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Calculations of rates for strong-field ionization of alkali-metal atoms in the quasistatic regime
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Institute of Physics, University of Belgrade, P.O. Box 57, 11001 Belgrade, Serbia

(Received 13 January 2015; published 20 February 2015)

Tunneling and over-the-barrier ionization of alkali-metal atoms in strong electromagnetic fields are studied
using the single-electron model (valence electron plus atomic core) and the frozen-core approximation.
The lowest-state energies and widths (ionization rates) at different values of applied field, obtained using
the Stark shift expansion and the Ammosov-Delone-Krainov formula, respectively, are compared with the
corresponding values determined numerically by the complex rotation method. Good agreement for the energies
is obtained at the field strengths corresponding to the tunneling regime. In contrast, the rates obtained by the
Ammosov-Delone-Krainov formula significantly overestimate numerical results. After introducing a correction
in the formula that accounts for the dependence of the binding energy on the field strength, good agreement
in the tunneling regime is obtained for the rates too. A disagreement that still remains in the over-the-barrier
ionization regime indicates that at stronger fields further corrections of the rate formula, such as those related to
the form of the bound-state wave function, are required. Finally, it is demonstrated that numerically determined
ionization rates are not too sensitive to the choice of model for the effective core potential and good results can
be obtained using a simple local pseudopotential.
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I. INTRODUCTION

Atoms and molecules, when exposed to high-intensity
laser fields, exhibit a variety of interesting phenomena
related to the field-induced ionization including the above
threshold ionization (ATI), high-harmonic generation, atomic
stabilization, nonsequential double ionization, dissociative
ionization, etc. (For a review of progress in the physics of
strong-field atomic processes see, e.g., Ref. [1] and references
therein.) From the theoretical point of view, a common feature
for all of these phenomena is that they cannot be described
perturbatively. A perturbative treatment is in principle appli-
cable in the case of single- or few-photon processes. Namely,
a single photon with the energy �ω, which is larger than the
ionization potential Ip of an atom (�ω > Ip), is enough to
ionize this atom. The ionization rate is therefore large even
at very low intensities. In this case the term describing the
atom-field interaction in the full Hamiltonian can be treated
as a perturbation for the unperturbed atomic Hamiltonian.
This treatment is generalized to multiphoton processes,
but it is not applicable at sufficiently large intensities. One
indication of the nonperturbative regime is just the ATI, in
which the atom absorbs more photons than the minimum
required.

At even larger intensities, the field becomes comparable to
the atomic potential, opening up another ionization mecha-
nism: the tunnel ionization. In this case the field distorts the
atomic potential forming a potential barrier through which
the electron can tunnel. Finally, at the highest intensities, the
field strength overcomes the atomic potential. This can be
considered as the limiting case of tunnel ionization when the
barrier is suppressed below the energy of atomic state. This
regime is usually referred to as over-the-barrier ionization
(OBI). The transition from the multiphoton to the tunneling

regime is governed by the Keldysh parameter [2]

γ = ω
√

2Ip

F
, (1)

where F is the peak value of the electric component of
electromagnetic field. (For the sake of simplicity hereafter
we use the atomic system of units: e = me = � = 4πε0 = 1.)
If γ � 1 (low-intensity–short-wavelength limit) tunnel ion-
ization dominates, whereas for γ � 1 (high-intensity–long-
wavelength limit) multiphoton ionization does. An overview
of different strong-field ionization regimes can be found, e.g.,
in Ref. [3].

Tunnel ionization is successfully described by the
Ammosov-Delone-Krainov (ADK) semiclassical theory [4].
The starting point of the theory is the quasistatic approxima-
tion, which assumes that for γ � 1 the electric field changes
slowly enough that a static tunneling rate can be calculated
for each instantaneous value of the field. The tunneling rate
for the alternating field of a frequency ω then can be obtained
by averaging the static rates over the field period 2π/ω. The
ADK theory accurately predicts tunneling rates in experiments
with atomic ionization in strong fields [5,6]. It also shows
excellent agreement with exact numerical calculations in the
low-field limit of the tunneling regime, i.e., for field strengths
much below the OBI domain (for hydrogen and helium see
Refs. [7,8]).

