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Radio-frequency spectroscopy of a linear array of Bose-Einstein condensates in a magnetic lattice
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We report site-resolved radio-frequency spectroscopy measurements of Bose-Einstein condensates of 87Rb
atoms in about 100 sites of a one-dimensional (1D) 10-μm-period magnetic lattice produced by a grooved
magnetic film plus bias fields. Site-to-site variations of the trap bottom, atom temperature, condensate fraction,
and chemical potential indicate that the magnetic lattice is remarkably uniform, with variations in the trap
bottoms of only ± 0.4 mG. At the lowest trap frequencies (radial and axial frequencies of 1.5 kHz and 260 Hz,
respectively), temperatures down to 0.16 μK are achieved in the magnetic lattice, and at the smallest trap depths
(50 kHz) condensate fractions up to 80% are observed. With increasing radial trap frequency (up to 20 kHz, or
aspect ratio up to ∼80) large condensate fractions persist, and the highly elongated clouds approach the quasi-1D
Bose gas regime. The temperature estimated from analysis of the spectra is found to increase by a factor of about
5, which may be due to suppression of rethermalizing collisions in the quasi-1D Bose gas. Measurements for
different holding times in the lattice indicate a decay of the atom number with a half-life of about 0.9 s due to
three-body losses and the appearance of a high-temperature (∼1.5 μK) component which is attributed to atoms
that have acquired energy through collisions with energetic three-body decay products.
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I. INTRODUCTION

Magnetic lattices comprising periodic arrays of magnetic
microtraps created by patterned magnetic films [1–10] provide
a potentially powerful complementary tool to optical lat-
tices for simulating many-body condensed-matter phenomena.
Such lattices offer a high degree of design flexibility. They
may, in principle, be tailored to produce two-dimensional
(2D) or one-dimensional (1D) arrays of ultracold atoms in
nearly arbitrary configurations [6] and with arbitrary lattice
spacings that are not restricted by the optical wavelength. To
date, ultracold atoms have been successfully loaded into a
one-dimensional magnetic lattice with a period of 10 μm [3,8],
a two-dimensional rectangular magnetic lattice with a period
of about 25 μm [2,4,7], and square and triangular magnetic
lattices with a period of 10 μm [9]. Two-dimensional square
and triangular magnetic lattices with periods down to 0.7 μm,
designed for quantum tunneling experiments, have recently
been fabricated and characterized [10].

In a recent Rapid Communication [8] we reported prelimi-
nary results for the realization of a periodic array of about 100
Bose-Einstein condensates (BECs) of 87Rb |F = 1,mF = −1〉
atoms in a one-dimensional 10-μm-period magnetic lattice.
Clear signatures for the onset of Bose-Einstein condensation
were provided by in situ site-resolved radio-frequency (rf)
spectroscopy. The atoms were prepared in the |F = 1,mF =
−1〉 low-field-seeking state, which has a three times smaller
three-body recombination coefficient [11,12] and a weaker
confinement compared with atoms in the |F = 2,mF = +2〉
state.

In this paper we report site-resolved rf measurements
of Bose-Einstein condensates of 87Rb |F = 1,mF = −1〉
atoms in multiple sites of the one-dimensional 10-μm-period
magnetic lattice. Radio-frequency spectra are presented for a
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range of trap depths, trap frequencies, and holding times in
the magnetic lattice, including spectra for highly elongated
magnetic lattice traps in which the atom clouds approach the
quasi-1D Bose gas regime [13–15]. The effect of magnetic
noise on the rf spectra, which was not included in our earlier
analysis [8], is found to have a significant effect on the
temperature, condensate fraction, chemical potential, and atom
number derived from the rf spectra.

In Sec. II we present background theory on the 1D magnetic
lattice and a self-consistent Hartree-Fock mean-field model
used to analyze the rf spectra. Section III gives experimental
details, including a description of the magnetic lattice atom
chip, the procedure for atom cooling and loading atoms into the
lattice, the trap frequency measurements, and the site-resolved
rf spectroscopy setup. In Sec. IV we present rf spectra for
multiple BECs in the magnetic lattice for a range of trap depths,
trap frequencies, and holding times in the lattice. In Sec. V we
summarize our results and discuss some future directions.

II. BACKGROUND THEORY

A. One-dimensional magnetic lattice

For an infinite 1D array of infinitely long, parallel, perpen-
dicularly magnetized magnets with bias fields Bbx , Bby along
the x,y directions and no confinement along the (axial) x

direction (Fig. 1), the magnetic field components for distances
z � a/2π from the surface can be approximated by [1]

[Bx ; By ; Bz] ≈ [Bbx ; B0sin(ky)e−kz + Bby ; B0cos(ky)e−kz],

(1)

where k = 2π/a, a is the lattice period, B0 = 4Mz(ekt −
1) (in Gaussian units), Mz is the magnetization in the z

(perpendicular) direction, t is the thickness of the magnets,
and z = 0 at the top surface of the magnets. The magnetic
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FIG. 1. (Color online) (a) Schematic of the one-dimensional
magnetic lattice created by an array of perpendicularly magnetized
parallel magnets with period a and bias fields Bbx,Bby along the
x and y directions. The current-carrying Z wire is shown above
the magnetic lattice structure. The contour lines are equipotentials
calculated for the parameters 4 πMz = 3 kG, a = 10 μm, t = 1 μm,
ωrad/2π = 7.5 kHz, ωax/2π = 260 Hz. (b) Multilayered structure of
the magnetic film.

minima are located at

zmin = a

2π
ln

(
B0

|Bby |
)

(2)

from the chip surface. The trap bottom given by Bmin = |Bbx |
can be adjusted by the bias field Bbx to prevent loss of atoms
by Majorana spin flips.

