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Bloch dynamics in lattices with long-range hopping
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We study a discrete Schrödinger equation with arbitrary long-range hopping terms under the influence of
an external force. The impact of long-range hoppings on the single-particle Bloch dynamics in the lattice is
investigated. A closed expression for the propagator is given, based on which we analyze the dynamics of
initially Gaussian wave packets. Our findings capture the anharmonic oscillations recently observed in zigzag
lattices and furthermore provide a detailed quantitative description of the crossover between center-of-mass Bloch
oscillations for wide wave packets and left-right symmetric width oscillations for narrow single-site excitations.
The analytical results are shown to be in agreement with numerical simulations. A helix lattice setup for ultracold
atoms is proposed where such hopping terms to far neighbors can be experimentally tuned to sizable values.
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I. INTRODUCTION

One of the intriguing features of quantum mechanics in
lattice systems is the Bloch oscillation of a particle subjected
to a constant external force [1,2]. The technical advance of
recent years has made it possible to prepare quantum systems
clean enough to directly observe this phenomenon, and Bloch
oscillation dynamics has been verified in semiconductor
superlattices [3] (see [4] for a review), for ultracold atoms
subject to optical lattices [5,6], and in photonic waveguide
systems [7–9], among others. Nowadays, Bloch oscillation
based methods are routinely used in cold-atom applications,
e.g., for precision measurements of the fine-structure constant
[10] or gravitational forces [11,12], even on very small length
scales [13].

The discrete Schrödinger lattice model which exhibits
Bloch oscillation dynamics under a constant force arises in
many different areas of research, both in physics and beyond
[14]. Traditionally, this dynamical model has been studied
mostly within the nearest-neighbor approximation, which is
sufficiently accurate in many cases. Recent years have seen
an increased interest in extensions of the model where this
approximation is relaxed and long-range hoppings (sometimes
also termed “couplings,” depending on the context) are taken
into account. For instance, long-range hopping terms have
been suggested to be relevant for the dynamics of the DNA
molecule [15,16] (recently reviewed in [17]) or for excitation
transfer in large molecules [18], superlattice structures with
sizable second-neighbor hoppings have been proposed [19],
and zigzag arrangements of photonic waveguides have been
demonstrated as an efficient way to artificially enhance the
second-neighbor hopping term in a controlled way [20].
Nonlinear features of this zigzag model have been studied
theoretically [21–23] and experimentally [24]. In [25] it was
proposed that the second-neighbor hopping crucially alters
the Bloch oscillation dynamics, and this was confirmed in
the experiment [26]. A general theoretical framework that
captures all these phenomena has not been given, although
crucial building blocks are known. In [27], the propagator for a
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force-free lattice with arbitrary long-range hoppings is derived,
and in [28] general results for its diffusive dynamics are
provided. Complementing this, the propagator in the presence
of a constant force has been derived in [29], but restricting to
short-range hoppings. There has also been a lot of interest in
driven lattice systems (where the force is time dependent), and
also in this context some findings beyond the nearest-neighbor
approximation are available, e.g.. [30–32].

In this work, we extend these results in two ways. First,
we derive the propagator for a homogeneous one-dimensional
discrete Schrödinger lattice with arbitrary long-range hoppings
under the influence of a constant external force. Second, we
employ this propagator to systematically study the dynamics
of a wave packet depending on its initial width. Restricting
to a nearest-neighbor model, a first step in this direction
has been done recently in [33]. It is well known (and has
been observed in experiments) that for sufficiently wide wave
packets the semiclassical picture of Bloch oscillations of the
center-of-mass coordinate applies. In the other extreme limit,
where the wave packet is so narrow that it effectively only
excites a single site initially, the dynamics is completely
different: Under the influence of the force, the width of the
wave packet oscillates at the Bloch period while its center of
mass remains at rest (see, e.g., [34]). This periodic wave-packet
reconstruction goes under different names in the literature,
and we will refer to it as Bloch breathing in the following.
Following, we will give a detailed analysis of the crossover
between Bloch breathing dynamics of initially narrow wave
packets and Bloch oscillation dynamics of initially wide ones,
taking into account the full set of long-range hopping terms.

Our study of long-range hopping models is motivated by
a generalization of the zigzag lattice geometry possible in the
framework of cold atoms. In the photonic waveguide systems,
one of the three spatial coordinates enters the equation of
motion as a time variable [35]. Thus, there are effectively
only two spatial degrees of freedom for the lattice layout. In
contrast, trapping potentials for cold atoms can be designed in
all three spatial dimensions. We suggest a helical arrangement
of lattice sites which makes it possible to enhance arbitrary
long-range hopping terms (even beyond the second-nearest
neighbor). A similar helix model has been briefly considered
for fermions in [36,37].
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The paper is structured as follows: In Sec. II, we describe
the helix lattice setup that motivates our study of long-
range hopping models. Section III introduces the discrete
Schrödinger model we consider and lists a number of results
for the force-free case. Taking into account the external force,
we construct the Wannier-Stark basis and the direct space
representation of the propagator in Sec. IV. Based on this
propagator, we study the crossover between Bloch breathing
and Bloch oscillations in Sec. V. Section VI contains a brief
summary and an outlook.

II. HELIX LATTICE MODEL

Zigzag lattice geometries have been successfully used to
artificially enhance the second-neighbor hopping in planar
lattices. In the following, we describe a generalization of
this idea that makes it possible to enhance also higher-order
hoppings, at the price of not restricting to planar setups.
The scheme we describe relies on the possibility of trapping
ultracold atoms on helical space curves, as has been proposed
recently [38,39]. A single strand helix curve is parametrized by
�r(ϕ) = (R cos ϕ,R sin ϕ,bϕ) with R the helix radius and 2πb

the helix pitch. Now let us consider potential wells located
along the helix equidistantly in arc length (or, equivalently, in
the angle parameter ϕ), i.e., the lth potential well is centered at

�rl = (R cos(lϕ0),R sin(lϕ0),bϕ0l) (1)

for some fixed ϕ0. Then, due to the special features of the helix
geometry [40,41], the three-dimensional Euclidean distance
between sites j and l only depends on the index difference
|j − l|. Measured in units of the radius R, it is given by

d2
|j−l| = |�rj − �rl|2

R2

= 2{1 − cos[ϕ0(j − l)]} + b2

R2
ϕ2

0(j − l)2. (2)

Interestingly, depending on the helix parameters, dn can be
a nonmonotonous function of n. This is illustrated in Fig.
1(a) which shows dn for a helix lattice with parameters
b/R = 0.22 and ϕ0 = π/2. A helix of this geometry is shown
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FIG. 1. (Color online) (a) Euclidean distances (in units of R) to
the nth neighbor site and (b) simple exponential estimate of the scaling
of the hopping amplitudes for the helix lattice model schematically
shown in (c).

in Fig. 1(c), with circular black markers indicating the lattice
sites. For this particular geometry, it can be seen that the
fourth neighbor (when counted along the helix) of each site
is again particularly close to that site in three-dimensional
space, although it is far away in index (or in arc length).