However, for atoms with low ionization potentials, as in
the case of alkali-metal atoms, the OBI regime begins at much
lower values of the field strength than for hydrogen or noble
gases. For example, the laser peak intensity that corresponds
to the OBI threshold for rubidium is about 1.5 × 1012 W/cm2,
whereas the corresponding value for hydrogen atom is two or-
ders of magnitude larger, ≈1.5 × 1014 W/cm2 (see Sec. II B).
The tunneling regime for alkali-metal atoms is therefore
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reduced to a short interval of relatively-low-field strengths
and the applicability of the ADK theory for these atoms might
be limited. This question, as well as the simple electronic
structure of alkali-metal atoms, inspired the study presented in
this paper. In the next section we introduce a single-electron
model for alkali-metal atoms (valence electron plus atomic
core) and study the strong-field ionization regimes (tunneling
and OBI) in the quasistatic approximation. In the same section
we consider a correction to the ADK rate formula for atoms
with low ionization potentials. The effective core potential
models and the calculation technique (the complex rotation
method), used to obtain numerical results, are described in
Sec. III and the Appendixes. In Sec. IV we present numerical
results (the lowest-state energies and ionization rates) for
the alkali-metal atoms and compare them with the results
obtained using the Stark shift expansion and the corrected
ADK formula. Section V contains a summary and conclusions.

II. MODEL AND ANALYTICAL ESTIMATIONS

A. Single-electron model and frozen-core approximation

Many properties of alkali-metal atoms depend mainly on
the dynamics of the valence electron. This follows from the
structure of these atoms, which is that of a single valence
electron moving in an orbital outside a core that consists of
closed (sub)shells. In this case the total orbital momentum and
spin of the core are equal to zero and the core is spherically
symmetric. Thus, the valence electron of a neutral alkali-metal
atom moves in an effective core potential (ECP) Vcore(r),
which at large distances r approaches the Coulomb potential
VC = −1/r (the nuclear charge Z is then screened by Z − 1
core electrons) [see Fig. 1(a)]. Compared to the core electrons,
the valence electron is weakly bound. This fact explains many
properties of alkali-metal atoms such as the optical spectrum,
which is determined by the transitions involving the valence
electron only. The lowest state of the valence electron has
zero orbital angular momentum (l = 0) and the corresponding
orbital can be designated by n0s, where n0 is the lowest value
of the principal quantum number n of this electron (n0 = 2 for
Li, 3 for Na, 4 for K, etc.). The energy levels of the valence
electron of the alkali-metal atom can be represented by the
Rydberg-like formula Enl = −1/2n∗2, where n∗ = n − μnl

(n � n0) is the effective principal quantum number and μnl are
the corresponding quantum defects. To a good approximation
μnl is for a particular alkali metal a function of l only (see, e.g.,
Table 8.1 in Ref. [9]). Then the binding energy of the valence
electron in the lowest state, i.e., the ionization potential of the
atom, is Ip = 1/2n∗2, where the effective principal quantum
number n∗ in this case corresponds to the orbital n0s.

Using the single-electron picture (valence electron plus
atomic core), we study here the alkali-metal atoms under the
influence of a quasistatic electric field. We assume further
that the field effects on the core electrons can be neglected.
Obviously such a frozen-core approximation (FCA) is valid if
the mutual interaction of the core electrons and their interaction
with the nucleus are much stronger than the interaction
between these electrons and the field. This requirement is
fulfilled if the field is not extremely strong. In addition, even if
a polarization of the core due to an external field is noticeable,

it becomes unimportant when the valence electron separates
from the core because in this case their interaction reduces
to the pure Coulomb interaction between two point charges.
Compared to the interactions inside the core, the interaction
between the core and the valence electron, as mentioned
above, is much weaker. Moreover, this interaction gradually
decreases when the electron, during the ionization process,
separates from the core. The dynamics of the valence electron
is therefore adequately described if both the interaction with
the core and the interaction with the external field are taken
into account.