The barrier heights of the traps along the confining (y,z)
radial directions are [1]

�Bby = (
B2

bx + 4B2
by

)1/2 − |Bbx |,
(3)

�Bbz = (
B2

bx + B2
by

)1/2 − |Bbx |.
The trap frequencies for an atom of mass m in a low-field-
seeking state (mF gF > 0) confined in a harmonic potential
are given by [1]

ωy = ωz = 2π

a

(
mF gF μB

m|Bbx |
)1/2

|Bby |. (4)

The above analytic expressions are derived for an infinitely
large number of infinitely long magnetic traps with no confine-
ment along the axial (x) direction and provide useful scalings
for the various magnetic lattice parameters. In practice, our
finite magnetic lattice consists of a 1D 10-μm-period array of
one thousand 10-mm-long traps with weak confinement along
the axial direction. To determine the lattice potentials for this
finite magnetic lattice we use numerical simulations based on
the RADIA code [16], as described in Sec. III A.

B. Model for rf spectra

To fit the rf spectra we use a self-consistent Hartree-Fock
mean-field model for the BEC plus thermal cloud similar to
that used by Gerbier et al. [17] and Whitlock et al. [4]. The
model accounts for the interaction among atoms in the BEC
and in the thermal cloud and the mutual interaction between
them but neglects the kinetic energy of the condensate fraction

via the Thomas-Fermi approximation and effects of gravity
sag in the tight magnetic traps. The equilibrium condensate
density is given by

nc(r) = Max

{
1

g
[μ − Vext(r) − 2gnth(r)]; 0

}
, (5)

where nth(r) = Li3/2{exp[−|μ − Veff(r)|]/kBT }/λ3
dB is the

density distribution of the thermal cloud, Veff(r) = Vext(r) +
2g[nth(r) + nc(r)], Vext(r) = 1

2mω2r2 = 1
2m(ω2

xx
2 + ω2

yy
2 +

ω2
zz

2) is the confining harmonic potential, and μ is the chemical
potential. Li3/2(z) is the polylogarithmic function with a base

of 3/2, λdB is the thermal de Broglie wavelength, g = 4π�
2as

m

is the mean-field coupling constant, and as is the s-wave
scattering length.

In this analysis the atom clouds in the elongated magnetic
trap potentials with frequencies ωy = ωz = ωrad and ωx = ωax

may be replaced by a spherical trap with frequency equal
to the geometric mean trap frequency ω̄ = (ω2

radωax)1/3. To
determine nc(r), Eq. (5) is solved iteratively for a given
temperature T , chemical potential μ, and mean-field coupling
constant g. The resonance condition for rf-induced �mF =
±1 spin-flip transitions is hf ′ = μB |gF B| = 1

|mF |
1
2mω̄2r ′2,

where r ′2 = (ωx

ω̄
x)2 + (ωy

ω̄
y)2 + (ωz

ω̄
z)2, f ′ = f − f0, f is the

applied rf frequency, and f0 is the trap bottom. The atomic
density distribution as a function of frequency f ′ is then
obtained from the resonance condition and by determining the
number of atoms in a spherical shell with a volume increment
of 4πr ′2dr ′ that are resonant with an rf knife of frequency f ′.
For a pure BEC, the atomic density distribution as a function
of frequency f ′ is

nc(f ′) = Max

{
1

g
[μ − Vext(r

′)]4πr ′2(df ′/dr ′)−1; 0

}

= AMax

{
f ′1/2

(
μ

|mF |h − f ′
)

; 0

}
, (6)

where A = 4
√

2π2(m3
F

mh
)1/2 1

ω̄3as
. This frequency distribution for

a pure BEC has an asymmetric shape originating from the
inverted-parabolic (Thomas-Fermi) spatial distribution for a
BEC and a base width μ/(|mF |h), which provides a measure
of the chemical potential and hence the number of atoms in
the condensate.

Figure 2 shows the calculated atom density profile and rf
spectrum for a BEC and thermal cloud and the sum of the
two for 87Rb |F = 1,mF = −1〉 atoms confined in a magnetic
trap for the parameters given in the caption. The narrow BEC
Thomas-Fermi component is represented by the dashed purple
(dark gray) lines, and the broad thermal cloud component is
shown by the dashed red (light gray) lines. These distributions
show the repulsion of the thermal cloud by the BEC.

III. EXPERIMENT

A. Magnetic lattice atom chip

The magnetic lattice atom chip consists of a one-
dimensional perpendicularly magnetized 10-μm-period
grooved TbGdFeCo structure [Fig. 1(a)] mounted on current-
carrying wires. Details of the magnetic microstructure and
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FIG. 2. (Color online) Calculated (a) atom density vs r ′ and (b) rf
spectrum, showing the contribution of the BEC alone [dashed purple
(dark gray) line], the thermal cloud alone [dashed red (light gray)
line], and the sum of the two (blue solid line) for 87Rb |F = 1,mF =
−1〉 atoms confined in a magnetic trap. Parameters are T = 0.5 μK,
μ/h = 7.5 kHz, ω̄/2π = 2.40 kHz, as = 5.3 nm.

atom chip fabrication have been reported previously [3,18],
and only a brief description is given here.

