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Vortex excitation in a stirred toroidal Bose-Einstein condensate
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Motivated by a recent experiment [K. C. Wright et al., Phys. Rev. A 88, 063633 (2013)], we investigate
the microscopic mechanism for excitation of vortices and formation of a persistent current in an annular BEC
stirred by a narrow blue-detuned optical beam. In the framework of a two-dimensional mean-field model, we
study the dissipative dynamics of the condensate with parameters that reflect realistic experimental conditions.
Vortex-antivortex pairs appear near the center of the stirrer in the bulk of the condensate for slow motion of
the stirring beam. When the barrier angular velocity is above some critical value, an outer edge surface mode
develops and breaks into the vortices entering the condensate annulus. We determine the conditions for creation
of vortex excitations in the stirred toroidal condensate and compare our results with experimental observations.
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I. INTRODUCTION

Nucleation of quantized vortices and their dynamics are
closely associated with superflow decay and turbulence
in quantum fluids and atomic Bose-Einstein condensates
(BECs) [1]. In early experiments, a simple-connected geome-
try of the trap was used to measure the onset of dissipationless
flow in BEC. A laser beam was moved through the condensate,
and dissipation was detected as heating of the condensate
[2–6]. The problem of vortex excitation by a moving barrier
was also extensively investigated theoretically [7–10].

Recent experimental progress in creating atomic gases in
a toroidal geometry has opened novel prospects for studies
of the fundamental properties of the superfluid state [11].
The ring-shaped BEC has become the topic of a large body
of experimental and theoretical research [12–17] including
persistent currents [18–20], weak links [21–24], solitary
waves [14,25], and decay of a persistent current via phase
slips [26]. A persistent flow in a toroidal trap can be created
by transferring a quantized angular momentum from optical
fields [18,22] or by stirring with a rotating blue-detuned laser
beam [22,27]. The quantized circulation in a ring corresponds
to an m-charged vortex line pinned at the center of the
ring-shaped condensate, where the vortex energy has a local
minimum. Since the vortex core is bounded by the potential
barrier, even multicharged (m > 1) metastable vortex states
can be very robust [26].

Very recently [27], vortices in a toroidal trap were excited
using a small (diameter less than the width of the annulus),
variable-height potential barrier (a “stirrer”) with an angular
velocity ranging from 0 up to the speed of sound in the
condensate. A wide range of the experimental parameters used
in Ref. [27] opens the possibility for theoretical investigation
of excitation of a persistent current in a stirred ring-shaped
BEC under different regimes. The simple 1D model used in
Ref. [27] shows a reasonable agreement with the experimental
measurements of the threshold for vortex excitation. However,
the microscopic origin of the superflow generation, as well
as the complex vortex dynamics, is beyond the scope of the
1D treatment, which is based on the analysis of the average

speed of sound. In this work, we consider a 2D reduction of the
full 3D mean-field model justified by the trapping geometry.
Performing numerical modeling for various combinations of
potential barrier height and angular velocity, we determine the
conditions for creation of vortices and compare our results
with the experimental findings.

II. MODEL

In modeling nonequilibrium behavior, such as nucleation
of vortices, dissipative effects are of crucial importance since
they provide the mechanism for relaxation to an equilibrium
state. It is dissipation that either causes the vortex line to drift
to the outer edge of the condensate (where vortices decay)
or leads to the pinning of the vortex in the central hole of the
ring-shaped condensate. Relaxation of the vortex core position
to the local minimum of the energy leads to formation of a
metastable persistent current. Dissipative effects appear in a
trapped condensate due to interaction with a thermal cloud
and can be captured phenomenologically by the dissipative
Gross-Pitaevskii equation (GPE) [28–30]. For a system of
weakly interacting degenerate atoms close to thermodynamic
equilibrium and subject to weak dissipation, the dissipative
GPE for the macroscopic wave function can be written in the
form

(i − γ )�
∂�̃(r,t)