Let us assume now that the dynamics of quantum particles
on such an infinitely extended helix lattice can be described
by a noninteracting single-band Hubbard model of the form
[42,43]

Ĥ =
∞∑

l=−∞

[
−

∞∑
α=1

tα(â†
l âl+α + â

†
l+αâl) + Vlâ

†
l âl

]
, (3)

where âl and â
†
l denote annihilation and creation operators

(bosonic or fermionic) at site l, respectively, tα is the hopping
term to the αth neighbor, and Vl models a local scalar potential
at site l. Then, the helix geometry will make it necessary to take
into account hopping terms with α > 1, i.e., beyond nearest
neighbor in index. This naturally generalizes the idea of planar
zigzag lattices in which the second-neighbor hopping can be of
the same order of magnitude as the nearest-neighbor hopping
to the three-dimensional space, opening a way to make even
more long-range hopping terms sizable. Crucially, we assume
that the translational invariance of the model is preserved in the
sense that the hopping amplitudes depend on index difference
only. This is ensured if the full lattice potential landscape is
invariant under the screw operation that for every l maps �rl

to �rl+1. We take the atoms to be effectively noninteracting
here, a requirement that can experimentally be realized for
many species by means of Feshbach resonance techniques
[44]. In the above, we have simply assumed the existence
of a Hubbard Hamiltonian as in Eq. (3). In other words,
it is assumed that the three-dimensional potential landscape
that constitutes the potential wells is such that Wannier-type
modes localized at each lattice site exist and that in the regime
considered it is sufficient to restrict to one such mode per site.
While the existence and construction of localized Wannier
modes for one-dimensional (1D) lattices with the usual discrete
translation symmetry is well known, this is much less the
case for a system with a basic symmetry under discrete screw
operations, such as the helix lattice. Recently, it has been
shown on abstract grounds that localized Wannier functions
still exist for the latter type of problem, and a tight-binding
Hamiltonian as in Eq. (3) has been justified [45].

In this work, we do not aim at constructing the Wannier
states and calculating the Hubbard parameters from first
principles. For a rough idea of the scaling of the hopping
amplitudes tα , we resort to the result of [46] where the
hoppings in a lattice with the usual discrete translational
symmetry are shown to decay exponentially with the Euclidean
intersite distance, up to a polynomial prefactor. Let us assume,
solely for the purpose of illustration, that this scaling also
applies in the helix lattice landscape, say tn ∼ exp(−2dn).
This quantity is shown in Fig. 1(b), normalized to its value
at n = 1. Clearly, there are several values whose order of
magnitude is comparable to the n = 1 contribution. For the
chosen geometry parameters, the dominant hoppings will be
t1 (to the nearest sites along the winding) and t4 (to the nearest
sites on the adjacent windings), with a strong decay beyond t5.
We emphasize that the actual helix hopping parameters will
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depend on the detailed shape of the lattice potential, the heights
of the potential barriers along and between the windings, etc.,
and finding them would require a band-structure calculation for
the specific potential taking into account the screw symmetry.
Since this may be a hard task, in the following we also suggest
a way to experimentally extract the parameters from the Bloch
dynamics of the system under a constant external force along
the z axis, shown as dotted line in Fig. 1(c). Note that the helix
geometry is such that for a potential linear in z, V (�r) = F0z,
the values at the lattice sites scale linearly with the index, i.e.,
V (�rl) = F0bϕ0l.

Finally, we remark that arguably the proposals presently
available suggest that a double-helix potential for cold atoms
may be easier to realize experimentally than the single-helix
strand we assume here. We can still restrict to the simple single-
strand scenario since a noninteracting double-helix model with
hoppings along and between the strands can be reduced to
two decoupled copies of the single-strand model, as shown in
Appendix A.

III. EQUATION OF MOTION AND FORCE-FREE LIMIT

In the following, we give a detailed analysis of the single-
particle dynamics governed by the Hamiltonian (3). Expanding
the state at time τ as |�〉τ = ∑

l �l(τ )â†
l |∅〉 where the �l are

complex coefficients and |∅〉 denotes the vacuum state, the
Schrödinger equation for |�〉τ yields an equation of motion
for the coefficients which in dimensionless form reads as

i∂τ�l(τ ) = −
A∑

α=1

tα [�l+α(τ ) + �l−α(τ )] + F l�l(τ ). (4)

This result for a single particle is obtained both for bosonic and
fermionic ladder operators. For an ensemble of many bosons,
the same equation arises when approaching the noninteracting
limit from the mean field (Gross-Pitaevskii) regime [47]. We
have specified here the potential term Vl to be linear in l,
modeling a constant force along the z axis in the helix example.
For technical reasons, we take the number of nonzero hopping
terms to be finite in the following, but the cutoff A can be
arbitrarily large. We emphasize that while the helix lattice for
ultracold atoms motivates our study of long-range hopping
terms, the following considerations are based solely on Eq. (4)
and apply in any context in which this equation arises.

