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Quantum state engineering of spin-orbit-coupled ultracold atoms in a Morse potential
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Achieving full control of a Bose-Einstein condensate can have valuable applications in metrology, quantum
information processing, and quantum condensed matter physics. We propose protocols to simultaneously control
the internal (related to its pseudospin-1/2) and motional (position-related) states of a spin-orbit-coupled Bose-
Einstein condensate confined in a Morse potential. In the presence of synthetic spin-orbit coupling, the state
transition of a noninteracting condensate can be implemented by Raman coupling and detuning terms designed
by invariant-based inverse engineering. The state transfer may also be driven by tuning the direction of the
spin-orbit-coupling field and modulating the magnitude of the effective synthetic magnetic field. The results
can be generalized for interacting condensates by changing the time-dependent detuning to compensate for the
interaction. We find that a two-level algorithm for the inverse engineering remains numerically accurate even if
the entire set of possible states is considered. The proposed approach is robust against the laser-field noise and
systematic device-dependent errors.

DOI: 10.1103/PhysRevA.91.023604 PACS number(s): 03.75.Kk, 37.10.Gh, 32.80.Qk, 05.30.Jp

I. INTRODUCTION

Coherent high-fidelity control of quantum systems is a
fundamental task in many areas of atomic, molecular, optical,
and condensed matter physics. Algorithms of such a control
can be applied in metrology, interferometry, and quantum
information processing. Specifically, achieving fast and stable
manipulation of ultracold ensembles of bosonic and fermionic
atoms by driving the system from an initial to a target state
with high fidelity has been a major research goal during the
past two decades.

Motional state control of localized atoms, in particular, can
be achieved by techniques similar to those applied for trapped
ions or via trap deformations [1,2]. A synthetic spin-orbit (SO)
coupling has also been proposed to control the orbital motion
of atoms [3,4].

In recent years, laser control techniques have successfully
produced synthetic SO coupling in ultracold ensembles of
neutral atoms such as Bose-Einstein condensates (BECs) [5,6]
and Fermi gases [7–9]. SO-coupled BECs (see recent reviews
[10–12]) allow for control of several tunable parameters. The
combination of tunable SO coupling with interatomic interac-
tions leads to novel phenomena unprecedented in conventional
condensed matter physics. SO-coupled condensates have been
used, for example, to study and control spin dynamics in
processes such as spin relaxation [13], Zitterbewegung [14,15],
spin resonance, and the spin-Hall effect. Tunable Landau-
Zener transitions in an SO-coupled BEC were experimentally
studied [16].

In this paper, we study the control of the dynamics of an
SO-coupled BEC confined in a Morse potential by inverse
engineering [17,18] the control parameters. In this analytically
solvable potential, the level spacing decreases as the energy
approaches the continuous spectrum and its spatial asymmetry
implies a displacement of the center of mass for transitions
between vibrational states. In the configurations producing
experimentally synthetic SO coupling [6], the control of the

internal states can be implemented by tuning the coupling
of the atomic pseudospin to the laser field, similarly to
the invariant-based inverse engineering for spin control in
quantum dots [19]. For example, the amplitude of the external
synthetic magnetic field and the direction of the SO-coupling
field can be chosen as the tunable parameters to control
simultaneously the internal state and the position transfer,
resulting from the effect of the synthetic SO coupling on the
orbital motion.

The paper is organized as follows: In Sec. II, we introduce
the model, reduce it to the effective two-level system, and
formulate the initial and the target states of the transfer.
In Sec. III, time-dependent Raman coupling and Raman
detuning are designed to control internal and motional states
by invariant-based inverse engineering for a noninteracting
condensate. Here we demonstrate that the designed two-level
algorithm is applicable and gives a high fidelity for a more
complicated multilevel system as well. In Sec. IV, the direction
of the SO-coupling field and the level detuning are designed to
achieve the state transfer. The inverse engineering method is
generalized here for an interacting BEC by using a simple
ansatz of the state evolution on the Bloch sphere. The
robustness of this protocol with respect to noise and systematic
errors is discussed in Sec. V, and a short summary is provided
in Sec. VI.