∂t
= [Ĥ + g̃|�̃(r,t)|2 − μ]�̃(r,t), (1)

where γ � 1 is the phenomenological dissipative parameter,
Ĥ = − �

2

2M
� + V (r), � is the Laplace operator, g̃ = 4π�

2as

M

is the interaction strength, M is the mass of the 23Na atom,
and as = 2.75 nm is the s-wave scattering length. The system
described by Eq. (1) conserves neither the energy nor the
number of particles. The chemical potential μ(t) of the
equilibrium state in our dynamical simulations was adjusted
at each time step so that the number of condensed particles
slowly decays with time: N (t) = N (0)e−t/t0 , where t0 = 10 s
corresponds to the 1/e lifetime of the BEC reported in
Ref. [19]. We note that a time-dependent chemical potential
was previously used to study quantum hydrodynamics [30].
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FIG. 1. (Color online) (a) Scheme of the 2D BEC in a ring trap of
radius R. A blue-detuned optical stirrer [filled (blue) circle] excites
vortices when it circles counterclockwise at angular velocity �

through the maximum of the condensate density (dashed black line).
Stationary ground states. (b) Number of atoms vs chemical potential.
Inset: Radial trapping potential V (r) (dotted black line) and examples
of numerically found radial profiles ψ(r) for three values of μ: A,
μ = 2; B, μ = 10.62; and C, μ = 50. (c) The solid (red) line shows
the relative Thomas-Fermi width �R/R of the ring as a function
of the chemical potential. Circles represent numerical results for the
relative width �R/R of the condensate with a density above 10−3

of the peak density. (d) Peak density max|ψ |2 vs μ. The solid (red)
line presents the results of the Thomas-Fermi approximation; open
circles correspond to numerical stationary solutions.

For numerical simulations corresponding to the experimental
condensate holding time, 1 s, changes in the number of atoms
are small. However, for some long-term simulations described
in this paper the decay of N during the simulation time can be
significant and must be taken into account.

The trapping potential,

V (r) = Vtr(r,z) + Vb(x,y,t),

consists of an axially symmetric time-independent toroidal
trap,

Vtr(r,z) = 1
2Mω2

zz
2 + 1

2Mω2
r (r − R)2,

where r =
√

x2 + y2, and the repulsive potential of the optical
blue-detuned stirring beam,

Vb(x,y,t) = f (t)e− 1
2d2 {[x−x0(t)]2+[y−y0(t)]2}

,

where {x0,y0} = {R cos(�t),R sin(�t)} is the coordinate of
the barrier center, moving counterclockwise at a constant
angular velocity � through the maximum of the condensate
density [see Fig. 1(a)]. The function f (t) describes the tempo-
ral changes in the barrier height: f (t) linearly ramps up in the
first 0.1 s of evolution from 0 to Ub and remains unchanged
for 0.8 s, then in the last 0.1 s it ramps down to 0 again.

We assume that the system is tightly confined in the z

direction by the potential Vz(z) = 1
2Mω2

zz
2, so that vortex

bending and tilting are suppressed, enabling 2D vortex

dynamics as pointed out in Ref. [31]. The wave function can
be factorized as �j (r,t) = �̃j (x,y,t)ϒ(z,t), where

ϒ(z,t) = (lz
√

π )−1/2e− i
2 ωzt− 1

2 z2/l2
z (2)

is the ground state for the potential Vz(z). The norm of
the condensate wave function �̃(x,y) is equivalent to the
number of atoms: N = ∫ |�̃|2dxdy. After integrating out
the longitudinal coordinates in the 3D GPE, (1), we obtain
a dissipative GPE in 2D,

(i − γ )
∂ψ

∂t
=

[
−1

2
�⊥ + V (x,y,t) + g|ψ |2 − μ

]
ψ, (3)

where V (x,y,t) = 1
2 (r − R)2 + Vb(x,y,t) and R = 12.47 are

the dimensionless potential and the radius of the trap, g =√
8πas/ lz = 1.54 × 10−2 is the dimensionless 2D interaction

constant, ψ → lrψ is the dimensionless wave function, and
lr = √

�/(Mωr ) is the radial oscillator length. Here we
use harmonic oscillator units: t → ωrt , (x,y) → (x/lr ,y/ lr ),
Vb → Vb/(�ωr ), μ → μ/(�ωr ).

