̃ + 290k̃3 − 30k̃5 − 18k̃7

+ 3(k̃2 − 1)2(3k̃4 + 10k̃2 + 35) ln

∣∣∣∣ k̃ + 1

k̃ − 1

∣∣∣∣
]
.

(22c)

Note that these functions are positive and continuous with
H (2)

n (1) = 1.
To complete the second-order calculation, we should add

the contribution from the two diagrams shown in Fig. 2(c)
which are not taken into account in self-consistent mean-field
theory; the total self-energy to second order in the interaction
is then given by

�(k,iω) = �HF(k) + �(2)(k,iω) + O(u3), (23)
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where �HF(k) was defined in Eq. (21) and �(2)(k,iω), representing the contribution of the two diagrams in Fig. 2(c), is given by

�(2)(k,iω) = − 1

(βV )2

∑
Q,Q′

Uq[Uq − Uq ′]G0(K + Q)G0(K + Q′)G0(K + Q + Q′), (24)

where in the right-hand side K = (k,iω) is a collective label for momentum k and fermionic Matsubara frequency iω, while
Q = (q,iω̄) and Q′ = (q ′,iω̄′) depend on bosonic Matsubara frequencies iω̄ and iω̄′. Moreover, G0(K) = [iω − εk + μ]−1 is
the noninteracting Matsubara Green’s function. The frequency sums in Eq. (24) can be easily carried out. To obtain the retarded
self-energy, we then perform the analytic continuation iω → ω + i0+ to real frequencies and obtain in the limit of vanishing
temperature and infinite volume

�(2)(k,ω) =
∫

d3q

(2π )3

∫
d3q ′

(2π )3

1

2
[Uq − Uq ′]2 �(ξk+q)�(ξk+q ′ )�(−ξk+q+q ′) + �(−ξk+q)�(−ξk+q ′)�(ξk+q+q ′ )

ω + i0+ − (ξk+q + ξk+q ′ − ξk+q+q ′)
, (25)

where ξk = εk − μ and we have rewritten the interaction so that the integrand is manifestly symmetric under q ↔ q ′. The
dependence of �(2)(k,ω) on the angular part of k can be extracted analytically by rotating the integration variables q and q ′ as
described in Sec. II; i.e., we introduce p = eα×q and p′ = eα×q ′, where the rotation matrix eα× rotates k̂ into d̂. After these
transformations we obtain

�(2)(k,ω)

μ
= (γ u)2

[
�

(2)
0 (k,ω) + P2(k̂ · d̂)�(2)

2 (k,ω) + P4(k̂ · d̂)�(2)
4 (k,ω)

]
, (26)

with

�(2)
n (k,ω) =

∫ ∞

0

dpp2

(γ kF0)3

∫ ∞

0

dp′p′2

(γ kF0)3

∫ π

0
dθ sin θ

∫ π

0
dθ ′ sin θ ′

∫ 2π

0

dφ

2π
An(θ,θ ′,φ)

×μ
�(ξk d̂+ p)�(ξk d̂+ p′)�(−ξk d̂+ p+ p′ ) + �(−ξk d̂+ p)�(−ξk d̂+ p′)�(ξk d̂+ p+ p′)

ω + i0+ − (ξk d̂+ p + ξk d̂+ p′ − ξk d̂+ p+ p′)
, (27)

where p · p′ = pp′[cos θ cos θ ′ + sin θ sin θ ′ cos φ]. The coefficients An(θ,θ ′,φ) are defined via the expansion

A(α; θ,θ ′,φ) ≡
∫ 2π

0

dϕ

2π

1

2
[P2(cos α cos θ − sin α sin θ cos ϕ) − P2( cos α cos θ ′ − sin α sin θ ′ cos(ϕ + φ))]2

= A0(θ,θ ′,φ) + P2(cos α)A2(θ,θ ′,φ) + P4(cos α)A4(θ,θ ′,φ) (28)

and are explicitly given by

A0(θ,θ ′,φ) = − 3
80 [−5 + 2 cos(θ + θ ′) cos(θ − θ ′) + 3 cos(2θ ) cos(2θ ′) + 4 sin(2θ ) sin(2θ ′) cos φ + 4 sin2 θ sin2 θ ′ cos(2φ)],