As a first step, we establish some results on the discrete
Schrödinger equation (4) in the force-free limit. As usual,
stationary solutions are obtained by factorizing �l(τ ) =
ψl exp(−iEτ ). It is straightforward to see that in the absence
of an external force F = 0, Eq. (4) admits stationary plane-
wave solutions of the form ψl ∝ exp(ikl). This is a direct
consequence of the translational invariance of the model. The
corresponding dispersion relation of the infinitely extended
lattice model is given by

E(k) = −2
A∑

α=1

tα cos(kα), − π < k � π. (5)

It is apparent from Eq. (5) that the presence of long-range
hopping terms leads to the emergence of the corresponding
higher harmonics of k in the dispersion relation. Depending
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FIG. 2. (Color online) Band structure given by Eq. (5) for a
model with long-range hoppings as in Fig. 1(b) (red solid line) and
of a nearest-neighbor model with only t1 = 1 (black dashed line).

on the relative values of the tα , this can dramatically alter
the shape of the E(k) curve, inducing for instance additional
maxima and minima or causing a shift of the band edges to
different values of k. An example of this is shown in Fig. 2,
where for definiteness we have used the values displayed in
Fig. 1(b) for the tα (with a cutoff at A = 8).

For the zigzag limiting case of only t1 and t2 nonvanishing,
this type of deformation of the band structure has been
discussed in detail in [22], pointing out also a number of
consequences for the localized solutions of the corresponding
discrete nonlinear Schrödinger model. A general property to
be read off from Eq. (5) is that the global minimum of E is
assumed at k = 0 as long as all tα � 0. That is, if the signs of
all hopping parameters are such that they energetically favor
the linked sites to be in phase, the ground state is simply given
by the zero quasimomentum state. If, in contrast, there are
hopping terms with tα < 0 present in the system, this favors a
phase difference of π between sites of distance α. Depending
on the detailed values of the tα , this may cause frustration
and thus lead to a nontrivial ground state. Again restricting
to the zigzag limit, phase diagrams of interacting models in
this interesting frustrated regime have been studied recently in
[48,49].

IV. WANNIER-STARK STATES AND PROPAGATOR

As soon as the force parameter F �= 0, plane waves
no longer solve Eq. (4). Instead, there is now a complete
set of localized modes, the Wannier-Stark states [29,50,51].
Their construction for the discrete Schrödinger model by
transforming to momentum space, as detailed for example
in [52], can be extended in a straightforward way to take
into account the presence of long-range hoppings. We find
the Wannier-Stark modes to be given by

χ
(w)
l = 1

2π

∫ 2π

0
dk exp

[
i(l − w)k − i

A∑
α=1

2tα

αF
sin(kα)

]
.

(6)
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Each Wannier-Stark state is labeled by an integer quan-
tum number w ∈ Z, and its energy eigenvalue is given by
Ew = wF . This equidistant spectrum, the so-called Wannier-
Stark ladder, is insensitive to the presence of long-range
hoppings. The fact that all energy eigenvalues are harmonics
of the fundamental frequency F immediately implies that
the dynamics of any initial state is periodic with period
TB = 2π/F . This includes the famous Bloch oscillations of
a wave packet localized in momentum space, but is also true
for any other initial condition.

To proceed, we use the Jacobi-Anger expansion [53]

e−iz sin φ =
∞∑

n=−∞
Jn(z)e−inφ, (7)

where Jn denotes the nth Bessel function of the first kind.
Then, the integral in Eq. (6) can be evaluated to

χ
(w)
l =

∑
n1,...,nA

δ∑A
α=1 αnα,l−w

A∏
α=1

Jnα

(
2tα

αF

)
, (8)

where all indices nα are summed over Z. In the limit of
only nearest-neighbor hopping, tα = 0 for α � 2, we have
Jnα

( 2tα
αF

) = δnα,0 for α � 2, such that χ
(w)
l = Jl−w( 2t1

F
) in this

limit, reproducing the result of [29].
Using basic properties of the Bessel functions (see also

below), we can immediately establish some properties of the
Wannier-Stark states from Eq. (8). First, the Wannier-Stark
mode of quantum number w is centered at site w since∑

l l|χ (w)
l |2 = w. Second, for increasing values of F the mode

becomes more and more localized since

∑
l

l2|χ (w)
l |2 − w2 = 2

F 2

A∑
α=1

t2
α. (9)

We see here how the presence of long-range hopping terms
favors a delocalization of the Wannier-Stark states. Single-site
localization sets in when the force is so strong that F 2 
∑

α t2
α .

When restricting to next-neighbor hopping, the Wannier-
Stark mode has the symmetry χ

(w)
w−l = (−1)lχ (w)

w+l which
ensures that the density is symmetric around the central site
w. This symmetry property is lost if additional hoppings are
taken into account. Instead, the stationary localized modes
described by Eq. (8) generally exhibit intricate asymmetric
density distributions around the central site. This is illustrated
in Fig. 3, which also shows the localization that increases
with F .

Since the Hamiltonian is diagonal in the Wannier-Stark
basis, we can immediately write the matrix elements of the
propagator

Ul,l′(τ ) =
∑
w∈Z

χ
(w)
l

(
χ

(w)
l′

)∗
e−iwFτ . (10)

Inserting the expansion of the Wannier-Stark modes given in
Eq. (8) and repeatedly making use of the identity [53]

∞∑
n=−∞

Jn(z)Jn+j (z)einφ = Jj

(
2z sin

φ

2

)
ij e−ijφ/2, (11)
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FIG. 3. (Color online) Density profiles of Wannier-Stark states
centered at l = 0 at different values of F as listed in the legend
for (a) a nearest-neighbor model with only t1 = 1, (b) a model with
long-range hoppings t1 = t2 = t3 = 1, where the insets show a zoom
of the low-density region for the less localized states at smaller F .

this is evaluated to be

Ul,l′ (τ ) = il−l′e−i Fτ
2 (l+l′)

×
∑

n2,...,nA

Jl−l′−∑A
α=2 αnα

(
4t1

F
sin

Fτ

2

)

×
A∏

α=2

i−nα (α−1)Jnα

(
4tα

αF
sin

Fτα

2

)
. (12)

Again, let us discuss some limiting cases. If all hoppings are
turned off, the propagator collapses to Ul,l′ (τ ) = δl,l′e

−iF lτ ,
corresponding to decoupled sites whose phases evolve with the
respective local potential. When we restrict ourselves to the
nearest-neighbor hopping term, we arrive at the result of [29]
(see also [34,52,54,55]). Finally, taking the limit of F → 0
and noting that limε→0

sin ε
ε

= 1, we recover the propagator of
a force-free lattice with arbitrary long-range hoppings recently
obtained in [27].
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V. BLOCH DYNAMICS OF WAVE PACKETS