Thus, the potential energy and Hamiltonian of the valence
electron of an alkali-metal atom in a (quasi)static electric field
F within the FCA read

V (r) = Vcore(r) − Fz, H = p2

2
+ V (r). (2)

The core potential and the external electric field form the
potential barrier (the so-called Stark saddle), the saddle point of
which lies below the (first) ionization threshold of the free atom
[see Figs. 1(b) and 1(c)]. For any F �= 0 at the outer side of the
barrier there is a position along the field (i.e., z) axis beyond
which the total potential V (r) lies below the binding energy.
Since the electron can tunnel through the barrier, the atom has
a small but nonzero probability of ionizing, even when the
saddle point is well above the bound state. Thus, all states of
the system described by the Hamiltonian (2) have the resonant
character. We shall consider here the lowest resonance.

The barrier saddle point is located on the z axis at the
position z = zSP, which depends on the field strength and can
be determined from the rule (∂V/∂z)x=y=0 = 0. If the core
potential Vcore(r) for r � |zSP| can be approximated by the pure
Coulomb potential VC = −1/r one obtains zSP = 1/

√
F and

VSP ≡ V (rSP) = −2
√

F . The required condition is fulfilled
for weak fields (F � 1) because in this case zSP � 1 and for
r � 1 the short-range terms in Vcore(r) vanish.

B. Ionization regimes and Stark shift

If the field is not extremely strong the energy of the
lowest state E(F ) lies below the saddle point of the barrier
[see Fig. 1(b)] and, as mentioned above, the electron can
ionize by tunneling through the barrier. By increasing the field
the saddle point shifts down and for the strengths larger than
a specific value Fs it is suppressed below the energy E(F )
[see Fig. 1(c)]. Then the electron escapes over the barrier.
Note that from the quantum mechanical point of view there
is not an essential difference between these two kinds of
ionization processes. However, in the semiclassical approach
the tunneling and OBI are treated in different ways.

The value of the field strength F = Fs that separates the
tunneling and OBI regimes is defined by equality E(F ) =
VSP(F ). These values for alkali-metal atoms are sufficiently
small that the core potentials at distances r = |zSP(Fs)|
can be well approximated by the pure Coulomb potential
[see Figs. 1(b) and 1(c)]. This is explicitly checked for the
ECP models used in this paper (see Sec. III A). Therefore, for
alkali-metal atoms Fs can be obtained as the solution of the

023424-2



CALCULATIONS OF RATES FOR STRONG-FIELD . . . PHYSICAL REVIEW A 91, 023424 (2015)

FIG. 1. (Color online) Potential energy V = Vcore(r) − Fz, i.e., its x = y = 0 cut (red lines), and the lowest energy level E (blue lines) of
the valence electron of sodium atom for three different strengths of applied electric field: (a) F = 0, (b) F = 0.008, and (c) F = 0.015 a.u.
The effective core potential Vcore(r) is represented by the Hellmann pseudopotential (8). Cases (b) and (c) correspond to the tunneling and OBI
regimes, respectively. For comparison, the sums (gray lines) of the Coulomb potential VC = −1/r and the corresponding field contributions
−Fz (dashed lines) are shown in the same graphs.

equation

E(F ) = −2
√

F, (3)

which does not depend on the ECP model. Here Fs values can
be roughly estimated by taking E(E) ≈ E(0) = −Ip, which
gives Fs ≈ I 2

p/4.
More accurate values for Fs can be obtained by taking into

account the Stark shift of the lowest-energy level, which is the
change in the total energy of a neutral atom due to an applied
electric field. For F � 1 the Stark shift can be expanded in
a Maclaurin series �E = −αF 2/2! − γF 4/4! − · · · , where
the first two coefficients α and γ are known as the dipole
polarizability and the second dipole hyperpolarizability, re-
spectively. Within the single-electron model and the FCA one
has �E(F ) = E(F ) − E(0) = E(F ) + Ip. Thus, the lowest
energy of the valence electron at weak fields (F � 1) can be
approximately determined using the fourth-order formula