(29a)

A2(θ,θ ′,φ) = 3
56 [1 + 2 cos(θ + θ ′) cos(θ − θ ′) − 3 cos(2θ )(2θ ′) − 2 sin(2θ ) sin(2θ ′) cos φ + 4 sin2 θ sin2 θ ′ cos(2φ)], (29b)

A4(θ,θ ′,φ) = − 9
1120 [−5 + 4 cos(θ + θ ′) cos(θ − θ ′) − 35 cos(2θ + 2θ ′) cos(2θ − 2θ ′) + 36 cos(2θ ) cos(2θ ′)

− 32 sin(2θ ) sin(2θ ′) cos φ + 8 sin2 θ sin2 θ ′ cos(2φ)]. (29c)

The factor γ is defined in Eq. (18). As in Sec. II we now introduce dimensionless momenta k̃ = k/(γ kF0), p̃ = p/(γ kF0),
and p̃′ = p′/(γ kF0), as well as the dimensionless frequency ω̃ = ω/μ. The μ dependence of the integrand can then be scaled
out and the p̃′ integration can be performed analytically, with the result

�(2)
n (k̃,ω̃) =

∫ ∞

0
dp̃p̃2

∫ π

0
dθ sin θ

∫ π

0
dθ ′ sin θ ′

∫ 2π

0

dφ

2π
An(θ,θ ′,φ)[�(k̃2 + p̃2 + 2k̃p̃ cos θ − 1)Q12(k̃,ω̃; p̃,θ,θ ′,φ)

+�(1 − k̃2 − p̃2 − 2k̃p̃ cos θ )Q21(k̃,ω̃; p̃,θ,θ ′,φ)]. (30)

Here the functions Qij (k̃,ω̃; p̃,θ,θ ′,φ) (with ij = 12 or ij = 21) are given by

Qij (k̃,ω̃; p̃,θ,θ ′,φ) = �(−ri)�(rj )�
(
p+

j −ma
i

)
F

(
ma

i ,p
+
j

) + �(ri)�(rj )
[
�

(
p+

j −mb
i

)
F

(
mb

i ,p
+
j

) + �
(
mc

i −ma
i

)
F

(
ma

i ,m
c
i

)]
,

(31)
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where we have introduced the abbreviations

p±
1 = −k̃ cos θ ′ ± √

r1, (32a)

p±
2 = −k̃ cos θ ′ − p̃w ± √

r2, (32b)

w = cos θ cos θ ′ + sin θ sin θ ′ cos φ, (32c)

r1 = 1 − k̃2 sin2 θ ′, (32d)

r2 = (k̃ cos θ ′ + p̃w)2 − p̃2 − 2k̃p̃ cos θ − k̃2 + 1, (32e)

ma
1 = max(0,p−

2 ), ma
2 = max(0,p−

1 ), (32f)

mb
1 = max(0,p−

2 ,p+
1 ), mb

2 = max(0,p−
1 ,p+

2 ), (32g)

mc
1 = min(p−

1 ,p+
2 ), mc

2 = min(p−
2 ,p+

1 ), (32h)

and the function

F (x,y) = − x − y

4p̃2w2
[p̃w(x + y) − ω̃ + k̃2 − 1]

+ (ω̃ − k̃2 + 1)2

8p̃3w3
ln

[
ω̃ + i0+ − k̃2 + 1 + 2p̃wy

ω̃ + i0+ − k̃2 + 1 + 2p̃wx

]
.

(33)

By splitting the complex function F (x,y) into its real and
imaginary part, we obtain the real and the imaginary part of the
second-order self-energy. We have performed the remaining
four-dimensional integration in Eq. (30) numerically using
the VEGAS Monte Carlo algorithm from the GNU Scientific
Library [63].