A 300-μm-thick, 35 × 35 mm2 silicon wafer is etched
with a periodic microstructure consisting of one thousand
10-mm-long parallel grooves with 10-μm spacing. The
grooved microstructure is coated with six layers of 160-nm-
thick magneto-optical Tb6 Gd10 Fe80 Co4 film, separated by
100-nm-thick nonmagnetic chromium layers [Fig. 1(b)], using
a magnetron sputtering system operated at a base pressure
of typically 10 −8 Torr. The grooves are sufficiently deep
(>20 μm) compared with the lattice period that the magnetic
film at the bottom of the grooves has almost no influence on
the magnetic potentials. A 150-nm-thick gold film is deposited
on top of the multilayer magnetic structure, which gives
good optical reflectivity (>95% at 780 nm) for the mirror
magneto-optical trap (MOT) and for reflective absorption
imaging of the atom clouds. The magnetic microstructure is
aligned with and glued on top of the wire pattern consisting of
two U wires and a Z wire (both 5 × 1 × 0.5 mm) [3].

Hysteresis loops obtained using a superconducting quan-
tum interference device magnetometer show that the multi-
layer Tb6 Gd10 Fe80 Co4 film has a remanent magnetization
4 πMz = 3 kG and a coercivity Hc = 6 kOe. Scanning
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FIG. 3. (Color online) Simulations of the magnitude of the mag-
netic field along the (a) z, (b) y, and (c) x directions of the lattice
microtraps using the RADIA code [16]. Parameters are 4 πMz = 3 kG,
t = 0.96 μm, a = 10 μm, Iz = 17 A, Bbx = 51 G, Bc

by = 0.

electron microscope measurements indicate a grain size of
about 40 nm [19]. The surface roughness of the magnetic
microstructure measured by an atomic force microscope is
less than 20 nm. The TbGdFeCo microstructure is magnetized
in a direction perpendicular to the surface of the film and is
analyzed using a magnetic force microscope (MFM) which
measures the second derivative of the magnetic field along
the z (vertical) direction [20]. The MFM images indicate that
the microstructure produces a periodic magnetic field with a
period of 10 μm [3].

The y-bias field required to create the magnetic lattice
potential is provided by the end wires of the current-carrying
Z wire along the x direction plus an additional magnetic field
Bc

by provided by external coils, while weak axial confinement
for the traps is provided by the central region of the Z wire
along the y direction [18]. Figure 3 shows simulations of the
magnitude of the magnetic field along the z,y, and x directions
of the magnetic lattice traps for the parameters given in the
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FIG. 4. (Color online) (a) Radial trap frequency of the magnetic
lattice traps vs Bc

by provided by external coils for Iz = 17 A,
Bbx = 51 G measured using parametric heating. The solid line
represents the calculated radial trap frequency over the range used
in the experiments. The inset shows the parametric heating resonance
for Bc

by = 0. (b) Calculated axial trap frequency vs Iz for Bc
by = 0,

Bbx = 51 G.

caption. The magnetic field in the z direction consists of a
narrow trapping region together with a broad trapping region
produced by the current-carrying Z wire that falls off slowly
with distance z [Fig. 3(a)], which is advantageous for trapping
a large volume of atoms,. The barrier heights of the lattice
traps are �Bby = 2.4 G, or 82 μK for |F = 1,mF = −1〉
atoms, and �Bbz > 5 G, or >180 μK. The potential minima
are located at zmin = 8 μm from the chip surface.

B. Trap frequencies

To determine the radial trap frequencies in the tight
magnetic lattice traps, we use an in situ technique [21]. A
250-ms-long oscillating pulse is applied through one of the
U wires to modulate the stiffness constant of the traps. When
the applied frequency matches the trap frequency, the atoms
absorb energy from the external source, resulting in a rise in
temperature and a loss of trapped atoms (Fig. 4, inset). For
a Z-wire current Iz = 17 A and Bbx = 51 G, the measured
radial trap frequency ωrad/2π = 7.5 ± 0.1 kHz.

The radial trap frequency can be varied while keeping
the axial trap frequency constant by applying a y-bias field
Bc

by created by external coils [Fig. 4(a)]. The measured radial

trap frequencies agree with the simulated values [solid line in
Fig. 4(a)], with a mean rms difference of 2% over the range
investigated.

Figure 4(b) shows a plot of the calculated axial trap
frequency versus Iz for Bc

by= 0 and Bbx = 51 G. For Iz =
17 A, the calculated ωax/2π = 260 Hz.

C. Atom cooling and loading magnetic lattice

The atom cooling and trapping cycle begins with 87Rb
atoms released from a dispenser into a standard four-beam
mirror magneto-optical trap (MMOT) in which two of the
beams are retroreflected at 45◦ to the gold surface on the chip
[3]. The beams consist of combined trapping and repumper
beams in which the trapping laser is detuned 14 MHz below
the F = 2 → F ′ = 3 cycling transition and the repumper laser
is locked to the F = 1 → F ′ = 2 transition. We typically trap
2 × 108 atoms in 28 s in the MMOT at ∼1.2 mm below the
chip surface. The atoms are then transferred to a compressed
MOT which is produced by passing 20 A through a U wire
and applying a bias field Bbx = 12 G to create a quadrupole
magnetic trap. This is followed by a polarization gradient
cooling stage resulting in ∼1 × 108 atoms cooled to 30–40 μK.

Next, the atoms are optically pumped into the |F = 1,mF =
−1〉 low-field-seeking state, which is chosen for trapping in the
magnetic lattice because of its three times smaller three-body
loss rate [11,12] and weaker magnetic confinement compared
with the |F = 2,mF = 2〉 state. The optical pumping is per-
formed by applying 4-ms-long σ−-polarized pulses resonant
with the F = 2 → F ′ = 2 and F = 1 → F ′ = 2 transitions
to first pump atoms into the |F = 2,mF = −2〉 dark state and
then switching off the F = 1 → F ′ = 2 pulse to allow the
atoms to accumulate in the |F = 1,mF = −1〉 state. The σ−
pulse contains a small π -polarized component to remove atoms
from the |F = 2,mF = −2〉 dark state.