III. GROUND STATE: STATIONARY SOLUTIONS AND
SURFACE MODES

The radially symmetric steady states in toroidal BEC, cor-
responding to vortices with topological charge m, were found
by numerically integrating a conservative stationary GPE,

μψm(r) = − 1
2�(m)

r ψm(r) + 1
2 (r − R)2ψm(r) + gψ3

m(r),

where

�(m)
r = d2

dr2
+ 1

r

d

dr
− m2

r2
.

A ground state with m = 0 corresponds to the boundary
conditions ψ ′(0) = 0, ψ(∞) = 0. The numerical results
for stationary ground states are given in Fig. 1. Using the
Thomas-Fermi (TF) approximation, it is straightforward
to obtain the approximate expressions for the number of
atoms N = 4R

3as
(πμ3ωr/ωz)1/2, width of the BEC annulus

�R = 2
√

2μ, and peak density max|ψ |2 = μ/g. These
simple estimates are found to be in excellent agreement with
numerical results (see Fig. 1). As can be seen, the radial profiles
gradually expand when the chemical potential increases, and
for μ > 60 the central hole is filled with the atoms, so that
the topology of the condensate becomes single connected.

In the present paper we use the 2D model that properly de-
scribes the dynamical properties of the vortex lines in a toroidal
condensate. Obviously, to treat the experiment quantitatively,
the correct value for the chemical potential of the 2D model
must be used. We have investigated the process of e persistent
current generation for different values of the chemical potential
μ and interaction constant g. We note that the threshold for
vortex excitation is affected by variation of μ and g, although
our main conclusions concerning the generation and evolution
of vortex excitations in a stirred ring-shaped condensate do not
depend qualitatively on the parameters of the model.

Let us present the results for parameters which are matched
to the experimental value of the peak density and geometry
of the experimental setup. The corresponding dimensionless
value for the chemical potential is μ = 10.62. The stationary

023607-2



VORTEX EXCITATION IN A STIRRED TOROIDAL BOSE- . . . PHYSICAL REVIEW A 91, 023607 (2015)

solution for μ = 10.62 is shown in the inset in Fig. 1(a)
and by the green circles in Figs. 1(b)–1(d). Note that, for
the parameters under consideration, the central hole in the
ring-shaped condensate is well pronounced, and the width of
the annulus �R = 9.22 is greater than the effective width of
the barrier d = 2.1.

In the toroidal geometry the radial degrees of freedom
lead to specific features of the excitations, such as inner-
and outer-edge surface modes, which cannot be explained
in terms of the average speed of sound [32,33]. Recently a
Bogoliubov analysis in a 2D ring system was generalized
by including a moving obstacle in Ref. [34]. It appears
that the linear eigenmodes corresponding to the critical
angular frequency �c = min{ω(L)/L}, obtained by analogy
with the Landau criterion (see, e.g., Ref. [35]), are localized
at the external surface of the annulus. It is remarkable that the
critical frequency �c/ωr = √

2μ1/6/(R + �R/2) obtained in
the framework of the simple surface model (see, e.g., [33]),
where the curvature of the external surface is neglected, gives
practically the same value, �c = 2π × 16.1 Hz.

Since stirring by the laser beam is accompanied by
condensate distortion and shape deformation, one could expect
that a sufficiently rapid barrier (with � > �c) produces an
excited state corresponding to a surface wave with the energy
�ω(L) and angular momentum �L along z. Once these surface
waves are excited, they break up and nucleate vortices, which
come into the condensate bulk from the outer boundary of
the annulus. For a slow barrier (with � < �c) the outer-edge
surface mode is not excited and the dominating mechanism
for vortex nucleation is expected to be the formation of vortex
pairs in the condensate bulk. The direct numerical simulations
of the dissipative dynamics of the stirred condensate support
these predictions of the linear stability analysis.