IV. RENORMALIZED FERMI SURFACE AND
QUASIPARTICLE PROPERTIES

A. General definitions

Given the momentum and frequency dependent retarded
self-energy �(k,ω), the wave vectors on the renormalized
Fermi surface can be obtained from the solution of

εkF
+ �(kF ,i0+) = μ. (34)

Moreover the effective mass and the quasiparticle residue can
be defined in terms of the low-energy expansion of the self-
energy around the renormalized Fermi surface,

�(kF + q,ω) ≈ �(kF ,i0+) + ∇k�(k,i0+)|k=kF
· q

+ ∂�(kF ,ω)

∂ω

∣∣∣∣
ω=i0+

ω. (35)

In this approximation the retarded Green’s function has the
quasiparticle form

G(kF + q,ω) ≈ ZkF

ω + i0+ − vkF
· q

, (36)

with the quasiparticle residue

ZkF
= 1

1 − ∂�(kF ,ω)
∂ω

∣∣
ω=i0+

(37)

and the renormalized Fermi velocity

vkF
= ZkF

[
kF

m
+ ∇k�(k,i0+)|k=kF

]
. (38)

Note that by construction vkF
is perpendicular to the renor-

malized Fermi surface at point kF . Therefore the information

about the direction of the Fermi velocity is redundant if we
know the shape of the renormalized Fermi surface and we can
restrict ourselves to the calculation of |vkF

|. The effective mass
can be defined by setting

|vkF
| = |kF |

m∗ , (39)

but this obviously does not contain any new information
beyond |kF | and |vF |. Because in second-order perturbation
theory the self-energy has also an imaginary part, we obtain a
broadened spectral function

ρ(k,ω) = − 1

π

Im �(k,ω)

[ω − εk + μ − Re �(k,ω)]2 + [Im �(k,ω)]2
.

(40)

B. Renormalized Fermi surface

To begin with, let us calculate the renormalized Fermi
surface, which we parametrize by kF = kF (α)k̂F , where α

is the angle between kF and the direction d̂ of the dipoles;
i.e., cos α = k̂F · d̂. Substituting the definition μ = γ 2EF0

introduced in Eq. (18) into the defining equation (34) of the
renormalized Fermi surface we obtain

kF (α)

γ kF0
≡ k̃F (α) =

√
1 − �(k̃F (α)k̂F ,i0+)

μ
. (41)

Given our perturbative result for the self-energy we can now
iterate Eq. (41) to obtain an expansion of k̃F (α) in powers of
(γ u). Since we keep the particle density n fixed, Luttinger’s
theorem [64] tells us that the volume of the Fermi surface must
not change due to the interaction, so that we can fix the factor
γ from the condition

(γ kF0)32π

∫ π

0
dα sin α

∫ k̃F (α)

0
dk̃k̃2 = 4π

3
k3
F0, (42)

where we have introduced the rescaled integration variable k̃ =
k/(γ kF0). Substituting the perturbative expression for k̃F (α)
from Eq. (41) into Eq. (42) and expanding the integral to
second order in (γ u), we determine γ to second order in the
interaction as

γ = 1 − 0.10u2 + O(u3). (43)

The reason why there is no term linear in u is that the first-
order self-energy is proportional to P2(cos α) [see Eq. (19)], so
that the corresponding first-order contribution to the integral
over the Fermi volume vanishes. From Eq. (43) we may then
determine the renormalized Fermi surface to second order,

kF (α)

kF0
= 1 + u

6
P2(cos α) − u2

[ 1

180
− 0.031P2(cos α)

− 0.016P4(cos α)
]
+O(u3). (44)

The corresponding Fermi surface for u = 1.5 is shown in
Fig. 3. Such a large value of the interaction is close to
the stability limit of the Fermi liquid state (see Sec. IV C);
in the weak-coupling limit u  1 (where our perturbative
calculation can be trusted) the second-order correction is
barely visible. From Fig. 3 we see that the second-order
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FIG. 3. (Color online) Fermi surface of dipolar fermions for
u = 1.5 to first order (solid green), to second order in the self-
consistent Hartree-Fock approximation (dashed blue), and to full
second order (dot-dashed red) in the interaction. The spherical Fermi
surface of the noninteracting system is given as a reference (solid
black line). Note that the deformed Fermi surface still has the
azimuthal symmetry around the z axis.

correction enhances the tendency found in the first-order
calculation to distort the Fermi surface along the direction of
the dipoles. We also see that the true many-body corrections to
the self-energy shown in Fig. 2(c) have a much stronger effect
than the second-order diagrams taken into account via the
self-consistent Hartree-Fock approximation. To make contact
with the recent experiment by Aikawa et al. [5], we show
in Fig. 4 how the aspect ratio of the Fermi surface, defined
by kF (0)/kF (π