The |F = 1,mF = −1〉 atoms are then transferred to a Z-
wire Ioffe-Pritchard magnetic trap formed by passing a current
of Iz = 35 A, increasing the x-bias field to Bbx = 10 G, and
applying a y-bias field of Bc

by = 7 G from external coils. The
cloud is then compressed by ramping Iz and Bbx up to 37 A and
51 G and raising Bc

by to 9.5 G in 100 ms, resulting in ∼5 × 107

atoms trapped in the Z-wire trap at ∼600 μm below the chip
surface with a trap lifetime of about 25 s. Radio-frequency
evaporative cooling is then performed for 10 s in the Z-wire
trap by ramping the frequency of the rf field down to a final
evaporation frequency of ∼3 MHz, leaving ∼3 × 106 atoms in
the Z-wire trap at 10–15 μK. Iz is ramped from 37 A down to
17 A in 100 ms, keeping Bbx = 51 G with Bc

by = 0, where the
Z-wire trap merges smoothly with the magnetic lattice traps,
allowing ∼3 × 105 |F = 1,mF = −1〉 atoms to be loaded into
about 100 lattice sites located 8 μm from the chip surface. A
second evaporation ramp is then carried out from 7 MHz down
to a final frequency ff ∼ 5 MHz in 1.5 s to further cool the
atoms in the magnetic lattice.

D. Absorption imaging and site-resolved
radio-frequency spectroscopy

For absorption imaging, the atoms are pumped into the
|F = 2,mF = +2〉 state, and a σ+-polarized imaging beam
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FIG. 5. (Color online) (a) Schematic of the reflection absorption
imaging system. (b) Absorption image for an array of about 100
clouds of 87Rb |F = 1,mF = −1〉 atoms trapped in the 1D 10-μm-
period magnetic lattice after evaporative cooling to a trap depth δf =
(ff − f0) = 100 kHz. Images are produced both prior to and after
reflection of the imaging beam from the chip surface (indicated by the
horizontal dashed line). The gaps in the absorption signals for some
of the sites correspond to regions where the reflectivity of the gold
mirror is low due to contamination by rubidium atoms. The vertical
white arrow indicates the lattice site (site 38) at which the rf spectra
in Figs. 6, 9, and 12 were recorded. The effective pixel size is 2.0 μm.

tuned to the F = 2 → F = 3 cycling transition is focused by
a 700-mm-focal length plano-convex cylindrical lens into a
light sheet [22] to produce a uniform imaging beam across
all occupied sites of the magnetic lattice [Fig. 5(a)]. The
light transmitted by the atoms is imaged by a 100-mm-focal
length, 50.8-mm-diameter achromatic lens positioned next to
the vacuum view port. To minimize aberration and vignetting
a second identical lens is positioned 200 mm away (in a 4f

configuration). The image is magnified using a commercial
microscope objective (10 × aplanat) and a 100-mm-focal
length, 50.8-mm-diameter tube lens to create an image on
the CCD camera. With the 100-mm-focal length tube lens the
magnification is 6.5, and the effective pixel size is 2.0 μm.
The 100-mm working distance and the 45-mm-diameter
effective aperture give a numerical aperture AN = 0.22 and a
theoretical diffraction-limited resolution (Rayleigh criterion)
R = 0.61λ/AN = 2.2 μm. The actual resolution measured
from the width of the BEC images of individual lattice sites is
4 μm.

The images are recorded using reflection absorption imag-
ing [22] along the x direction parallel to the long axis of the
elongated atom clouds. The imaging beam is sent at a slight
angle (∼2◦) to the reflecting gold surface of the chip, resulting
in images both prior to and after reflection of the imaging
beam at the CCD camera, which is operated in frame-transfer
mode. The deep (>20 μm) grooves along the direction of
the imaging beam affect the reflection of the imaging beam
from the gold surface in the region of the atom clouds. A
small misalignment of the imaging beam from the x direction
allows sufficient reflection to obtain absorption signals from
the elongated atom clouds.

Figure 5(b) shows a reflection absorption image for a
periodic array of clouds of 87Rb atoms trapped in about 100
sites of the 1D 10-μm-period magnetic lattice after evaporative
cooling to a trap depth δf = (ff − f0) = 100 kHz (where ff

is the final evaporation frequency and f0 is the trap bottom).
The atom clouds are resolved in their individual lattice sites,
which allows us to perform site-resolved rf spectroscopy
measurements. The gaps in the absorption signals for some
of the sites correspond to regions where the reflectivity of the

gold mirror is low due to contamination by rubidium atoms
adsorbed on the gold surface. The site-to-site variations in
the absorption signals are also mainly due to variations in the
reflectivity of the gold mirror.

The measured positions of the atom clouds indicate that the
period of the array is constant to better than 1%. The separation
of the top and bottom absorption images provides a measure
of the distance of the atoms from the chip surface, which is
8 μm, in agreement with the calculated value.

The rf measurements were performed by applying an rf
pulse with a duration of 40 ms after evaporative cooling in the
magnetic lattice. The amplitude of the rf pulse was reduced
ten times after rf evaporation to minimize power broadening.