IV. DISSIPATIVE DYNAMICS OF A STIRRED
TOROIDAL CONDENSATE

Here we present the results of our numerical simulations of
the dissipative GPE, (3), with the split-step Fourier transform
method. In line with the experimental procedure, in our
calculations, an initially nonrotating condensate is stirred for
1 s with a repulsive potential moving azimuthally at a fixed
angular velocity. In the following, we neglect possible position
and temperature dependence of γ and set γ = 1.5 × 10−3.

We note that our main results do not depend qualitatively
on the chosen value of γ � 1. The dissipative parameter γ

determines the relaxation time of the vortices: the greater
γ is, the less time it takes for a vortex to drift from the
high-density condensate annulus to the low-density periphery.
With γ = 1.5 × 10−3, we found the bulk of the condensate
annulus to be cleansed from the vortices after 3 s, which
is consistent with the experimentally measured lifetime of
annular vortices [27]. Typical examples of the dissipative
dynamics are shown in Fig. 2 for slow and in Fig. 3 for
fast rotation of the barrier. More examples of evolution of
the density and phase of the toroidal condensate for different
angular velocities and heights of the stirring beam are given in
the Supplemental Material [36].

We observed two regimes of vortex excitation in a toroidal
BEC. For a low angular velocity of the stirrer, vortex-antivortex

FIG. 2. (Color online) Excitation of a vortex-antivortex pair by
the stirring laser beam with � = 2π × 3 Hz and Ub/h = 1300 Hz.
Shown are snapshots of the density distribution for different moments
in time. The core of the vortex is indicated by a cross; the antivortex,
by a circle.

pairs are nucleated near the center of the barrier (see Fig. 2).
Then the pair undergoes a breakdown and the antivortex moves
spirally to the external surface of the condensate and, finally,
decays into elementary excitations, while the vortex becomes
pinned in the central hole of the annulus, adding 1 unit to the
topological charge of the persistent current. The progressive
drift of the vortices toward the external condensate boundary
is the result of dissipation, which leads to vortex energy
relaxation.

It is interesting to note the considerable phase gradient
traveling in front of the rotating barrier even for a low barrier
amplitude and slow rotation, long before the vortex pair
appears (see animations in the Supplemental Material [36]).
The phase gradient corresponds to the velocity field, which
means that a forward superfluid flow appears in the stirred

FIG. 3. (Color online) Temporal evolution of the toroidal con-
densate with a fast stirrer (� = 2π × 20 Hz, Ub/h = 300 Hz).
(a) Angular momentum per atom Lz/N [solid (blue) curve], number
of annular vortices νv (black dots), and number of antivortices νa [gray
(red) dots]. (b, c) Snapshots of the density and phase distribution in
the (x,y) plane for different moments in time (the size of each image
is 40 × 40, in units of lr ).
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condensate even well below the threshold rotation rate. This
specific feature of the multiply connected superfluid has been
conclusively established experimentally in Ref. [37] and can
be easily explained as follows: a low-density wake appearing
directly behind the stirrer initiates two counter-propagating
superflows. The first flow is directed against the rotation of
the barrier. This atomic flow tends to fill in the low-density
wake behind the barrier. Because the condensate wave function
must be single valued, the velocity circulation around any
closed path must be a multiple of 2πm, thus the total velocity
circulation vanishes for a state with zero winding number
(m = 0). The second atomic flow cancels the phase gradient
corresponding to the velocity field of atoms moving through
the barrier. That is why, in a ring-shaped BEC, a superflow,
which is codirectional with the stirrer, appears even for low
rotation rates.