E(F ) = −Ip − 1
2αF 2 − 1

24γF 4. (4)

The values for α and γ are in principle larger for atoms with
smaller ionization potentials. The corresponding values for
alkali-metal atoms are given in the third and fourth columns
of Table I. We have tried to select here the most recent
experimental values for the polarizabilities (see Ref. [11] and
references therein). The data for francium are missing and for
this atom we roughly estimated α and γ from our numerical
results. Experimental data for the hyperpolarizabilities are also

unavailable and for the remaining five alkali-metal atoms we
present the recommended theoretical values [12]. In the same
table the Fs values, obtained by solving Eq. (3) with the
expansion (4), are given in the fifth column. One can see that
for alkali-metal atoms, because of small ionization potentials,
the values Fs are much lower than in the case of hydrogen.
Consequently, the tunneling regime is for these atoms reduced
to a domain of very weak fields. On the other hand, due to
large values for the polarizability and hyperpolarizability, the
Stark shift of the lowest-energy level for alkali-metal atoms
changes with F much faster than for hydrogen (see Fig. 2).

TABLE I. Values for the ionization potential Ip [10], the
dipole polarizability α (experimental values) [11], hyperpolarizability
γ [12], and the electric field Fs dividing the tunneling and over-the-
barrier ionization regimes for hydrogen and alkali-metal atoms (in
atomic units).

Atom Ip α γ Fs

H 0.5 4.5 1333.125 0.06517
Li 0.19814 164.2 ± 1.1 (2.90 ± 0.09)×103 0.01078
Na 0.18886 162.7 ± 0.8 (9.56 ± 0.48)×105 0.00969
K 0.15952 290.8 ± 1.4 (3.6 ± 1.1)×106 0.00697
Rb 0.15351 318.8 ± 1.4 (6.2 ± 1.9)×106 0.00645
Cs 0.14310 401.0 ± 0.6 (1.1 ± 0.3)×107 0.00562
Fr 0.14967 350 ± 50a ∼107a 0.00615

aValues estimated from numerical results (see Table V).
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FIG. 2. (Color online) Lowest-energy of alkali-metal atoms ver-
sus the electric-field strength F , determined numerically by solving
the eigenvalue problem of the Hamiltonian (2) (bullets) and by the
use of the expansion (4) up to the second (gray lines) and fourth
(red lines) powers of F . For comparison the lowest energy of the
hydrogen atom is given at the bottom. Vertical gray lines mark the
field strengths Fs dividing the tunneling and OBI areas for each atom.

C. The ADK theory

The ionization rates of atoms in an alternating electric
field for the field strengths corresponding to the tunneling
regime are given approximately by the ADK formula [4]. This
formula is essentially a generalization of the Landau-Lifshitz
semiclassical formula determining the ionization rate for the
hydrogen atom in a static electric field [13]. In principle
this rate can be determined by calculating the probability
current for electrons emerging from the barrier. In the Landau-
Lifshitz approach the electrons’ outgoing wave function is
approximated by the WKB solution in the region outside
the barrier, which is normalized by fitting to the hydrogen
field-free ground-state wave function at a matching point inside
the barrier. This approach has been also used in the subsequent
work extending the WKB approximation both to excited
hydrogenic states [14] and to the states of nonhydrogenic
atoms (ADK formula). In the latter case the extension is done
by introducing a quantum defect that changes the quantum
numbers to nonintegers (effective quantum numbers).

In the case of alkali-metal atoms in their ground states
the valence electron is characterized by the orbital quantum
number l = 0 and the general ADK formula (the variant for
static fields) reduces to

w = |Cn∗0|2Ip

(
2F0

F

)2n∗−1

e−2F0/3F , (5)

where n∗ = 1/
√

2Ip is the effective principal quantum number
(the ground-state value), F0 = (2Ip)3/2, and |Cn∗0|2 = 22n∗

/

n∗	(n∗ + 1)	(n∗).