II. MODEL AND HAMILTONIAN

We consider ultracold bosonic atoms trapped in a one-
dimensional (1D) Morse potential [20] of the form

U (x) = A(e−2ax − 2e−ax), (1)

as shown in Fig. 1, where the characteristic parameters A

and a have units of energy and inverse length, respectively.
For small values of a, this potential can host many bound
states, while it becomes shallow and contains only a continuous
spectrum at large a. In the deep potential, low-energy states
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FIG. 1. (Color online) Schematic of bosonic atoms trapped in a
Morse potential in an external effective magnetic field. The Kramers
degeneracy here was eliminated and the energy gap between |n, ↑〉
and |l, ↓〉 is much less than the distance to the neighboring orbital
states.

are characterized by the harmonic frequency near the trap
minimum ω =

√
2Aa2/M (where M is the mass of an atom)

with oscillator length lc = √
�/Mω (see Ref. [21] for realistic

values of the parameters). The Morse potential has traditionally
been considered a model for diatomic molecules, with coex-
isting unbound and bound states. In the physics of cold atoms,
the Morse potential can be produced with two evanescent light
waves [22]. Due to the spatial asymmetry of the potential,
the state control is accompanied by atomic displacements,
which can be useful for interferometric applications so that
each interferometer arm is subjected to a different effect. In
what follows, we put M ≡ � ≡ 1 and use a−1 and 1/a2 as
units for the length and time, respectively.

The normalized orbital states in x-coordinate representation
have the form

〈x|n〉 = n!zξ

√
2ξ

γ (n + 1)γ (2η − n)
exp

(
− z

2

)
L2ξ

n (z), (2)

with eigenvalues En = −(η − n − 1/2)2/2, where γ (n) is the
Euler γ function, η = √

2A, ξ = η − n − 1/2, z ≡ z(x) =
2η exp(−x), and L is the Laguerre polynomial.

An atom moving in a 1D Morse potential (in the x direction)
with a Raman laser configuration producing a pseudospin SO-
coupling field pointing in the z direction is described by the
Hamiltonian [6]

H0 = p2

2
+ U (x) + �(t)

2
σx + �(t)

2
σz + αpσz, (3)

where p is the momentum of the atoms, the Pauli matrix
vector is σ = (σx,σy,σz), α is the SO-coupling strength, �

is the detuning from resonance (Zeeman term), and � is
the effective Rabi frequency of the two-level system (Raman
coupling strength) [6]. For � = 0 the Hamiltonian H0 has
“spin-up” eigenstates |n, ↑〉 = e−iαx |n〉| ↑〉 (with eigenvalue
En,↑) and “spin-down” eigenstates |l, ↓〉 = eiαx |l〉| ↓〉 (with
eigenvalue El,↓, l = n + 1), as shown in Fig. 1, where | ↑〉
and | ↓〉 are the eigenspinors of σz. In the following, different
schemes of inverse engineering are proposed to transfer the

state from |n, ↑〉 to |l, ↓〉. We assume that � is of the order of
|En − El| such that the distance �E = |En,↑ − El,↓| is much
smaller than the gap between the neighboring orbital states,
making the doublet of interest energetically well separated
from other states. Thus, if the requested operation time
tf satisfies the condition tf � 1/�, one can neglect the
excitation of other states, and an effective two-level system
can be established to describe the state transfer in the Morse
potential. In addition, later we show that algorithms developed
in the two-level approximation can, with a high accuracy, be
applied to multilevel systems as well.

III. SCHEME 1: STATE TRANSITION BY TUNABLE
RAMAN COUPLING AND DETUNING

To drive the state |n, ↑〉, where |n, ↑〉 ≡ e−iαx |n〉| ↑〉 and
|n〉 is given by Eq. (2), to |n + 1, ↓〉, the closest one in energy
(see Fig. 1), we construct a 2 × 2 Hamiltonian by taking the
matrix elements of H0 [Eq. (3)] in the basis of these two states
and write it in the symmetric form