2 ), changes in the experimentally relevant range
of interactions. Obviously, the second-order correction leads
to a slightly larger deviation from the spherical shape of the
Fermi surface, but for the experimentally relevant range of
interactions the second-order correction is more than an order
of magnitude smaller than the first-order result. Hence, for
the range of interactions relevant to the experiment by Aikawa
et al. [5] the deformation of the Fermi surface can be accurately
calculated in first-order perturbation theory. However, in two
dimensions Fermi surface deformations can go first order in
a nonanalytic way [65–67]. Whether this possibility applies
to our three-dimensional system is beyond the scope of this
work.

Note that a direct quantitative comparison between our
results and the measurements of Aikawa et al. is not mean-
ingful, since they consider dipolar fermions in a trap and
argue that first-order interaction corrections due to the time-of-
flight expansion cannot be ignored. Taking these effects into

0.11 0.15 0.19

1.03

1.04

1.05

FIG. 4. (Color online) Aspect ratio kF (0)/kF ( π

2 ) of the deformed
Fermi surface for values of u which have recently been reached
experimentally [5]. The lines correspond to our results to first order
(solid green), to second order in the self-consistent Hartree-Fock
approximation (dashed blue), and to full second order (dot-dashed
red) in the interaction. While the second-order corrections taken
into account in the self-consistent Hartree-Fock approximation have
practically no effect, the full second-order calculation changes the
first-order result for the aspect ratio by about 1 per mille which is of
the same order of magnitude as the experimental uncertainty [5].

account they find good agreement between their Hartree-Fock
calculation and the experimental data. Given the smallness of
the second-order corrections obtained in our work, it is not
surprising that a first-order calculation is sufficient to explain
the measurements.

C. Bulk modulus and instability of the normal state

Combining Eqs. (18) and (43) we find the renormalized
chemical potential to second order in the interaction

μ = γ 2EF0 = k2
F0

2m
[1 − 0.21u2 + O(u3)]. (45)

Using the fact that the density is related to the bare Fermi
momentum as n = (kF0)3/(6π2) we obtain the bulk modulus
to second order in the interaction

K = n2

(
∂μ

∂n

)
V,T

= 2

3
nEF0[1 − 0.42u2 + O(u3)]. (46)

The fact that the second-order interaction correction to
the bulk modulus is negative suggests that for sufficiently
large values of the interaction the bulk modulus vanishes
and the normal Fermi liquid state becomes unstable in the
density-density channel. Indeed, if we use our second-order
result (46) to estimate the critical interaction strength uc where
K(uc) = 0 we obtain uc ≈ 1.55. This is significantly lower
than the estimate based on the second-order Hartree-Fock
result uHF

c = 3
√

10/7 ≈ 3.6 [where we neglect the Feynman
diagrams in Fig. 2(c)], while it compares quite well with
the result uBG

c ≈ 2.1 obtained by Liu and Yin [62] using
the Brueckner-Goldstone formalism to second order in u. As
already mentioned in Sec. I the system may also exhibit other
instabilities, e.g., into a biaxial nematic [24] or superfluid [28]
phase. While we did not look at this possibility in our work,
one should note that these instabilities are in principle allowed
and may even precede the density-density instability.
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0.9974

0.9978

0.9982

FIG. 5. (Color online) Quasiparticle residue ZkF
of dipolar

fermions to second order in the interaction; see Eq. (47). In the upper
panel we show ZkF

as a function of the dimensionless interaction
u = 8πνd2/3 and the angle α between kF and d̂. In the lower panel
we have fixed u = 0.15 and show the angular dependence of the
quasiparticle residue. Note that the value u = 0.15 lies in the currently
accessible experimental range [5].