E. Magnetic noise broadening of rf spectra

The contribution of magnetic noise broadening, mainly at
the 50-Hz mains frequency, to the rf spectra is determined by
comparing the experimental rf spectra taken over a range of
radial trap frequencies (see Fig. 9) with theoretical rf spectra
generated by convolving frequency distributions obtained from
the self-consistent mean-field model with (assumed) Gaussian
broadening functions of varying width. The theoretical fits
are constrained so that the atom number derived from the fit
matches the (scaled) atom number determined from absorption
imaging measurements [see Fig. 10(d)]. The scaling factor for
the atom number is introduced to allow for the effect of laser
light that is scattered from the chip surface without passing
through the atom cloud and for imperfections in the absorption
imaging process. By comparing the atom number determined
from the absorption measurements with the (unconstrained)
atom number derived from theoretical fits to the rf spectra
taken at large radial trap frequencies where the effect of
magnetic noise broadening is relatively small, we obtain a
scaling factor of 2.8. Comparing the experimental rf spectra
with theoretical spectra generated in this way, we obtain a
FWHM = 4.3 ± 0.2 kHz for the Gaussian magnetic noise
function. This is to be compared with a peak-to-peak magnetic
noise of ∼5.2 mG, or ∼3.6 kHz for rubidium |F = 1,mF =
−1〉 atoms, measured on the outside of the UHV chamber
using a fluxgate magnetometer with all power supplies and
electronics operating.

IV. RESULTS

A. Radio-frequency spectra for varying trap depth

Figure 6 shows rf spectra recorded for lattice site 38 after
the atoms in the magnetic lattice are evaporatively cooled to
trap depths ranging from δf = (f − f0) = 600 kHz down to
δf = 50 kHz, with ωrad/2π = 7.5 kHz, ωax/2π = 260 Hz.
For trap depths δf < 600 kHz the rf spectra exhibit bimodal
distributions consisting of a narrow BEC component plus a
broad thermal cloud component, analogous to those obtained
for the density distribution of a BEC plus thermal cloud in
conventional time-of-flight measurements. The solid lines in
Fig. 6 are fits to the data points obtained from the self-
consistent Hartree-Fock mean-field model for a BEC plus
thermal cloud convolved with a Gaussian magnetic noise
function with FWHM = 4.3 kHz. For the δf = 50 and
100 kHz spectra, the fits are obtained by fitting the temperature
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FIG. 6. Radio-frequency spectra of loss of atoms in lattice site 38
after evaporative cooling to trap depths δf = (f − f0) of (a) 600 kHz,
(b) 400 kHz, (c) 200 kHz, (d) 100 kHz, and (e) 50 kHz, with ωrad/2π =
7.5 kHz, ωax/2π = 260 Hz. The points represent mostly single shots.
The error bars were estimated from the average standard deviation of
the mean for those points for which multiple shots were taken divided
by the square root of the number of shots for each point. The solid lines
are fits to the data points based on the self-consistent mean-field model
for a BEC plus thermal cloud convolved with a Gaussian magnetic
noise function with FWHM = 4.3 kHz as described in the text.
The temperatures and atom numbers are (a) T = 2 μK, Nμ = 5350;
(b) T = 1.3 μK, Nμ = 3430; (c) T = 0.5 μK, Nμ = 860; (d) T =
0.38 μK, Nabs = 200; and (e) T = 0.25 μK, Nabs = 160. Nabs are
determined from absorption measurements, and Nμ are determined
from fits to the rf spectra.

and constraining the atom number so that it matches the
scaled atom number determined from the absorption imaging
measurements. The primary effect of temperature on the rf
spectra is to change both the condensate fraction and the width
of the thermal cloud component. For the spectra taken at the
larger trap depths (δf > 100 kHz), the atom number is up to
30 times higher [Fig. 7(d)], and the absorption imaging results

(a) 

(b) 

(c) 

(d) 
0

5

10

15

Μ
h

kH
z

0.0

1.0

0.2

0.4

0.6

0.8

N
c

N

2.0

1.0

0.0

0.5

1.5

T
ΜK

0 100 200 300 400 500 600
0

2

4

Trap depth kHz

N
10

3

FIG. 7. Variation of (a) temperature T , (b) condensate fraction
Nc/N , (c) chemical potential μ/h, and (d) atom number per site N

with trap depth for lattice site 38, with ωrad/2π = 7.5 kHz, ωax/2π =
260 Hz. The points were determined from fits to the rf spectra in Fig. 6,
as described in the text. The solid lines are polynomial fits constrained
to pass through (b) Nc/N = 1.0, (c) μ/h = 0, and (d) N = 0 at zero
trap depth.

are no longer reliable owing to saturation of the absorption
signal by the presence of a nonabsorbed background light
component. Therefore, the spectra for δf > 100 kHz are fitted
by adjusting both the temperature and the chemical potential,
from which the atom number Nμ is determined.

Figures 7(a) and 7(b) show plots of the temperature and
condensate fraction determined from the fits to the rf spectra
in Fig. 6 as a function of trap depth. With decreasing trap depth,
the temperature continues to decrease approximately linearly,
down to 0.25 μK at the lowest trap depth (δf = 50 kHz),
for which the ideal-gas critical temperature for quantum
degeneracy is T 0

c = 0.59 μK for N = 160 atoms per site. The
slope of the temperature vs trap depth curve (3.1 μK/MHz)
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corresponds to a truncation parameter for evaporation of
η = 15, which reflects a high ratio of elastic to inelastic
collisions. The decrease in temperature is accompanied by
an increase in condensate fraction, which for δf = 50 kHz
is close (81%) to that of a pure condensate. The chemical
potential and atom number per site [Figs. 7(c) and 7(d)]
decrease monotonically with trap depth, approaching zero at
small trap depths.