H0(t) = 1

2

[
Z X + iY

X − iY −Z

]
, (4)

where Z = En − El + �(t) is a time-dependent “energy gap,”
X = �(t)Re[G], Y = �(t)Im[G], and G = 〈n|e2iαx |l〉. The
wave function corresponding to the Hamiltonian, Eq. (4),
has the form ψ = (ψ1,ψ2)T , where ψ1 = 〈n, ↑ |ψ〉 and ψ2 =
〈l, ↓ |ψ〉. The dynamical invariant of H0,

I (t) = λ0

2

[
cos θa sin θae

iϕa

sin θae
−iϕa − cos θa

]
, (5)

where λ0 is a constant having the units of energy, is constructed
with yet unknown orthogonal eigenstates |χ±(t)〉:

|χ+(t)〉 =
(

cos θa

2 eiϕa/2

sin θa

2 e−iϕa/2

)
, (6)

|χ−(t)〉 =
(

sin θa

2 eiϕa/2

− cos θa

2 e−iϕa/2

)
. (7)

Here θa and ϕa are the (auxiliary) polar and the azimuthal
angles for the eigenstates of the invariant. According to
the Lewis-Riesenfeld theory, the solution of the Schrödinger
equation, i∂tψ = H0(t)ψ , is a superposition of orthonormal
“dynamical modes,” ψ(t) = ∑

n Cne
iξn |χn(t)〉 [23], where Cn

are time-independent amplitudes and ξn are Lewis-Riesenfeld
phases. Here, we set the trajectory of the actual state evolution
along |χ+(t)〉. From the invariant condition,

dI (t)

dt
≡ i

∂I (t)

∂t
− [H0(t),I (t)] = 0, (8)

we find equations in terms of θa and ϕa , yielding the two
controllable parameters

�(t) = − θ̇a

|G| sin(φ − ϕa)
, (9)

�(t) = El − En − ϕ̇a − θ̇a cos θa cos(φ − ϕa)

sin θa sin(φ − ϕa)
, (10)

where tan φ = Im[G]/Re[G].
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FIG. 2. (Color online) (a) Time dependence of Raman coupling
strength � with different SO-coupling parameters: α = 0.8 [solid
(blue) curve], α = 1.2 [dashed (red) curve], α = 1.6 (dot-dashed
black curve), and α = 2 [dotted (orange) curve]. (b) Time dependence
of the level detuning �. Other parameters are tf = 10 and c = 0.1 in
(a) and (b).

To produce the state transfer, θa is set by a polynomial
ansatz θa = �3

n=0ant
n with boundary conditions θa(0) = 0,

θa(tf ) = π , θ̇a(0) = θ̇a(tf ) = 0. These conditions imply the
commutativity of the Hamiltonian and the invariant at the
boundary times. Then �(t) would diverge at t = 0 and t = tf .
To cancel these two singularities, we impose θ̇a cot(φ − ϕa) =
c sin θa , where c is a real number. This results in ϕ̇a(0+) = c,
ϕ̇a(t−f ) = −c and leads to �(0+) = −En + El − 3c/2 and
�(t−f ) = −En + El + 3c/2.

To provide a practical example, we consider the Morse
potential with A = 8. We take n = 0, l = 1, and operation time
tf = 10. The parameters � and � are shown in Fig. 2 for differ-
ent values of α. The time-dependent “energy gap” and detun-
ing � remain unaffected by α. This is because φ − ϕa and ϕ̇a

depend only on θa . Consequently, in transitions with the same
gap at different values of α, the product �(t)G should remain
α independent. Thus, with the increase in α, the absolute value
|�(t)| at given t first decreases and then increases, as shown in
Fig. 2(a).

In the transition, the expectation value of the coordinate

〈x〉 = 〈ψ |x̂|ψ〉 (11)

varies with time because of the asymmetry of the Morse
potential (see Fig. 3).

FIG. 3. (Color online) Time dependence of the expectation value
of coordinate 〈x〉 in units of lc for noninteracting atoms, with tf = 10,
α = 1.6, and c = 0.1. The initial state is |0, ↑〉 and the final one is
|1, ↓〉.