If the Keldysh parameter γ is much smaller than one, the
results obtained for the static electric field can be extended to
the case of a linearly polarized alternating field of the frequency
ω applying the transformation F → F cos ωt and averaging
over the period T = 2π/ω. As a result one has the relation
between the ionization rates for the static and the alternating
field

walt(F ) =
√

3F

πF0
w(F ), (6)

where F is now the peak value of the alternating electric field
and w(F ) is the corresponding static field rate.

It should be mentioned that the main failure in the ADK
theory is not due to the semiclassical (WKB) approximation
but to the field-free bound-state wave function used in the
matching procedure. A field-related correction to the matching
wave function may therefore improve the accuracy of the
semiclassical approach. The effect of the field on the bound
state is twofold: The field (i) shifts the energy of the field-free
state (Stark shift) and (ii) changes the shape and amplitude
of the wave function. In contrast to a correction of the wave
function, the Stark shift can be easily taken into account by
substituting the shifted energy in the zeroth-order rate formula.
Of course, the best improvement would be obtained if the
corrections (i) and (ii) are included simultaneously (as done in
the case of hydrogen atom [15,16]).

For weak fields (F � Fs) the above-mentioned corrections
are usually small and the ADK formula in the original form
may be satisfactory. In the case of alkali-metal atoms, however,
the absolute value of the Stark shift grows fast with F and the
correction (i) seems to be necessary even for weak fields.
Accordingly, we can expect that the rate formula (5) will be
significantly improved after the replacement

Ip → −E(F ) = Ip − �E(F ). (7)

The easiest way to do this is to use the expansion (4) and the
corresponding values for α and γ from Table I. We remark
that the replacement (7) must be performed while consistently
keeping in mind that the parameters n∗ and F0 depend on Ip.
The accuracy of the rate formula (5) with the correction (7)
is analyzed in Sec. IV by comparing the obtained ionization
rates with numerical results.

III. NUMERICAL METHOD

A. The ECP models

Effective core potentials for alkali-metal atoms can be given
in a more or less simple form with parameters that are chosen
so that the eigenvalues of the single-electron Hamiltonian with
this (pseudo)potential reproduces closely the observed atomic
spectrum. Such a pseudopotential in principle contains several
terms, including the Coulomb and short-range terms required.
The form of the latter must be chosen to be small outside
the core. The applicability of pseudopotentials is based on the
assumption (following from the quantum defect theory [17])
that one obtains accurate approximations to the valence wave
functions outside the core if the effective potential leads to
good energies for all the members of each Rydberg series.
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TABLE II. Parameters A and a for the Hellmann pseudopotential for alkali-metal atoms and the calculated values of binding energies for the
lowest two excited states −Ecalc

1p and −Ecalc
2s (in atomic units). Also shown are the related experimental values −Eexpt

n0p and −E
expt
(n0+1)s [10,21–23]

(n0 is the lowest value of the principal quantum number of the valence electron) and the relative deviations of calculated values from the
experimental ones.

Atom A a −Ecalc
1p −Ecalc

2s n0 −Eexpt
n0p −E

expt
(n0+1)s δ1p δ2s

Li 34 3.14331 0.11464 0.07418 2 0.13023 0.07418 −12% 0%
Na 21 2.54920 0.11242 0.07210 3 0.11160 0.07158 0.7% 0.7%
K 6.5 1.34523 0.10302 0.06543 4 0.10035 0.06371 2.7% 2.7%
Rb 4.5 1.09993 0.10009 0.06426 5 0.09620 0.06178 4.0% 4.0%
Cs 4.6 1.00340 0.09654 0.06145 6 0.09217 0.05865 4.8% 4.8%
Fr 5.1 1.11600 0.09918 0.06309 7 0.09391 0.05976 5.6% 5.6%

One of the simplest ECP models applicable for alkali-metal
atoms is the Hellmann pseudopotential [18] [see Fig. 1(a)]

Vcore(r) = −1

r
+ A

r
e−ar . (8)