Having derived the closed expression for the propagator, we
are now in the position to study the dynamics of an arbitrary
initial wave function. Let us start by discussing the simple case
of an initial single-site excitation �l(τ = 0) = δl,l0 . Then, the
wave function at time τ is obtained using the propagator from
Eq. (12) as

�l(τ ) =
∑

l′
Ul,l′(τ )�l′(τ = 0) = Ul,l0 (τ ). (13)

From the properties of the Bessel function, one finds that even
in the presence of long-range hoppings the propagator has the
symmetry |Ul0−l,l0 (τ )| = |Ul0+l,l0 (τ )| for any l0,l and any τ .
Thus, during the time evolution following the initial single-site
excitation, the density will remain left-right symmetric around
the central site l0. In particular, the center of mass remains at
rest at l0. The width, however, can change as a function of
time, and from the equidistant spacing of the Wannier-Stark
spectrum it is clear that the dynamics of the width has to
be oscillatory with period TB = 2π/F . This Bloch breathing
behavior is well known for nearest-neighbor models.

On the other hand, if the initial excitation is not restricted
to a single site, but rather a wave packet that is sufficiently
delocalized in position space to be considered localized in k

space, then this wave packet will perform Bloch oscillations
under the influence of the external force. The temporal
periodicity is the same as for the Bloch breathings, but now
the center of mass of the wave packet performs oscillations
while its shape is essentially unchanged. In most cases, the
theoretical description of these Bloch oscillations is based on
a semiclassical argument explicated below.

In spite of the qualitative differences between Bloch
breathing and Bloch oscillations, these dynamics are two sides
of the same coin and are both captured by the propagator in
Eq. (12). In the following, our aim is twofold: First, we discuss
the crossover from Bloch breathing to Bloch oscillations by
considering an initial Gaussian wave packet of variable width.
This is done for arbitrary long-range hoppings, and in a second
step we work out the limiting cases of pure Bloch breathing and
pure Bloch oscillations for lattices with long-range hoppings
and provide quantitative estimates for which parameter values
of the model these limits apply.

To explore the crossover region, we consider as the initial
state a site-centered Gaussian wave packet defined by

�l(τ = 0) = N e−l2/(2σ ), σ > 0. (14)

More general initial conditions are discussed in Appendix B.
Without loss of generality, we take the wave packet to be
centered at site 0 initially. In the limit of small σ , Eq. (14)
describes essentially a single-site excitation that, as seen above,
will perform Bloch breathing. In contrast, if σ is large we
expect Bloch oscillations of the wave packet’s center of mass,
with no notable deformation.

First of all, we find that the normalization constant N
is evaluated to be 1/N 2 = ∑

l e
−l2/σ = ϑ3(0,e−1/σ ), where

ϑ3 denotes the Jacobi theta function of the third kind [56]

defined as

ϑ3(u,q) = 1 + 2
∞∑

n=1

qn2
cos 2nu, |q| < 1 (15)

which will also become important below. With this, we can
evaluate the two key quantities to characterize and distinguish
Bloch breathing and Bloch oscillations, namely, the first
two moments of the position operator 〈X〉τ = ∑

l l|�l(τ )|2
and 〈X2〉τ = ∑

l l
2|�l(τ )|2. These quantities can be obtained

through a lengthy but direct calculation, making repeated use
of the Bessel function orthogonality and recursion identities
[53] [the former being a special case of Eq. (11)]∑

l

Jl(z)Jl+j (z) = δj,0, (16a)

lJl(z) = z

2
[Jl−1(z) + Jl+1(z)]. (16b)

Defining the auxiliary function g(α,σ ) for α ∈ N as

g(α,σ ) =
∑

l

�l(τ = 0)�l+α(τ = 0)

= e−α2/(4σ ) ϑ3
(
α π

2 ,e−σπ2)
ϑ3(0,e−σπ2 )

, (17)

we finally obtain compact expressions for the first two
moments of the position operator:

〈X〉τ = −
A∑

α=1

4tα

F
g(α,σ ) sin2 αFτ

2
, (18)

〈X2〉τ = 〈X2〉τ=0 +
A∑

α=1

8t2
α

F 2
sin2 αFτ

2

× [1 − g(2α,σ ) cos(αFτ )]

+
∑
α>β

16tαtβ

F 2
sin

αFτ

2
sin

βFτ

2

×
[
g(α − β,σ ) cos

(α − β)Fτ

2

−g(α + β,σ ) cos
(α + β)Fτ

2

]
. (19)

Details on the derivation of Eqs. (18) and (19) are provided in
Appendix B, where also the corresponding generalizations to
arbitrary initial conditions are given. From these equations,
it is immediately seen that the presence of long-range
hoppings introduces higher harmonics of the fundamental
Bloch frequency F in the time evolution of 〈X〉τ and 〈X2〉τ .
Intuitively, these harmonics are expected to show up since the
potential difference between two sites of index difference α

is proportional to α in our model, thus, the effective Bloch
frequency when considering hopping only to the αth neighbor
is given by the harmonic αF . The second observation to
be made is that g acts as a crossover function, interpolating
between Bloch breathing for small σ and Bloch oscillations
for large σ . This is reflected by the limits

g(α,σ ) −→
{

0, σ → 0
1, σ → ∞ (20)
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FIG. 4. (Color online) Full crossover function g, compared to the
plain exponential factor, as a function of σ for various values of α. In
the limit of large σ , all curves tend to 1.

holding for any nonzero α. We furthermore see that the overall
shape of g is strongly determined by the exponential prefactor.
Distinguishing the case of the integer argument α being even
or odd, one finds

g(α,σ ) =

⎧⎪⎪⎨
⎪⎪⎩

e−α2/(4σ ), α even

e−α2/(4σ ) ϑ3

(
π
2 ,e−σπ2

)
ϑ3

(
0,e−σπ2

) , α odd.