The components of the resulting spin polarization,

Pi(t) = 〈ψ |σ̂i |ψ〉, (12)

are given by

Px =
∫ +∞

−∞
(ψ∗

2 ψ1 + ψ∗
1 ψ2)dx, (13)

Py =
∫ +∞

−∞
i(ψ∗

2 ψ1 − ψ∗
1 ψ2)dx, (14)

Pz =
∫ +∞

−∞
(ψ∗

1 ψ1 − ψ∗
2 ψ2)dx. (15)

For the initial and final times Pz(0) = 1 and Pz(tf ) = −1,
corresponding to the spin-up and spin-down states, respec-
tively, as shown in Fig. 4. The spatial orthogonality of the
eigenstates leads to zero Px and Py during the operation time,
indicating that the transfer occurs along mixed states in the spin
subspace (see Fig. 5), although the auxiliary invariant-based
trajectory describes the motion of a pure state on the surface
of the Bloch sphere.

To check the applicability of this effective two-level
system, we calculate a “multilevel” spinor wave function
ψm(x,t) by direct numerical integration of the time-dependent
Schrödinger equation with Hamiltonian (3) and �(t), �(t)

FIG. 4. (Color online) Time evolution of the z component of spin
polarization Pz. Parameters are the same as in Fig. 3.
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(a) (b)

FIG. 5. (Color online) Trajectory of state evolution [thick (blue)
line] inside the Bloch sphere in the spin subspace (a) and on the Bloch
sphere in the total space (b).

given by Eqs. (10) and (9). For the initial ψm(x,0) = 〈x|0〉 | ↑〉
[see Eq. (2)], the achieved fidelity F = |〈1, ↓ |ψm(x,tf )〉|2
is 0.9966 for c = 0.1, corresponding to a small �E = 0.15.
With increasing the energy gap in the two-level system, the
influence of other states becomes more pronounced, and
the fidelity decreases. However, high-fidelity transitions are
still possible even for relatively large gaps. For example,
F = 0.979 for c = 1.5, corresponding to �E = 2.25. The
final density distributions for these two gaps are presented
in Fig. 6, illustrating that the two-level approximation can be
applied even when �E is of the order of the distance between
the orbital states.

FIG. 6. (Color online) Norm square of |1, ↑〉 [thick (blue) line]
and ψm(x,tf ) [dashed (red) line] for c = 0.1 (a) and c = 1.5 (b).

IV. SCHEME 2: STATE TRANSITION BY TUNABLE
SO-COUPLING DIRECTION AND TIME-DEPENDENT

EFFECTIVE MAGNETIC FIELD

The state transition from |n, ↑〉 to |l, ↓〉 can be performed
as well by a time-dependent Hamiltonian,

H = p2

2
+ U (x) + αp(σ · n1) + β(t)

2
(σ · n2), (16)

where σ is the Pauli matrix vector, and β(t) is an ef-
fective Zeeman splitting induced by an effective mag-
netic field in the n2 direction. The SO coupling and
the effective magnetic field are applied in the di-
rections n1 = (sin θ1 cos ϕ1, sin θ1 sin ϕ1, cos θ1) and n2 =
(sin θ2 cos ϕ2, sin θ2 sin ϕ2, cos θ2), respectively. The polar and
azimuthal angles θj and ϕj (j = 1,2) are tunable parameters.

A. Noninteracting atoms

First, we consider noninteracting atoms and construct the
2 × 2 Hamiltonian for the two-level system by taking the
matrix elements of H [Eq. (16)] in the basis of |n, ↑〉, |l, ↓〉,

H (t) =
[
En + β

2 cos θ2 M
M∗ El − β

2 cos θ2

]
, (17)

where M = (α2G + αK) sin θ1e
−iϕ1 + β

2 G sin θ2e
−iϕ2 , K =

〈n|e2iαxp|l〉, and the asterisk represents a complex conjugate.
This scheme provides many possibilities for performing the
state transfer. As an example, we set θ2 = ϕ1 = ϕ2 = 0 and
tune the angle θ1 ≡ θ1(t), the direction of the SO-coupling
field, and the effective Zeeman splitting β ≡ β(t). We approx-
imate sin θ1 ≈ θ1, and cos θ1 ≈ 1 − θ2

1 /2. By symmetrizing
the 2 × 2 Hamiltonian in Eq. (17), we find the reduced form