D. Quasiparticle residue and Fermi velocity

Inserting our results for the frequency derivative of the self-
energy (which we carried out analytically before the numerical
integration) into Eq. (37) we obtain for the quasiparticle
residue

ZkF
= 1 − u2[0.10 + 0.029P2(cos α)

− 0.027P4(cos α)] + O(u3). (47)

Similarly, from Eq. (38) we obtain for the modulus of the
renormalized Fermi velocity

|vkF
|

vF0
= 1 − u

12
P2(cos α) − u2[0.17 + 0.048P2(cos α)

− 0.027P4(cos α)] + O(u3), (48)

where vF0 is the bare Fermi velocity. In the upper panel
of Fig. 5 we show the quasiparticle residue as a function
of the angle α between kF and the direction d̂ and the
dimensionless interaction u in the range of interactions relevant
for the experiment by Aikawa et al. [5]. Due to the small
value of the interaction, the quasiparticle residue is reduced
only slightly from unity. In the lower panel of Fig. 5 we
show the angular dependence of ZkF

for fixed interaction
u = 0.15. Interestingly, the value of ZkF

is smallest if the
angle between kF and the direction d̂ is close to π/4 or
3π/4. These local minima are due to the significant P4(cos α)

0 0.5 1

0.99

1.0

FIG. 6. (Color online) Modulus of the renormalized Fermi ve-
locity vkF

in units of the bare Fermi velocity to second order in the
dimensionless interaction u; see Eq. (48). The upper picture shows the
behavior for different interaction strengths, while the lower picture
shows the velocity for fixed u = 0.15 as a function of the angle α

between kF and d̂.

component in the second-order expression for the quasiparticle
residue.

In contrast to the quasiparticle residue, the anisotropy of
the renormalized Fermi velocity is for small interactions com-
pletely dominated by the first-order correction proportional to
P2(cos α). The renormalized Fermi velocity shown in Fig. 6
is therefore directly related to the angular dependence of the
interaction. If we extrapolate our perturbative result (48) for the
renormalized Fermi velocity to large values of the interaction,
we find that |vkF

| can become negative for u � 2.09. However,
from a similar extrapolation of the perturbative expression for
the bulk modulus in Sec. IV C we have found that the Fermi
liquid phase is unstable for u � 1.55, so that in the regime
where the Fermi liquid phase is stable the Fermi velocity is
always positive.

E. Spectral function

Finally, let us present our results for the single-particle
spectral function ρ(k,ω), which can be obtained by substitut-
ing our numerical results for the real and imaginary parts of
the retarded second-order self-energy into Eq. (40). In Fig. 7
we show the spectral function ρ(k,ω) for wave vectors k of the
form k = xkF , where the factor x is close to unity. The spectral
line shapes can be very well described by Lorentzians whose
width shrinks to zero as we approach the Fermi surface, as
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FIG. 7. (Color online) Spectral function ρ(k,ω) for u = 0.15 obtained by inserting our numerical results of the second-order self-energy
into Eq. (40). The upper pictures show the spectral function for excitations with wave vectors below the renormalized Fermi surface, while
the lower pictures give the spectrum for excitations with wave vectors above the renormalized Fermi surface. Note that in the latter case the
spectral line shape exhibits a much stronger angular dependence.

expected for a Fermi liquid. Interestingly, for momenta above
the Fermi surface the width of the spectral line shape (which
reflects the damping of the quasiparticles) exhibits a rather
strong dependence on the angle α between kF and d̂, while
for momenta below the Fermi surface the dependence on α is
much weaker.

V. SUMMARY AND CONCLUSIONS

Motivated by a recent experiment by Aikawa et al. [5]
who determined the Fermi surface of a system of 167Er
atoms via time-of-flight measurements, we have calculated the
self-energy �(k,ω) of dipolar fermions in three dimensions
to second order in the dipole-dipole interaction. From this
we have inferred the deformation of the Fermi surface, the
quasiparticle residue, the Fermi velocity, and the spectral
function. We have shown that the second-order corrections
give rise to a larger elongation of the Fermi surface and a
stronger anisotropy of the Fermi velocity than the Hartree-
Fock approximation. However, in the experimentally relevant
range of interactions the second-order corrections are quite
small, so that the Hartree-Fock approximation yields already
quantitatively accurate results. On the other hand, if in the
future it should be possible to realize dipolar gases where
the effective dimensionless interaction u = 8πνd2/3 is of the
order of unity, then second-order interaction effects become

substantial. In particular, the angular dependence of the
quasiparticle residue ZkF

exhibits a significant component
proportional to P4(cos α) which can be directly related to the
second-order self-energy.