(21)

The correction factor ϑ3(π/2,e−σπ2
)/ϑ3(0,e−σπ2

) occurring
for α odd here is close to unity for not too small values
of σ since exp(−σπ2) quickly goes to zero with increasing
σ . Thus, the second argument of the Jacobi theta functions
quickly decays to zero and both theta functions approach
unity. On the other hand, for small σ the correction factor
goes to zero, so the relative deviation between g and the plain
exponential exp[−α2/(4σ )] becomes large. The absolute error,
however, is small still, since the value of the exponential itself
approaches zero in this limit (the larger α, the faster). Figure 4
shows the full g(α,σ ) for α = 1,2,3 and in comparison also
the exponential factor exp[−α2/(4σ )]. For large σ , where
it eventually approaches unity, g is fully dominated by the
exponential. This also implies that the convergence to 1 is
slower the larger α, a trend that is clearly observed when going
from α = 1 to 3 already. For small σ , a notable deviation
between g and the exponential can be seen for α = 1. For
α = 2 (and any other even α) the agreement is exact. For
α = 3, the absolute deviations due to the Jacobi theta function
correction factor are already so small that they cannot be
identified on the scale of this figure.

Let us now discuss separately the two limiting cases of
small and large width of the initial wave packet, respectively.
For σ → 0, so all occurrences of g → 0 in Eqs. (18) and (19),
we find

〈X〉τ = 0, (22)
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FIG. 5. (Color online) Multifrequency Bloch breathing oscilla-
tion of a narrow Gaussian wave packet with σ = 0.1 at F = 0.2,
hopping parameters as in Fig. 1(b). (a) Absolute value of �l as a
function of time τ and site index l. (b), (c) First two moments of the
position operator: numerical values (black lines), analytical result of
Eqs. (18) and (19) (red markers) and approximations of Eqs. (22) and
(23) (dashed black lines).

〈X2〉τ =
∑

α

4t2
α

F 2
[1 − cos(αFτ )] . (23)

We see that in this limit the center of mass is at rest while the
wave packet width performs oscillations. This is characteristic
of a pure Bloch breathing dynamics, where the long-range
hopping terms contribute oscillations at higher harmonics of
the Bloch frequency F . This includes the two-frequency Bloch
breathing recently observed in zigzag lattices with nonvanish-
ing t1 and t2 [26]. Figure 5 shows the time evolution of a
narrow Gaussian wave packet obtained by directly integrating
the discrete Schrödinger equation (4). The moments of the
position operator are evaluated numerically (red markers) and
as a check compared to the analytical expressions of Eqs. (18)
and (19) (black lines), showing agreement. The approximate
predictions of Eqs. (22) and (23) are shown as dashed lines.
It is clearly observed that this situation is very close to the
pure Bloch breathing limit, with the center of mass being
almost at rest. For the width oscillation, the deviation from
Eq. (23) is almost indiscernible on the scale of this figure. The
Bloch period is given by TB = 10π for the chosen parameters.
After this time, a full refocusing of the localized excitation is
observed.

Again, we note that Eq. (23) contains special cases that
have been reported before. The corresponding expression for
next-neighbor hopping only is given in [34]. In the force-free
limit, the recent result of [28] for the ballistic spreading of a
single-site excitation in a lattice with long-range hoppings is
recovered, i.e., 〈X2〉τ → 2τ 2 ∑

α α2t2
α for F → 0. Conversely,

in the work [30] that is primarily concerned with ac driven
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nearest-neighbor lattice systems, an extension to long-range
hoppings is sketched which when worked out [57] reduces to
Eq. (23) in the static limit.

In the opposite limit of σ → ∞, all occurrences of g → 1.
Then, Eqs. (22) and (23) give

〈X〉τ = −
∑

α

2tα

F
[1 − cos(αFτ )], (24)

〈X2〉τ − 〈X〉2
τ = 〈X2〉τ=0 = σ

2
. (25)

These trajectories describe a multifrequency Bloch oscillation
of the wave packet as a whole, as can be inferred from the time-
independent variance of X. For two nonvanishing hopping
terms, such a two-frequency oscillation has been predicted
and observed in [25,26].

We show now that Eq. (24) agrees with the result found
from the simple semiclassical argument usually invoked to
discuss Bloch oscillations: If the initial wave packet is
sufficiently delocalized in position space, and thus localized
in quasimomentum space, one can obtain the time evolution
of its quasimomentum from the acceleration theorem [58,59]
as k(τ ) = −Fτ . The velocity v(τ ) of the wave packet is then
given by the group velocity evaluated at k(τ ), i.e.,

v(τ ) = dE

dk

∣∣∣∣
k=−Fτ

= −2
∑

α

αtα sin(αFτ ), (26)

and integrating this equation gives the center-of-mass motion
〈X〉τ found in Eq. (24). This way of reasoning directly links
the Bloch oscillation trajectory to the band structure. Thus, the
additional maxima and minima of E(k) that exist due to the
presence of long-range hoppings immediately cause additional
reversal points of the wave-packet dynamics within one Bloch
period. In Fig. 6, we present a numerical simulation of a
multifrequency Bloch oscillation, verifying again the validity
of Eqs. (18) and (19) against the direct solution of the equation
of motion (4). Indeed, we see that for this comparably large
initial width we approach a regime in which the trajectory
closely follows the predictions of Eqs. (24) and (25) shown
as dashed lines, although there are still deviations in both
〈X〉τ and 〈X2〉τ . These deviations are particularly visible when
calculating the variance that deviates still quite strongly from
the constant value σ/2. We find that going to larger values of
σ , these features are further diminished and the semiclassical
equations become more and more exact.

Equations (23) and (24) allow us to calculate the Bloch
breathing and oscillation trajectories given the model pa-
rameters tα and F . Conversely, measuring these trajectories
and Fourier transforming them provides a way to extract the
hopping parameters tα and the force F from the time evolution
data. The frequency spectra will have peaks at the harmonics
αF with amplitudes determined by the ratios tα/F . We remark
that since sparse frequency spectra are expected here, this
problem should be an ideal candidate for so-called compressed
sensing techniques which admit a reliable reconstruction of
the spectrum even from imperfect time signals (see [60] for an
introduction and [61] for a recent application in the context of
molecular dynamics).