H̃0(t) = 1

2

[
Z X̃ + iỸ

X̃ − iỸ −Z

]
, (18)

where X̃ = 2θ1(t)Re[M], Ỹ = 2θ1(t)Im[M]. Two equations
for θa and ϕa are obtained through the definition of the
invariant, Eq. (5),

θ1(t) = − θ̇a

2|M| sin(φ − ϕa)
, (19)

β(t) = El − En − ϕ̇a − θ̇a cos θa cos(φ − ϕa)

sin θa sin(φ − ϕa)
, (20)

where tan φ = Im[M]/Re[M]. The SO-coupling strength is
fixed at α = 1.6. By application of the same ansatz for θa

and ϕa as in Sec. III, we find the time dependence of two
controllable variables θ1 and β presented in Fig. 7. The
geometry of directions and amplitudes corresponding to these
two parameters is schematically illustrated in Fig. 7(c).

B. Interacting BEC

Now we consider transitions of the above type, taking
into account interaction between the atoms, e.g., in the
87Rb condensate. The wave function �(x,t) = (�↑,�↓)T ,
normalized to the total number of condensate particles N ,
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(a)

(b)

(c)

FIG. 7. (Color online) (a) Dependence of the angle θ1 on the SO-
coupling field for noninteracting or interacting atoms. (b) Effective
Zeeman splitting β versus time t , without interaction [solid (blue)
line] and with repulsive interaction g11 = 0.3, g22 = 0.2, g12 = g21 =
0.115 [dashed (red) line]. (c) Schematic of the two controllable
parameters β and θ1 at t = 0, t = tf /2, and t = tf . In all plots, the
initial state is |0, ↑〉 and the final one is |1, ↓〉. Other parameters are
tf = 10, α = 1.6, and c = 0.1.

satisfies the coupled Gross-Pitaevskii equations (GPEs):

i
d�↑
dt

=
[
p2

2
+U (x)+αp cos θ1+ β(t)

2
cos θ2+g↑↑|�↑|2

+ g↑↓|�↓|2
]
�↑+

(
αp sin θ1e

−iϕ1 + β

2
sin θ2e

−iϕ2

)
�↓,

i
d�↓
dt

=
[
p2

2
+ U (x)−αp cos θ1− β(t)

2
cos θ2+g↓↑|�↑|2

+ g↓↓|�↓|2
]
�↓+

(
αp sin θ1e

iϕ1 + β

2
sin θ2e

iϕ2

)
�↑.

(21)

The intra- and the intercomponent atomic interaction constants
here are gjj and gjk (j �= k =↑ , ↓), respectively. As for the
noninteracting gas, we also take θ1 and β as controllable
variables. (The scheme in Sec. II can be generalized similarly.)
The inverse engineering based on a Lewis-Riesenfeld invariant
is, however, not applicable, as Eq. (5) is not the invariant of

the new Hamiltonian H1 [H̃0 is given by Eq. (18)],

H1 = H̃0 +
[
g11|ψ1|2 + g12|ψ2|2 0

0 g21|ψ1|2 + g22|ψ2|2
]

,

(22)

where the effective interaction factors are

g11 = Ng↑↑Q(0,0), g22 = Ng↓↓Q(1,1),

g12 = Ng↑↓Q(0,1), g21 = Ng↓↑Q(0,1),

where

Q(n,l) =
∫ ∞

−∞
|〈x|n〉|2|〈x|l〉|2dx (23)

and n, l are the orbital quantum numbers. For the given
choice of the initial and final states, we obtain, with the
wave functions in Eq. (2), the ratios Q(0,0)/Q(1,1) = 1.5 and
Q(0,1)/[Q(0,0) + Q(1,1)] = 0.23. By setting the same value
for g↑↑, g↑↓, g↓↑, and g↓↓, we finally determine g11, g22, g12,
and g21.