This effective potential belongs to the class of local pseudopo-
tentials because it acts on each wave function in the same way.
The short-range term is represented by the screened Coulomb
potential with adjustable parameters A and a. Obviously, the
pseudopotential (8) reduces to the pure Coulomb term −1/r

when the valence electron is far (r → ∞) from the atomic
core [see Fig. 1(a)]. The parameters A and a for a given
atom are not uniquely determined and one can find in the
literature various values proposed by different authors [19,20].
This is a consequence of the fact that the shape of this
pseudopotential is almost insensitive to the variation of one
of the parameters if the other is simultaneously adjusted to
reproduce always the same ionization potential. The values
we use here (see Table II) are chosen so that the potential
Vcore(r) for a given atom reproduces exactly the binding
energy of the valence electron in the ground state, i.e., the
ionization potential Ip (see Table I) and, in addition, as close
as possible the corresponding energies for the lowest two
excited states [core]n0p and [core](n0 + 1)s (see Table II).
The corresponding calculated levels are here denoted by
Ecalc

1p and Ecalc
2s , because in the spectrum obtained using a

pseudopotential there are no eigenenergies corresponding to
the core orbitals. Note that one can obtain good s and p

energies with this pseudopotential only for medium-sized
atoms. Particularly for lithium it is not possible to find a
set of parameters providing sufficiently good agreement with
experimental values for s and p states simultaneously. In
this case, since the accuracy of the ionization potential is
crucial, the parameters are chosen to get the best agreement for
s states.

More accurate ECP models are in principle nonlocal.
The parameters in the short-range term of such an ECP
take different values when it acts on different states. These
pseudopotentials may include, besides the Coulomb and
short-range terms, also some multipole terms. Such a pseu-
dopotential for alkali-metal atoms proposed by Bardsley
reads [24]

Vcore(r) = −1

r
− αd

2(d2 + r2)2
− αq

2(d2 + r2)3
+ VSR(r), (9)

where

VSR(r) =
∑

l

V l
SR(r)|l〉〈l| (10)

and V l
SR(r) = Al exp(−ζlr)/r are the terms of the short-range

potential corresponding to different values of the orbital
quantum number l. The values for the dipole and quadrupole
polarizabilities of the core αd and αq , the cutoff parameter
d (approximately equal to the radius of the core), and the
parameters Al and ζl are given in Ref. [24] for lithium and
sodium. In each case the parameters Al and ζl are chosen so
that the two lowest levels of each series are reproduced exactly.

We expect, however, that good results for ionization rates of
alkali-metal atoms in an electric field can be obtained using a
local pseudopotential, e.g. the Hellmann one. This expectation,
as well as the applicability of the FCA in this problem, is
based on the fact that the ionization rate depends mainly on
the form of potential barrier, which is for weak-field strengths
(tunneling regime) almost independent of the shape of the core
potential. In order to check this, in the next section we compare
the results for lithium and sodium obtained by the use of the
two alternative pseudopotentials.

B. Complex rotation method

As we have seen in Sec. II, when the atom is placed in an
electric field all the states become resonances. The ionization
rate (probability per unit time) from a given state is then
proportional to the resonance width w = 	/� (hereafter we
set � = 1). In this paper we study the field ionization from the
atomic ground state.

In principle a resonant state ψ(r) is an eigensolution of the
Schrödinger equation that is not square integrable because
it asymptotically behaves as a purely outgoing wave and
corresponds to a complex eigenenergy Eres. This energy
is related to a pole of the scattering matrix and its real
and imaginary parts determine the energy (position) and the
width of the resonance E = Re(Eres) and 	 = −2 Im(Eres).
The basic idea of the complex rotation method (see, e.g.,
Ref. [25]) is to make the resonance wave function ψ(r)
square integrable by a complex rotation of the coordinate
ψ(r) → ψθ (r) = ψ(eiθr), where θ is a real parameter called the
rotation angle. Such a rotated state ψθ (r) is an eigenfunction of
the so-called complex rotated Hamiltonian Hθ obtained from
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TABLE III. Lowest-state energies E and widths 	 of lithium
at different strengths of applied electric field F , obtained by the
complex rotation calculations within the single-electron picture. The
calculations are performed separately for the Hellmann and Bardsley
ECPs [see Eqs. (8) and (9) and related text].