It turns out that, if the barrier intensity Ub is just above the
threshold value, then the angular momentum transfers to the
condensate only by nucleation of the vortex-antivortex pair in
the bulk of the annulus. Thus, in this regime the moving barrier
can be treated as small, in spite of the considerable size of the
density dip which it produces in the condensate annulus (see
Fig. 2). However, if Ub is greater than the threshold value,
then a wide weak link (a localized region of rarefied superfluid
density) develops in a ring and breaks the potential barrier
for external vortices. As a result, a vortex from the outside of
the ring can enter though the rotating weak link. This mech-
anism is similar to the stirring with a wide barrier observed
in Ref. [22].

Let us discuss the remarkable analogy between the
mechanism of persistent current generation described here
and the inverse process of persistent current decay under
the influence of a tunable barrier, which was observed
experimentally [18,21] and investigated theoretically in the
framework of the conservative GPE [23,24] and truncated
Wigner approximation [38]. It was revealed in Refs. [23]
and [24] that the vortex-antivortex annihilation within the
barrier causes the phase slip and decay of the persistent current.
In a similar manner the small stirrer at a slow rotation rate
and Ub close to the threshold value drives the phase slip by
vortex dipole nucleation inside the condensate annulus. It is
interesting that in the conservative model used in Ref. [23],
when the obstacle moves fast with respect to the fluid, instead
of vortex annihilation, vortices penetrate the bulk from outside
the annulus.

For higher angular velocities of the stirrer (with � > �c,
where �c is found to be close to the one predicted by
Bogoliubov analysis), the dominating source of vortices is
the instability of the external surface modes. First, ripples
appear at the external surface (see Fig. 3), and then several
vortices nucleate simultaneously. Also, as often happens for
a higher barrier intensity Ub, vortex lines come into the bulk
of the condensate through the rotating density valley. Further
complex dynamics of the vortices is governed not only by the
condensate inhomogeneity and dissipation effects, but also
by the interplay between condensate flows corresponding to
other vortices. Vortex-antivortex annihilation produces sound
waves, which also interact with other vortices. Moreover,
the sound pulses can also break into vortex-antivortex pairs.
As the barrier circles in the annulus, it periodically travels

through its own low-density wake, creating new vortices
and interacting with existing ones. The number of vortices
increases dramatically in our simulations with increasing
barrier amplitude Ub, so that the dynamics of the vortices
becomes quite irregular. Note that in the central hole and
far from the external surface of the condensate, where the
condensate density vanishes, the phase strongly fluctuates
and one can see infinitely many vortices and antivortices. To
avoid the influence of these “ghost vortices,” we discard the
contribution to νv and νa of vortices and antivortices which
are located beyond the TF surface. Since a host of vortices
is located at the periphery of the condensate, the number
of annular vortices νv and antivortices νa fluctuates when
they cross the boundary of the TF surface [see Fig. 3(a)].
To illustrate the relaxation process and formation of a
persistent current in Fig. 3, the time frame of the numerical
modeling was substantially extended in comparison to the
experiment.

Vortex excitations experience dissipation all the time,
which sends them in search of an equilibrium position in
accordance with the local minima of the vorticity energy. In
an inhomogeneous ring-shaped condensate, the two options
are: (i) relaxation to the persistent current, when the vortex
line is pinned in the giant central hole, (ii) relaxation to
the outer boundary, where vortices decay into elementary
excitations. As is well known (see, e.g., [30]), small-scale
forcing may generate large-scale flows in effectively 2D
turbulent classical and quantum fluids. This feature is in
sharp contrast to hydrodynamic turbulence in 3D fluids.
Recently [31] it was demonstrated, both experimentally and
numerically, for an oblate BEC confined in an annular
trapping potential, that inverse energy cascades are inherent
for 2D quantum turbulence. In this context, the formation of
large-scale persistent current observed in our simulations is
naturally determined by the development of 2D turbulence.
The energy of small-scale forcing first transits to irregular
vortex distributions and then relaxes to a large-scale flow in
the form of a circulating superflow. For example, as shown
in Fig. 3(a), the number of vortices and antivortices rapidly
increases when the stirring beam ramps up (0 < t < 0.1 s) and
decays to 0 when the stirring beam is switched off (t > 1 s),
while the angular momentum per atom saturates to an integer
number m = 4 corresponding to the m-charged persistent
current.