For this nonlinear system, inverse engineering is still
feasible by means of the ansatz

ψ(t) =
(

cos θp

2 eiϕp/2

sin θp

2 e−iϕp/2

)
eiγ , (24)

where γ , an auxiliary parameter, is the global phase.
Choosing for θp and ϕp the same ansatz as above for θa and

ϕa , we obtain from the GPE

θ1(t) = − θ̇p

2|M| sin(φ − ϕp)
, (25)

β(t) = El − En − ϕ̇p − θ̇p cos θp cos(φ − ϕp)

sin θp sin(φ − ϕp)

− g11 cos2 θp

2
− g12 sin2 θp

2

+ g22 sin2 θp

2
+ g21 cos2 θp

2
. (26)

The function θ1 in Eq. (25) keeps the same form as that
without the interaction [Eq. (19)], as shown in Fig. 7(a). In
contrast, including the interaction in the diagonal terms results
in changes in the amplitude of the external effective magnetic
field, as shown in Fig. 7(b). In other words, the modulation in
β compensates for the contribution of nonlinear terms.

V. ROBUSTNESS

We now test the stability of the protocol based on Hamil-
tonian (22) with respect to variations in the effective magnetic
field caused by systematic errors and noise, which induce
shifts in the diagonal terms. First, we consider the effective
Zeeman splitting, which deviates from the nominal value in
Hamiltonian (22) as βreal = β(1 + λ), where λ is a constant.

The fidelity F = |〈l, ↓ |ψ(tf )〉|2 with respect to λ is
compared for noninteracting and interacting condensates in
Fig. 8, demonstrating the stability around λ = 0.

Besides the systematic errors, we consider a noisy perturba-
tion, i.e., Hamiltonian H1 [Eq. (22)] perturbed by a stochastic
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FIG. 8. (Color online) Fidelity with respect to the relative error in
the magnetic field λ for noninteracting condensates [solid (blue) line]
and for repulsive interaction, g11 = 0.3, g22 = 0.2, g12 = g21 = 0.115
[dashed (red) line].

term, Hn. The GPE is modified as

i
d�(t)

dt
= (H1 + Hn)�(t), (27)

where Hn = λ′H ′ξ (t), 〈ξ (t)〉 = 0, 〈ξ (t)ξ (t ′)〉 = δ(t − t ′), λ′
is the noise strength, and H ′ is

H ′ = 1

2

[
β 0
0 β

]
. (28)

The density matrix now obeys Eq. (24):

ρ̇ = −i[H1,ρ] − λ′2

2
[H ′,[H ′,ρ]]. (29)

We introduce the Bloch vector with components u =
ρ1−1 + ρ−11, v = −i(ρ1−1 − ρ−11), and w = ρ11 − ρ−1−1 and
obtain

u̇ = − 1
2λ′2�2u + (Z + gd + gsw − g′

sw + g′
d )v − Yw,

v̇ = (−Z − gd − gsw − g′
d + g′

sw)u − 1
2λ′2�2v + Xw,

ẇ = Yu − Xv, (30)

where gd = (g11 − g22)/2, gs = (g11 + g22)/2, g′
d = (g12 −

g21)/2, g′
s = (g12 + g21)/2. We calculate the fidelity nu-

merically in Fig. 9, which, again, shows stability around
λ = 0.

For both types of perturbations the stability region where
the fidelity is close enough to 1 may be broadened as proposed
in Ref. [24].

FIG. 9. (Color online) Fidelity with respect to λ′ for noninterac-
tion [solid (blue) line] and repulsive interaction g11 = 0.3, g22 = 0.2,
g12 = g21 = 0.115 [dashed (red) line].

VI. SUMMARY

We have proposed several invariant-based inverse engi-
neering schemes for the state transfer of SO-coupled bosons
trapped in a Morse potential. For noninteracting atoms, the
time dependence of Raman coupling and detuning are designed
to transfer orbital and spin states simultaneously. Due to
the asymmetry of the Morse potential, this transfer leads
to a spatial displacement of the atomic wave, which, as a
result, allows for the simultaneous control of the condensate
coordinate and spin. An alternative scheme for the state
transfer is to tune the direction of the SO-coupling field and
the Zeeman coupling strength. For an interacting BEC, the
amplitude of the effective magnetic field can be designed
to compensate for the interaction-related nonlinearity in the
GPEs. The proposed protocols are stable with respect to
systematic errors and amplitude noise in the applied effective
magnetic field. Similar ideas may be applied to design fast
transitions between a bound state and the continuum.
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