B. Radio-frequency spectra for various sites
across the magnetic lattice

Our light-sheet imaging scheme allows site-resolved rf
spectra to be recorded simultaneously for nearly all occupied
sites across the magnetic lattice, with a total acquisition
time of around 1 h. Since the absorption signals show quite
large site-to-site variations across the lattice, due mainly to
variations of reflectivity of the gold mirror (Fig. 5), this set
of rf spectra was analyzed by fitting both the temperature and
chemical potential, from which the atom number per site Nμ

was determined.
Figure 8 shows plots of the trap bottom, temperature,

condensate fraction, chemical potential, and atom number,
determined from fits to the rf spectra for 54 sites across
the central region of the magnetic lattice for a trap depth
δf = 100 kHz. Large condensate fractions (0.54 ± 0.06) are
found for all 54 lattice sites [Fig. 8(c)]. The site-to-site
variation in the various quantities, given by the standard
deviations in the caption to Fig. 8, indicate that the sites are
remarkably uniform across the magnetic lattice. In particular,
the trap bottoms, which could be accurately determined from
the intercepts of the fitted rf spectra with the (f − f0) axis,
show site-to-site variations of only ±0.3 kHz, or ± 0.4 mG for
|F = 1,mF = −1〉 atoms.

C. Radio-frequency spectra for varying trap frequencies

It is of interest to investigate how the condensates survive as
the trap frequency is increased to produce tighter lattice traps.
Figure 9 shows rf spectra recorded for lattice site 38 as the
radial trap frequency is raised from ωrad/2π = 1.5 to 19.9 kHz,
with the axial trap frequency kept fixed at ωax/2π = 260 Hz
and the trap depth δf = 100 kHz. The spectra exhibit a
pronounced BEC component up to the highest trap frequencies
investigated. The solid lines in Fig. 9 represent fits to the data
obtained from the self-consistent mean-field model convolved
with a Gaussian magnetic noise function with FWHM =
4.3 kHz and with the atom number constrained to match the
scaled atom number determined from the absorption imaging
measurements [Fig. 10(d)]. Satisfactory fits are obtained for
all spectra over the range of trap frequencies investigated.

For very high radial trap frequencies (ωrad > μ/�) we ex-
pect a crossover from three-dimensional (3D) to 1D behavior.
However, even for the highest radial trap frequencies the
observed rf spectra exhibit clear bimodal profiles. Although
it is not strictly valid in this regime, we used the 3D
self-consistent mean-field model to fit the spectra in Fig. 9
for all ωrad, including large ωrad, in order to estimate the
spectral widths of the narrow (BEC-like) and broad (thermal)
components. In particular, we have used this approach to
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FIG. 8. (Color online) (a) Trap bottom f0, (b) atom temperature
T , (c) condensate fraction Nc/N , and (d) chemical potential μ/h

(blue circles) and atom number Nμ (red triangles), determined
from fits to the rf spectra for 54 sites across the central region
of the magnetic lattice, with δf = 100 kHz, ωrad/2π = 7.5 kHz,
ωax/2π = 260 Hz. The red dashed line in (b) represents the ideal-
gas critical temperature T 0

c for 220 atoms. The mean values and
standard deviations of the quantities for the 54 sites are 〈f0〉 =
4.9323 ± 0.0003 MHz, 〈T 〉 = 0.40 ± 0.03 μK, 〈Nc/N〉 = 0.54 ±
0.06, 〈μ/h〉 = 6.0 ± 0.4 kHz, and 〈Nμ〉 = 220 ± 40.

provide an estimate for the temperature of the atomic gas
through the crossover.

Figure 10 shows the variation of temperature, condensate
fraction, and chemical potential determined from the fits
together with the atom number per site determined from the
absorption imaging measurements, over the range ωrad/2π =
1.5 to 20.6 kHz, corresponding to aspect ratios of 6 to 79. The
temperatures determined from the fits increase approximately
linearly from 0.16 μK at ωrad/2π = 1.5 kHz to 0.73 μK
at ωrad/2π = 20.6 kHz. The increase in temperature is
accompanied by a factor of about 2 reduction in condensate
fraction. After allowing for magnetic noise broadening, the
chemical potential closely follows the expected scaling for
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FIG. 9. Radio-frequency spectra of loss of atoms in lattice site
38 for different radial trap frequencies of (a) 1.5 kHz, (b) 7.5 kHz,
(c) 9.5 kHz, (d) 16.1 kHz, and (e) 19.9 kHz, with ωax/2π = 260 Hz,
δf = 100 kHz. The solid lines are fits to the data points based on
the self-consistent mean-field model for a BEC plus thermal cloud
convolved with a Gaussian magnetic noise function with FWHM =
4.3 kHz, as described in the text. The temperatures and atom numbers
are (a) T = 0.16 μK, Nabs = 290; (b) T = 0.32 μK, Nabs = 240; (c)
T = 0.38 μK, Nabs = 200; (d) T = 0.48 μK, Nabs = 170; (e) T =
0.64 μK, Nabs = 110; and (f) T = 0.71 μK, Nabs = 90.

a 3D condensate μ = Aω
4/5
rad N2/5 [solid line in Fig. 10(c)],

which is determined from μ = 1
2 �ωHO( 15Nas

aHO
)2/5, where aHO =

( �

mωHO
)1/2 and ωHO = ω̄ = (ω2

radωax)1/3, using the N (ωrad)
values from the polynomial fit to the scaled atom numbers
in Fig. 10(d). The prefactor A used to obtain the solid line in
Fig. 10(c) is in reasonable agreement (17% lower) with the
theoretical factor A = 1