We have performed an extensive series of numerical
simulations of a full 1-s operating cycle for different values of
barrier intensity Ub and angular velocity �. To summarize our
findings and compare the results of the numerical modeling and
the experiment, we present the angular momentum per atom
Lz/N [see Fig. 4(a)], number of vortices νv [see Fig. 4(b)], and
number of antivortices νa [see Fig. 4(c)] inside the condensate
annulus at the end of the cycle when the barrier is ramped down
to 0. The relaxation time from a nonequilibrium turbulent state
to a metastable state with a persistent current is considerable
(comparable with the 3-s lifetime of annular vortices). During
1 s of the experimental cycle such a transition usually is
not completed and the number of annular vortices fluctuates
substantially when vortices move towards the condensate edge.
To minimize the contribution from these random fluctuations,
we have calculated νv [shown in Fig. 4(b)] and νa [shown in
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FIG. 4. (Color online) The angular momentum, number of an-
nular vortices, and number of antivortices for the final stage of
the stirring process (t = 1 s) are represented by the color code as
a function of the angular speed � and the height of the stirring
potential Ub. (a) Angular momentum per atom Lz/N. White isolines
correspond to Lz/N = 1 (dashed curve) and Lz/N = 0.02 (dotted
curves). The solid (yellow) curve presents the threshold obtained in
the framework of the 1D model used in [27]. (b) Number of annular
vortices νv. (c) Number of annular antivortices νa .

Fig. 4(c)] by averaging the number of annular vortices and
antivortices over the period of 10 ms before the end and 10 ms
after the end of the stirring process. It is interesting to note
that the number of detected annular vortices and antivortices
decreases for very high values of Ub. This is because, as
mentioned above, a high-amplitude stirring beam creates a
large density valley and therefore breaks the potential barrier
for external vortices. As a result, a vortex from the outside of
the ring readily enters the central hole without crossing the
condensate annulus.

The dashed white curve in Fig. 4(a) represents an extrapo-
lated isoline corresponding to the unitary value of the angular
momentum per particle Lz/N = 1 (see also Fig. 5). The dotted
white line shows the isoline with Lz/N = 0.02, corresponding
to the threshold for annular vortex excitation, when a vortex
line is placed at the external TF boundary of the annulus.
Vortices having an angular momentum above this threshold
become visible in time-of-flight images.

As pointed out above, in the framework of the 2D reduction,
which assumes the ground-state distribution, (2), along z, it is

FIG. 5. (Color online) Critical barrier height as a function of the
angular velocity of the rotating potential barrier for different values of
the chemical potential μ and interaction constant g. Solid lines with
open symbols represent the isoline corresponding to Lz/N = 1, and
dashed lines give isolines with Lz/N = 0.02. The dotted (blue) curve
presents the threshold obtained in the framework of the 1D model;
filled (blue) diamonds with error bars are experimental results from
Ref. [27].

difficult to reproduce the true condensate density distribution
both in the z = 0 plane and along z. Since the 2D model should
be comparable to the experiment, one needs to adjust the
parameters of the model to reproduce the correct condensate
peak density or TF radius. We compare the thresholds for
three reasonable choices of parameters for the 2D model
in Fig. 5: (i) Black curves give the results for μ = 10.62,
g = 0.0154, which reproduce the experimental condensate
peak density. It is a natural choice for the narrow stirrer used
in the experiment [27], where the vortices are nucleated in
the bulk of the condensate. (ii) Green curves represent the
results for the 2D model with parameters μ = 13.62 and
g = 0.0154, obtained for the oscillatory wave function (2)
along z without fitting μ to reproduce the condensate peak
density. (iii) Red curves demonstrate the results of the 2D
model, which reproduces the correct TF radius. This can be
achieved by adjusting the interaction constant and assuming
that the chemical potential in the 2D model is equal to its 3D
counterpart: μ = μ3D = 15.67 and g = 0.0227.