From our second-order result for the renormalized chemical
potential we have also estimated the critical interaction
strength for a collapse instability where the Fermi liquid
phase becomes unstable. Our estimate uc ≈ 1.55 is somewhat
smaller than the result uBG

c ≈ 2.1 obtained by Liu and Yin [62]
using the Brueckner-Goldstone formalism to second order in
u. Note that the critical uc is an order of magnitude larger than
the currently experimentally realizable interaction strength.
However, given the rapid experimental progress in the field
of ultracold quantum gases, we hope that larger values of
the dimensionless interaction will be realized in the next few
years. In general, we find that the interaction corrections to the
quasiparticle properties are rather small for all values of u up
to the critical interaction uc where the Fermi liquid exhibits
an instability, so that we conclude that the normal phase of
dipolar fermions can be viewed as a weakly interacting Fermi
liquid.
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M. H. G. de Miranda, J. L. Bohn, J. Ye, and D. S. Jin, Nature
(London) 464, 1324 (2010).

[16] M. H. G. de Miranda, A. Chotia, B. Neyenhuis, D. Wang, G.
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033606 (2001).
[23] T. Miyakawa, T. Sogo, and H. Pu, Phys. Rev. A 77, 061603

(2008).
[24] B. M. Fregoso, K. Sun, E. Fradkin, and B. L. Lev, New J. Phys.

11, 103003 (2009).
[25] B. M. Fregoso and E. Fradkin, Phys. Rev. B 81, 214443

(2010).
[26] S. Ronen and J. L. Bohn, Phys. Rev. A 81, 033601 (2010).
[27] D. Baillie and P. B. Blakie, Phys. Rev. A 82, 033605 (2010).

[28] M. A. Baranov, M. S. Mar’enko, V. S. Rychkov, and G. V.
Shlyapnikov, Phys. Rev. A 66, 013606 (2002).

[29] G. M. Bruun and E. Taylor, Phys. Rev. Lett. 101, 245301 (2008).
[30] N. R. Cooper and G. V. Shlyapnikov, Phys. Rev. Lett. 103,

155302 (2009).
[31] C. Zhao, L. Jiang, X. Liu, W. M. Liu, X. Zou, and H. Pu, Phys.

Rev. A 81, 063642 (2010).
[32] R. Liao and J. Brand, Phys. Rev. A 82, 063624 (2010).
[33] B. M. Fregoso and E. Fradkin, Phys. Rev. Lett. 103, 205301

(2009).
[34] J. Quintanilla, S. T. Carr, and J. J. Betouras, Phys. Rev. A 79,

031601 (2009).
[35] S. T. Carr, J. Quintanilla, and J. J. Betouras, Int. J. Mod. Phys.

B 23, 4074 (2009).
[36] K. Maeda, T. Hatsuda, and G. Baym, Phys. Rev. A 87, 021604

(2013).
[37] K. Sun, C. Wu, and S. Das Sarma, Phys. Rev. B 82, 075105

(2010).
[38] K. Mikelsons and J. K. Freericks, Phys. Rev. A 83, 043609

(2011).
[39] M. M. Parish and F. M. Marchetti, Phys. Rev. Lett. 108, 145304

(2012).
[40] J. K. Block and G. M. Bruun, Phys. Rev. B 90, 155102

(2014).
[41] N. Matveeva and S. Giorgini, Phys. Rev. Lett. 109, 200401

(2012).
[42] M. Babadi, B. Skinner, M. M. Fogler, and E. Demler, Europhys.

Lett. 103, 16002 (2013).
[43] M. A. Baranov, K. Osterloh, and M. Lewenstein, Phys. Rev.

Lett. 94, 070404 (2005).
[44] M. A. Baranov, H. Fehrmann, and M. Lewenstein, Phys. Rev.

Lett. 100, 200402 (2008).
[45] J.-N. Zhang and S. Yi, Phys. Rev. A 81, 033617 (2010).
[46] Y. Endo, T. Miyakawa, and T. Nikuni, Phys. Rev. A 81, 063624

(2010).
[47] J. P. Kestner and S. Das Sarma, Phys. Rev. A 82, 033608

(2010).
[48] J.-N. Zhang, R.-Z. Qiu, L. He, and S. Yi, Phys. Rev. A 83,

053628 (2011).
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