So far, we have focused on the limiting cases of ideal
Bloch breathing on the one hand and ideal Bloch oscillations
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FIG. 6. (Color online) Multifrequency Bloch oscillation of a
wide Gaussian wave packet with σ = 70 at F = 0.2, hopping
parameters as in Fig. 1(b). (a) Absolute value of �l as a function
of time τ and site index l. (b)–(d) First two moments and variance of
the position operator: numerical values (black lines), analytical result
of Eqs. (18) and (19) (red markers) and approximations of Eqs. (24)
and (25) (dashed black lines).

on the other hand. Equations (18) and (19) hold for the full
crossover between these two limits, however, and from a study
of the function g we can also estimate that there is a large
intermediate regime that is neither characterized by a pure
breathing nor by a pure center-of-mass oscillation. To reach
the limit of Bloch breathing with 〈X〉τ ≈ 0, from Eq. (18)
we can read off the necessary condition that g(α,σ ) ≈ 0 for
all α for which tα is non-negligible. Since g approaches zero
faster for σ → 0 the larger α, this condition is most restrictive
for α = 1. Consequently, in a system with non-negligible
next-neighbor hopping we can expect to reach the pure Bloch
breathing limit when g(1,σ ) ≈ 0, which is the case for σ � 0.1
(see Fig. 4). At σ = 0.1, the initial probability to find the
particle away from the central site 0 is already of the order of
10−4, so to observe pure Bloch breathing one indeed needs an
essentially pure single-site excitation. Any sizable excitation
of neighboring sites will induce deviations from 〈X〉τ = 0
and cause center-of-mass oscillations according to Eq. (18).
In Fig. 5, it is clearly observed that even at σ = 0.1, the
center-of-mass motion is not completely suppressed.

Turning to the pure Bloch oscillation limit of σ → ∞,
from Eq. (18) we can infer the condition g(α,σ ) ≈ 1 for
all α for which the hopping term tα is non-negligible. We
have seen above that the behavior of g at large σ is entirely
determined by the exponential exp[−α2/(4σ )] ∼ 1 − α2/(4σ )
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for large σ . Thus, for the center of mass to be described by the
semiclassical Bloch trajectory, the condition 4σ 
 α2 needs
to be satisfied for any α with sizable hopping tα . From the
above semiclassical discussion it is to be expected that the
hopping terms of largest α give the strictest condition here:
The considerations leading to Eq. (26) rely on a linearization of
the dispersion relation E around the central momentum of the
wave packet. Higher-order hoppings lead to short length scale
oscillations in the E(k) curve as seen in Fig. 2, deteriorating
the linearization approximation and thus enforcing a stronger
localization of the wave packet in k space for the analysis to
apply, which in turn demands a larger spread in direct space.
Even if 4σ 
 α2 is fulfilled for any α with non-negligible
tα , it is not directly ensured that the variance also follows the
semiclassical expectation 〈X2〉τ − 〈X〉2

τ = 〈X2〉τ=0. For this
to hold, we also need the g ≈ 1 limit to hold for all terms in
Eq. (19). In particular, this poses the necessary condition that
also g(2α,σ ) ≈ 1 for all α with non-negligible tα , implying the
stricter condition σ 
 α2. In line with this argument, a close
inspection of Fig. 6 indeed shows that the relative deviations
of the true trajectory from the semiclassical expectation are
larger for 〈X2〉τ and the variance than for 〈X〉τ .

Moving away from either of the two limits, the dynamics
performed by a Gaussian wave packet of intermediate width
consists of nontrivial oscillations both in the center of mass
and the variance. An example illustrating this is shown in
Fig. 7. The initial stage of the dynamics is characterized by a
widening of the wave packet into both directions of the lattice,
but in an asymmetric way, with a larger fraction moving to
l < 0 and following a Bloch oscillation-type trajectory there.
After the Bloch period, the wave packet is fully reconstructed.
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FIG. 7. (Color online) Intermediate case with nontrivial dynam-
ics both in center of mass and width for an initial Gaussian wave
packet with σ = 10 at F = 0.2, hopping parameters as in Fig. 1(b).
(a) Absolute value of �l as a function of time τ and site index l. (b),
(c) Expectation value and variance of the position operator: numerical
values (black lines) and analytical result of Eqs. (18) and (19) (red
markers).

VI. BRIEF SUMMARY AND PERSPECTIVES

We have investigated a translationally invariant discrete
Schrödinger equation with arbitrary long-range hopping terms.
The study of this equation was motivated by a proposal for
a helix lattice for ultracold atoms, extending the idea of a
planar zigzag lattice to three spatial dimensions. With such a
lattice setup it will be possible to tune the long-range hoppings
of a cold-atom Hubbard model through the helix geometry
parameters. We have discussed the plane-wave solutions and
dispersion relation of the force-free model and then turned
to the influence of an external force. Closed expressions for
the Wannier-Stark states and the propagator were constructed
in terms of Bessel functions. Finally, we analyzed the Bloch
dynamics of a Gaussian wave packet of arbitrary width. Our
findings quantitatively describe the anharmonic Bloch dynam-
ics observed in recent experiments [26] and are applicable
in the full crossover regime between Bloch breathing of
single-site excitations and Bloch oscillations of wide wave
packets.

A promising framework [62] for the experimental real-
ization of cold-atom helix lattices is provided by nanofiber-
based optical trapping techniques as recently demonstrated
[63,64]. In these experiments, cold atoms are trapped in the
two-color evanescent light field above the surface of a tapered
optical nanofiber. This setup is highly versatile, allowing for
combinations of running or standing light waves of different
frequencies and polarizations, and also for local variations of
the fiber radius. It was shown that using circularly polarized
light results in a continuous double-helix-shaped potential
of tunable parameters [39], while parallel linear polarization
gives rise to a sequence of linearly arranged potential wells
of equidistant spacing [63]. These two limiting cases can be
continuously transformed into each other using elliptically
polarized light of varying ellipticity. In the intermediate
regime, this will induce the desired lattice-type modulation
of the double-helix curve. In its basic implementation, this
scheme will produce two potential wells per winding for each
of the helix strands, but the number can be increased by quickly
switching the orientation of the polarization axes, resulting in
a time-averaged potential for the atoms.