Surprisingly, all the predictions obtained for the 2D
model give overestimated thresholds in comparison with the
experimental measurements and are never better than those
obtained for the 1D model used in [27]. It turns out that the 2D
dissipative GPE describes the experiment only qualitatively
in the slow-stirring regime. The agreement with experiment
is better in the fast-stirring regime, however, even matching
the TF radii does not help us to reproduce the threshold for
persistent current excitation with the accuracy rate reported in
the experiment [27].

The problem of persistent current formation in a stirred
toroidal condensate deserves further theoretical and exper-
imental investigation. In particular, the influence of the
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inevitable experimental shot-to-shot deviation in the number
of atoms and impurities in the condensate density on phase
slips should be analyzed in more detail. Furthermore, the
question is open whether the regime where vortex-antivortex
pairs are generated in the bulk is ever reached in the experiment
since no choice of parameters produces agreement with
the experiment for a slow rotation rate. In our numerical
simulations, we have observed that even a relatively small
deviation δR of the stirring beam center trajectory (δR ≈
2 μm, which is of the order of the precision of stable
beam axis positioning reported in Ref. [3]) from the ideal
circle of radius R = 22.6 μm can significantly decrease the
threshold barrier height Ub for a slowly rotating stirrer. For
example, in the Supplemental Material [36] we present two
simulations with the trajectories of the stirring beam described
by r = R(1 + ε cos ϕ). For the undistorted circle (ε = 0) no
phase slip occurs, while for the simulation with the same
parameters but with ε = 0.1 a two-charged persistent current is
generated.

It is, furthermore, instructive to generalize our 2D theoreti-
cal model to a realistic 3D geometry. In the real 3D geometry
at the rotating barrier center the TF height of the condensate
decreases with Ub as

√
1 − Ub/μ. Since the energy of a vortex

is proportional to the length of the vortex line, accounting for
this effect can significantly reduce the threshold for vortex
nucleation. The influence of the stochastic thermal fluctuations
on vortex nucleation close to the threshold rotation rate merits
a separate study. The role of thermal fluctuations can be
especially significant with slow stirring, since the critical
barrier height is larger (thus the local density is more depleted),
allowing thermal atoms to fill a low-density region. Also, it is
of interest to investigate, both experimentally and theoretically,
the relaxation process to a metastable persistent current when
the condensate is cleansed from annular vortices depending on
the position of the stirring beam.

V. CONCLUSIONS

We have investigated a toroidal condensate stirred by a
small, tunable, penetrable barrier moving azimuthally at a
fixed angular velocity. Our theoretical analysis reveals the
microscopic mechanism for large-scale persistent current
generation and demonstrates a small-scale complex vortex
dynamics. In particular, we describe and delineate two regimes
of vortex nucleation for a slow- and a fast-moving stirrer. For
a slow motion of the narrow stirring beam vortex-antivortex
pairs appear near the center of the stirrer in the bulk of the
condensate. The antivortex moves spirally to the external
surface of the condensate and, finally, decays into elementary
excitations, while the vortex becomes pinned in the central hole
of the annulus, adding one unit to the topological charge of the
persistent current. When the barrier angular velocity is above
some critical angular velocity, in accordance with the results
of Bogoliubov analysis and the predictions of the surface
model, an outer-edge surface mode develops and breaks into
the vortices entering the condensate annulus.

Performing numerical modeling for various combinations
of potential barrier height and angular velocity, we determine
conditions for the creation of vortices which appear to be in
qualitative agreement with the experimental results [27]. We
believe that our predictions can be further tested in the ongoing
experiments with atomtronic circuits.
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