Hellmann ECP Bardsley ECP

F E 	 E 	

0.000 −0.19814 0 −0.19814 0
0.001 −0.19821 −0.19824
0.002 −0.19842 −0.19849
0.003 −0.19876 −0.19891
0.004 −0.19925 −0.19949
0.005 −0.19989 −0.20023
0.006 −0.20067 −0.20115
0.007 −0.20161 4.836×10−7 −0.20224
0.008 −0.20271 3.179×10−6 −0.20350 3.002×10−6

0.009 −0.20400 2.203×10−5 −0.20496 2.065×10−5

0.010 −0.20549 9.628×10−5 −0.20662 8.965×10−5

0.011 −0.20721 2.967×10−4 −0.20850 2.745×10−4

0.012 −0.20913 7.150×10−4 −0.21059 6.573×10−4

0.013 −0.21123 1.431×10−3 −0.21285 1.309×10−3

0.014 −0.21348 2.481×10−3 −0.21525 2.264×10−3

0.015 −0.21583 3.883×10−3 −0.21775 3.538×10−3

0.016 −0.21824 5.633×10−3 −0.22031 5.114×10−3

0.017 −0.22070 7.684×10−3 −0.22293 6.961×10−3

0.018 −0.22317 0.01001 −0.22553 9.064×10−3

0.019 −0.22565 0.01258 −0.22814 0.01138
0.020 −0.22813 0.01538 −0.23076 0.01391
0.021 −0.23060 0.01837 −0.23336 0.01660
0.022 −0.23305 0.02153 −0.23597 0.01944
0.023 −0.23549 0.02484 −0.23851 0.02243
0.024 −0.23790 0.02827 −0.24105 0.02555
0.025 −0.24030 0.03183 −0.24356 0.02873
0.026 −0.24268 0.03548 −0.24604 0.03199
0.027 −0.24504 0.03925 −0.24852 0.03533
0.028 −0.24738 0.04306 −0.25093 0.03876
0.029 −0.24970 0.04696 −0.25335 0.04222
0.030 −0.25200 0.05094 −0.25574 0.04578

the original Hamiltonian H by the transformations

r → eiθ r, p → e−iθ p. (11)

The rotated Hamiltonian Hθ is a non-Hermitian operator,
whose spectrum is in general complex, depends on the rotation
angle θ , and has the following properties [25]: (i) The bound
(discrete) spectra of Hθ and H coincide, (ii) the continua are
rotated by the angle 2θ into the lower complex energy half
plane, and (iii) the resonances of H coincide with the complex
eigenvalues of Hθ .

The spectrum of the Hamiltonian (2) can be computed by
diagonalizing the corresponding rotated Hamiltonian with a
properly tuned parameter θ in a square integrable basis that
must be complete in the sense that it covers the continuous part
of the spectrum too. Dilating the coordinates and momenta in
the Hamiltonian (2) according to Eq. (11), one obtains

Hθ = e−2iθ p2

2
+ Vcore(eiθ r) − eiθF z. (12)

TABLE IV. Lowest-state energies E and widths 	 of sodium
at different strengths of applied electric field F , obtained by the
complex rotation calculations within the single-electron picture. The
calculations are performed separately for the Hellmann and Bardsley
ECPs [see Eqs. (8) and (9) and related text].

Hellmann ECP Bardsley ECP

F E 	 E 	

0.000 −0.18886 0 −0.18886 0
0.001 −0.18894 −0.18895
0.002 −0.18919 −0.18920
0.003 −0.18961 −0.18962
0.004 −0.19020 −0.19021
0.005 −0.19096 −0.19098
0.006 −0.19190 −0.19193
0.007 −0.19303 1.276×10−6 −0.19307
0.008 −0.19437 1.279×10−5 −0.19442 1.382×10−5