In this work, we have restricted to the single-particle
dynamics of the helix lattice model. Combining the long-range
hoppings with a local onsite interaction term will open a variety
of directions for future studies. Within the bosonic mean field
framework, one is led to a discrete nonlinear Schrödinger
equation with long-range hoppings, reducing to Eq. (4) in
the noninteracting limit. Previous studies have shown that
the presence of beyond nearest-neighbor hoppings in such
a model may drastically alter the properties of its localized
excitations (see, e.g. [18,22,24]), but these considerations
have been restricted to second-neighbor hopping only or to
hoppings decreasing monotonically with the index difference.
Going beyond the mean field approximation, it has been
argued that long-range hoppings in a one-dimensional model
can effectively mimic higher dimensionalities (see [65] for
a recent example). A helix lattice setup may thus serve
to experimentally address the crossover between a purely
one-dimensional system (by suppressing interwinding tun-
neling) and a system with two-dimensional characteristics
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(by using many sites per winding and sizable intrawinding
and interwinding tunnelings). On the theoretical side, such a
dimensional crossover is subject to active research even for
cubic lattices [66]. Furthermore, the existence of frustration
effects for negative hopping parameters has already been
mentioned in Sec. III, pointing to interesting ground-state
features in this regime. Notably, the well-known mapping from
hard-core bosons to noninteracting fermions often employed
for the standard Hubbard model breaks down in the presence of
long-range hoppings (see, e.g., [67]). Finally, we mention the
additional possibility of introducing long-range interactions
into the helix lattice framework, for instance of the dipolar
or Coulomb type. Recently, such systems with the particle
dynamics being constrained to low-dimensional structures but
the interaction exploring the surrounding space have received
considerable attention [40,68–71].
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APPENDIX A: DOUBLE-HELIX LATTICE MODEL AND
ITS REDUCTION

The recent proposals [38,39] for the experimental creation
of helical waveguides for ultracold atoms result in double-helix

structures, rather than in a single-strand helix as discussed here.
In this appendix, we introduce a double-helix lattice system
and show that its single-particle dynamics can be reduced to
that of the single-strand model.

Adopting notation from the main text, we label the two
strands of the double helix by (I) and (II) and take them
to be parametrized by �r (I)(ϕ) = (R cos ϕ,R sin ϕ,bϕ) and
�r (II)(ϕ) = (−R cos ϕ, − R sin ϕ,bϕ), respectively. We assume
a symmetric geometry in which the potential wells forming the
lattice sites are spaced equidistantly (in terms of arc length)
on the two strands, with the same site-to-site distance for both
strands. Furthermore, we take the geometry to be chosen such
that lattice sites on the different strands are located at identical
z coordinates. Summarizing, we assume site positions

�r (I)
l = (R cos(lϕ0),R sin(lϕ0),bϕ0l),

�r (II)
l = (−R cos(lϕ0),−R sin(lϕ0),bϕ0l)

for some fixed ϕ0. This makes sure that the Euclidean distances
between a site and its nth neighbor on both the same strand and
the opposite strand depend on the index difference only. With
Hubbard parameters given by tα (α � 0, t0 = 0) for hopping to
the αth neighbor in index on the same strand and t ′α (α � 0) for
hopping to the αth neighbor in index on the opposite strand,
considerations analogous to those in the main text give rise
to two coupled discrete Schrödinger equations for the single-
particle dynamics under a constant force along the z axis

i∂τ�
(I)
l = −

∑
α

[
tα

(
�

(I)
l+α + �

(I)
l−α

)
+ t ′α

(
�

(II)
l+α + �

(II)
l−α

)]
+ F l�

(I)
l ,

i∂τ�
(II)
l = −

∑
α

[
tα

(
�

(II)
l+α + �

(II)
l−α

)
+ t ′α

(
�

(I)
l+α + �

(I)
l−α

)]
+ F l�

(II)
l .

This system can be readily decoupled (cf. [16]) via the transformation �
(±)
l := (�(I)

l ± �
(II)
l )/

√
2, resulting in

i∂τ�
(+)
l = −

∞∑
α=0

(tα + t ′α)
(
�

(+)
l+α + �

(+)
l−α

) + F l�
(+)
l , i∂τ�

(−)
l = −

∞∑
α=0

(tα − t ′α)
(
�

(−)
l+α + �

(−)
l−α

) + F l�
(−)
l ,

which is a set of two independent copies of the single-strand lattice model studied in this work. Thus, all our results can
immediately be carried over to the noninteracting double-strand lattice. In particular, if the initial wave function is such that
opposing sites on the two strands are equally populated and in phase, �(−)

l will vanish for all times, and �
(+)
l = √

2�
(I)
l = √

2�
(II)
l

will immediately be governed by a discrete Schrödinger equation as Eq. (4).

APPENDIX B: GENERAL EXPRESSIONS FOR THE FIRST TWO MOMENTS OF THE POSITION OPERATOR

In this Appendix, we extend the results of Sec. V by considering an arbitrary (normalized) initial wave function �l(0). We
derive closed expressions for the time dependence of the first two moments of the position operator in terms of this initial
condition. The general result is then specialized to the one for the Gaussian wave packet as provided in Sec. V.

Using the explicit form of the propagator given in Eq. (12), we find for any power p of the position operator

〈Xp〉τ =
∑

l

lp�∗
l (τ )�l(τ ) =

∑
l,l′,l′′

lpUl,l′ (τ )U ∗
l,l′′ (τ )�l′(0)�∗

l′′(0)

=
∑
l′,l′′

�l′(0)�∗
l′′ (0)il

′′−l′ei Fτ
2 (l′′−l′)

∑
{nα,n′

α}Aα=2

i
∑A

α=2(α−1)(n′
α−nα )

A∏
α=2

[Jnα
(ξα)Jn′

α
(ξα)]

∑
l

lpJl−l′−∑A
α=2 αnα

(ξ1)Jl−l′′−∑A
α=2 αn′

α
(ξ1)
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with the shorthand ξα = 4tα
αF

sin αFτ
2 . The strategy is now to employ the recursion and orthogonality relations of the Bessel

functions provided in Eq. (16) to first evaluate the sum over l. We show this explicitly for p = 1, where Eq. (16) yields

∑
l

lJl−l′−∑A
α=2 αnα

(ξ1)Jl−l′′−∑A
α=2 αn′

α
(ξ1) =

⎛
⎝l′ +

A∑
β=2

βnβ

⎞
⎠ δl′′−l′,

∑A
α=2 α(nα−n′

α ) + ξ1

2

(
δl′′−l′,

∑A
α=2 α(nα−n′

α )+1+δl′′−l′,
∑A

α=2 α(nα−n′
α )−1

)
.