2 �( 15asm
1/2ωax

�1/2 )2/5.
In Fig. 11 we plot μ/(�ωrad) and kBT /(�ωrad) against radial

trap frequency. For ωrad/2π > 10 kHz, both the chemical
potential μ and the thermal energy kBT lie below the energy
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FIG. 10. (Color online) (a) Temperature, (b) condensate fraction,
(c) chemical potential, and (d) atom number per site vs radial trap
frequency for lattice site 38, with ωax/2π = 260 Hz, δf = 100 kHz.
The black points in (a)–(c) were determined from fits to the rf spectra
in Fig. 9, as described in the text. The red triangles in (c) were
determined from fits to the rf spectra without allowing for magnetic
noise broadening. The points in (d) were determined from absorption
imaging measurements, where the atom number on the right vertical
axis has been scaled by a factor of 2.8 (see text). The solid line
in (c) represents a fit of ω

4/5
rad N (ωrad)2/5 to the data points using the

polynomial fit to the scaled N (ωrad) values in (d). The solid lines in
(a), (b), and (d) are polynomial [(b), (d)] or straight-line [(a)] fits to
the data points.

of the lowest radial vibrational excited state �ωrad, which
represents the quasi-1D Bose gas regime [13–15,22,23].
The fitted temperature is seen to increase approximately
linearly through the crossover, and for the highest radial
trap frequencies (20.6 kHz) the temperature is a factor of 5
higher than in the 3D regime. An explanation of the observed
increase in temperature extracted from the 3D Hartree-Fock
mean-field model could be reduced efficiency of evaporation
due to suppression of rethermalizing collisions in the quasi-1D
regime. However, to conclusively determine the cause of this
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and red (gray) points lie below the dashed line indicates the quasi-1D
Bose gas regime. The solid lines are polynomial fits to the data
points.

increase we require more sophisticated (beyond mean field)
models of the expected rf spectra in the crossover between the
3D and 1D regimes.

A 1D Bose gas may be characterized by the Lieb-Liniger
interaction parameter γ ≈ 2as

n1Dl2
rad

and the dimensionless tem-

perature t = 2�
2kBT

mg2 [15]. Here n1D = N/lax is the linear atom

density in the axial direction, lrad = √
�/(mωrad) is the radial

oscillator length (assumed to be �as), lax is the cloud rms
length, which is assumed to scale as the Thomas-Fermi radius
Rax = √

2μ/(mω2
ax), and g ≈ 2�ωradas is the 1D coupling

constant. From the above, γ scales as ωrad/(Nω
11/15
ax ), and t

scales as T/ω2
rad. Reaching the strongly interacting, strongly

correlated 1D Tonks-Girardeau regime in a trapped Bose
gas [24,25] requires γ > 1 and t < 1 [15]. For the highest
trap frequency (ωrad/2π = 20.6 kHz) used in our magnetic
lattice, the interaction parameter γ ≈ 0.3 and the temperature
parameter t ≈ 70. It may be possible in the future to reach
the Tonks-Girardeau regime in our magnetic lattice using, for
example, ωrad/2π = 50 kHz, ωax/2π = 100 Hz, N = 50, and
T = 50 nK, which give γ ≈ 2 and t ≈ 1.

D. Radio-frequency spectra for various holding times

Figure 12 shows rf spectra recorded for a range of holding
times up to 1000 ms after evaporative cooling to δf = 100 kHz
in the magnetic lattice for lattice site 38 with ωrad/2π =
7.5 kHz, ωax/2π = 260 Hz. For the spectra taken for thold �
500 ms we were unable to obtain satisfactory fits with the
self-consistent mean-field model using a single temperature,
nor could we obtain fits with a Hartree-Fock-Bogoliubov
finite-temperature model [26] using a single temperature.

To obtain reasonable fits, the spectra for long hold times
in Fig. 12 are fitted with a two-temperature model, in which
we assume a fixed T1 = 0.4 μK for the BEC plus thermal
cloud component and T2 = 1.5 μK for the broad component,
convolved with a Gaussian noise function with FWHM =

0
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FIG. 12. Radio-frequency spectra of loss of atoms in lattice site
38 recorded for holding times of (a) 0 ms, (b) 250 ms, (c) 500 ms, (d)
750 ms, and (e) 1000 ms, after evaporative cooling to δf = 100 kHz,
with ωrad/2π = 7.5 kHz, ωax/2π = 260 Hz. The solid lines in (a) and
(b) are fits to the data points based on the self-consistent mean-field
model for a BEC plus thermal cloud convolved with a Gaussian
magnetic noise function with FWHM = 4.3 kHz, as described in the
text. The solid lines in (c)–(e) are fits based on a two-temperature
model with T1 = 0.4 μK for the BEC plus thermal cloud component
and T2 = 1.5 μK for the broad component, as described in the
text.

4.3 kHz and constrained so that the total atom number derived
from the fit matches the scaled atom number determined from
the absorption imaging measurements [Fig. 13(a)].

The total atom number per site N for the conden-
sate plus thermal cloud determined by absorption imag-
ing [Fig. 13(a)] decays with a half-life t1/2 ∼ 0.9 ± 0.3 s,
which is consistent with the three-body decay half-life
for a pure condensate, t1/2 ∼ 0.6 ± 0.2, estimated using

Nc(t) = Nc(0)[1 + αNc(0)t]−5/4, where α = L3
(mω̄/�)12/5

14×151/5π2a
6/5
s

[27], L3 = (5.8 ± 1.9) × 10−30 cm6 s−1 [11], as = 5.3 nm,
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FIG. 13. (a) Atom number determined from absorption imaging
and (b) fraction of atoms in the broad T2 = 1.5 μK component in
Fig. 12 vs holding time for lattice site 38, with δf = 100 kHz,
ωrad/2π = 7.5 kHz, ωax/2π = 260 Hz. The error bar at the holding
time of 250 ms represents an upper limit estimated from fits to the rf
spectrum. The solid lines are polynomial fits to the data points. The
atom number on the right vertical axis in (a) corresponds to the atom
number scaled by a factor of 2.8 (see text).

and ω̄/2π = 2.40 kHz. The above half-life, t1/2 ∼ 0.9 ± 0.3 s,
is also similar (within about 10%) to the three-body decay
half-life for an ultracold thermal cloud in which the six times
larger L3 coefficient [11] is approximately compensated by the
much lower peak atom density for the thermal cloud [Fig. 2(a)].
We attribute the observed decay of the atom number with
holding time mainly to three-body loss.

The decay of the total atom number N with holding time
[Fig. 13(a)] is accompanied by a growth in the fraction of atoms
in the broad component [Fig. 13(b)]. Previous work (e.g., [28])
has shown that an ultracold rubidium cloud held in a magnetic
trap for several seconds after evaporative cooling can develop
“wings” in the density spatial profile that cannot be fitted with
a single Gaussian. This has been interpreted in terms of the
outer region of the magnetic trap becoming filled with a dilute,
high-energy halo of trapped atoms, the “Oort cloud,” which
can remain trapped in a deep magnetic trap without being
in thermal equilibrium with the ultracold cloud. The high-
energy cloud may be produced by a number of mechanisms
[28] such as energetic inelastic decay products of three-body
recombination. Due to its very low density, the high-energy
cloud is only weakly coupled to the ultracold atom cloud,
with occasional collisions transferring energy between the two
trapped components. In the present experiment we attribute the
appearance of the broad high-temperature component after
hold times >250 ms to rubidium atoms that have acquired
additional energy through collisions with energetic three-body
decay products and remain trapped. The observed delayed
onset of the broad high-temperature component [Fig. 13(b)]
is interpreted as being due to the time required for the high-

energy cloud to accumulate in the traps and to transfer energy
to part of the ultracold atom cloud.

V. SUMMARY AND OUTLOOK

We have investigated Bose-Einstein condensates of 87Rb
|F = 1,mF = −1〉 atoms trapped in multiple sites of a
one-dimensional 10-μm-period magnetic lattice using site-
resolved rf spectroscopy for various sites across the lattice
and for a range of trap depths, trap frequencies, and holding
times in the lattice. The site-to-site variation of the trap bottom,
temperature, condensate fraction, and chemical potential
across the magnetic lattice indicates that the magnetic lattice
is remarkably uniform. In particular, the trap bottoms, which
could be accurately determined, show site-to-site variations of
only ± 0.4 mG.

At the lowest radial trap frequency (1.5 kHz), temperatures
down to 0.16 μK were achieved in the magnetic lattice, and
at the smallest trap depth (50 kHz) condensate fractions up to
80% were observed. With increasing radial trap frequency (up
to 20 kHz) large condensate fractions continued to persist, and
the highly elongated atom clouds approached the quasi-1D
Bose gas regime. The temperature estimated from analysis
of the spectra was found to increase by a factor of about 5,
which may be due to suppression of rethermalizing collisions
in the quasi-1D Bose gas. It would be of interest to extend the
operating conditions of the present magnetic lattice to enable
the elongated atom clouds to enter the strongly interacting
Tonks-Girardeau regime, in which the atom clouds behave
like a gas of noninteracting 1D fermions.

Measurements taken for holding times up to 1000 ms in
the magnetic lattice indicated an atom number decay with
a half-life of about 0.9 s due to three-body recombination
and the appearance of a broad high-temperature (∼1.5 μK)
component. The broad component is attributed to atoms that
have acquired energy through collisions with energetic three-
body decay products and remain trapped.

In the present 10-μm-period magnetic lattice the multiple
BECs represent an array of isolated condensates with no
tunneling or interaction between the atoms in neighboring
lattice sites and no phase coherence between the conden-
sates. Such a magnetic lattice may be suited for conducting
experiments on Rydberg-interacting quantum systems which
exploit the long-range dipolar interaction between atoms
excited to Rydberg states [9,29]. In a 10-μm-period 2D lattice,
the interaction-driven level shift between, e.g., two n ≈ 80s
Rydberg atoms separated by 10 μm is still several megahertz,
which is much faster than the decay rate of Rydberg states
[29], while the fragile Rydberg atoms are trapped about 5 μm
from the chip surface, which should be sufficient to minimize
surface effects [9,30].

We have recently fabricated magnetic microstructures with
periods down to 0.7 μm to create 1D and 2D square and
triangular magnetic lattices in which the tunneling times
between neighboring lattice sites are estimated to be of the
order of tens of milliseconds [10]. To perform quantum tun-
neling experiments in a 0.7-μm magnetic lattice a number of
challenges need to be considered. First, high-quality magnetic
potentials that are smooth and highly periodic (to better than
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1%) are needed in order to minimize effects due to disorder
and any fragmentation of the elongated atom clouds. Second,
the atoms will be trapped at distances of typically 0.35 μm
from the chip surface, and therefore, surface effects such as
attractive van der Waals forces and thermally induced spin flips
produced by thermal currents in the nearby conducting film
need to be considered [7,10]. Third, in order to operate at the
barrier heights required for quantum tunneling experiments
(e.g., V0 = 12Er = 20 mG for 87Rb F = 1 atoms, where
Er = π2

�
2

2ma2 ), stray magnetic fields and magnetic noise need to
be compensated to better than 1 mG. Finally, due to the tight

confinement in the 0.7-μm-period magnetic lattices, atomic
states with low inelastic collision rates, such as fermionic
atoms, need to be chosen.
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