Inserting this, evaluating the sum over l′′ using the Kronecker symbols, and introducing the summation indices mα = nα − n′
α ,

this results in

〈X〉τ =
∑

l′

∑
{nα,mα}

�l′ (0)�∗
l′+∑

α αmα
(0)i

∑
α mα ei Fτ

2

∑
α αmα

⎛
⎝l′ +

∑
β

βnβ

⎞
⎠∏

α

Jnα
(ξα)Jnα−mα

(ξα)

+ξ1

2
iei Fτ

2

∑
l′

∑
{nα,mα}

�l′(0)�∗
l′+∑

α αmα+1(0)i
∑

α mα ei Fτ
2

∑
α αmα

∏
α

Jnα
(ξα)Jnα−mα

(ξα)

−ξ1

2
ie−i Fτ

2

∑
l′

∑
{nα,mα}

�l′(0)�∗
l′+∑

α αmα−1(0)i
∑

α mα ei Fτ
2

∑
α αmα

∏
α

Jnα
(ξα)Jnα−mα

(ξα),

where all indices α,β range from 2 to A. In the next step, the recursion and orthogonality relations of Eq. (16) can be employed
again to evaluate the sums over nα and mα for each α, which finally gives

〈X〉τ =
∑

l

l|�l(0)|2 +
A∑

α=1

αξαRe

[
iei αFτ

2

∑
l

�l(0)�∗
l+α(0)

]
= 〈X〉0 +

A∑
α=1

2tα

F
Re[(eiαFτ − 1)g(α)], (B1)

where we have introduced g(α) := ∑
l �l(0)�∗

l+α(0) (see also the recent finding within the nearest-neighbor model [33]). The
calculation of 〈X2〉τ is more involved but proceeds along the same lines, so we only state the final result:

〈X2〉τ = 〈X2〉0 +
A∑

α=1

8
t2
α

F 2
sin2 αFτ

2
{1 − Re[eiαFτ g(2α)]} +

A∑
α=1

2tα

F
Re

[
(eiαFτ − 1)

∑
l

(2l + α)�l(0)�∗
l+α(0)

]

+
A∑

α,β=1,α �=β

8
tαtβ

F 2
sin

αFτ

2
sin

βFτ

2
Re

[
ei(α−β) Fτ

2 g(α − β) − ei(α+β) Fτ
2 g(α + β)

]
. (B2)

Now, if we take the initial wave function to be real and symmetric with respect to a site l0, i.e., �l0+l(0) = �l0−l(0), it can be
seen that

∑
l(2l + α)�l(0)�l+α(0) = 2〈X〉0g(α), yielding the simplified expressions

〈X〉τ = 〈X〉0 −
A∑

α=1

4tα

F
g(α) sin2 αFτ

2
,

〈X2〉τ = 〈X2〉0 +
A∑

α=1

8
t2
α

F 2
sin2 αFτ

2
[1 − g(2α) cos(αFτ )] − 〈X〉0

A∑
α=1

8tα

F
g(α) sin2 αFτ

2

+
A∑

α,β=1,α �=β

8
tαtβ

F 2
sin

αFτ

2
sin

βFτ

2

[
g(α − β) cos

(α − β)Fτ

2
− g(α + β) cos

(α + β)Fτ

2

]
.

Specializing to the Gaussian wave packet centered at site l0 = 0, we furthermore have 〈X〉0 = 0 and the functions g(α) can be
evaluated in terms of theta functions using the sum [56]∑

l

e−[l2+(l+α)2]/(2σ ) = e−α2/(4σ )√σπ ϑ3

(
α

π

2
,e−σπ2

)
.

This results in Eqs. (18) and (19) of the main text.
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Schwob, F. Nez, L. Julien, and F. Biraben, Determination of the
fine structure constant based on Bloch oscillations of ultracold
atoms in a vertical optical lattice, Phys. Rev. Lett. 96, 033001
(2006).

[11] B. P. Anderson and M. A. Kasevich, Macroscopic quantum
interference from atomic tunnel arrays, Science 282, 1686
(1998).

[12] G. Roati, E. de Mirandes, F. Ferlaino, H. Ott, G. Modugno, and
M. Inguscio, Atom interferometry with trapped Fermi gases,
Phys. Rev. Lett. 92, 230402 (2004).

[13] G. Ferrari, N. Poli, F. Sorrentino, and G. M. Tino, Long-lived
Bloch oscillations with bosonic Sr atoms and application to
gravity measurement at the micrometer scale, Phys. Rev. Lett.
97, 060402 (2006).

[14] P. G. Kevrekidis, The Discrete Nonlinear Schrödinger Equation:
Mathematical Analysis, Numerical Computations and Physical
Perspectives (Springer, Berlin, 2009).

[15] G. Gaeta, On a model of DNA torsion dynamics, Phys. Lett. A
143, 227 (1990).

[16] T. Dauxois, Dynamics of breather modes in a nonlinear
“helicoidal” model of DNA, Phys. Lett. A 159, 390 (1991).

[17] S. Zdravković, Helicoidal Peyrard–Bishop model of DNA
dynamics, J. Nonlinear Math. Phys. 18, 463 (2011).

[18] Y. B. Gaididei, S. F. Mingaleev, P. L. Christiansen, and K. O.
Rasmussen, Effects of nonlocal dispersive interactions on self-
trapping excitations, Phys. Rev. E 55, 6141 (1997).

[19] X.-G. Zhao, G. A. Georgakis, and Q. Niu, Photon assisted trans-
port in superlattices beyond the nearest-neighbor approximation,
Phys. Rev. B 56, 3976 (1997).

[20] F. Dreisow, A. Szameit, M. Heinrich, T. Pertsch, S. Nolte, and
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