0.009 −0.19595 7.426×10−5 −0.19598 7.464×10−5

0.010 −0.19778 2.684×10−4 −0.19783 2.695×10−4

0.011 −0.19986 7.097×10−4 −0.19993 7.131×10−4

0.012 −0.20215 1.503×10−3 −0.20229 1.511×10−3

0.013 −0.20461 2.691×10−3 −0.20477 2.712×10−3

0.014 −0.20717 4.287×10−3 −0.20739 4.321×10−3

0.015 −0.20979 6.261×10−3 −0.20998 6.307×10−3

0.016 −0.21245 8.577×10−3 −0.21269 8.633×10−3

0.017 −0.21513 0.01120 −0.21540 0.01127
0.018 −0.21780 0.01409 −0.21811 0.01415
0.019 −0.22047 0.01721 −0.22080 0.01730
0.020 −0.22312 0.02051 −0.22347 0.02061
0.021 −0.22575 0.02400 −0.22614 0.02411
0.022 −0.22836 0.02763 −0.22878 0.02776
0.023 −0.23094 0.03139 −0.23141 0.03155
0.024 −0.23351 0.03527 −0.23401 0.03545
0.025 −0.23605 0.03928 −0.23659 0.03943
0.026 −0.23856 0.04331 −0.23915 0.04349
0.027 −0.24106 0.04745 −0.24170 0.04762
0.028 −0.24353 0.05166 −0.24420 0.05182
0.029 −0.24598 0.05595 −0.24671 0.05607
0.030 −0.24841 0.06025 −0.24920 0.06037

To diagonalize this Hamiltonian we use the Sturmian basis [26]

χ
(k)
nlm(r) = 2k3/2

√
(n − l − 1)!

n(n + l)!
(2kr)le−kr

×L2l+1
n−l−1(2kr)Ylm(θ,φ), (13)

where Lα
n(x) are the generalized Laguerre polynomials. The

functions (13), the so-called Coulomb Sturmians, are solutions
of the equation(

−1

2
∇2 + k2

2
− nk

r

)
χ

(k)
nlm(r) = 0 (14)

and obey the potential-weighted orthonormality relation∫
d3r χ

(k)∗
nlm (r)

1

r
χ

(k)
n′l′m′(r) = k

n
δnn′δll′δmm′ . (15)

In this basis the matrix elements of the rotated Hamiltonian
(12), both for the Coulomb problem [then instead of Vcore(eiθ r)
one has VC(eiθ r) = −e−iθZ/r] and for an ECP problem, either
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TABLE V. Lowest-state energies E and widths 	 of potassium, rubidium, cesium, and francium at different strengths of applied electric
field F , obtained by the complex rotation calculations within the single-electron picture using the Hellmann pseudopotential (8).

K Rb Cs Fr

F E 	 E 	 E 	 E 	

0.000 −0.15952 0 −0.15351 0 −0.14310 0 −0.14967 0
0.001 −0.15967 −0.15368 −0.14333 −0.14986
0.002 −0.16013 −0.15420 −0.14400 −0.15044
0.003 −0.16090 −0.15506 −0.14514 −0.15140
0.004 −0.16199 −0.15629 1.780×10−8 −0.14675 3.258×10−7 −0.15277 6.371×10−8

0.005 −0.16341 6.045×10−7 −0.15790 2.274×10−6 −0.14889 1.923×10−5 −0.15457 5.135×10−6

0.006 −0.16520 1.638×10−5 −0.15995 4.638×10−5 −0.15164 2.350×10−4 −0.15687 8.647×10−5

0.007 −0.16741 1.439×10−4 −0.16250 3.248×10−4 −0.15499 1.092×10−3 −0.15972 5.190×10−4

0.008 −0.17007 6.219×10−4 −0.16552 1.168×10−3 −0.15875 2.903×10−3 −0.16303 1.662×10−3

0.009 −0.17309 1.700×10−3 −0.16887 2.788×10−3 −0.16271 5.655×10−3 −0.16662 3.659×10−3

0.010 −0.17635 3.475×10−3 −0.17239 5.185×10−3 −0.16671 9.181×10−3 −0.17035 6.442×10−3

0.011 −0.17974 5.909×10−3 −0.17598 8.252×10−3 −0.17071 0.01331 −0.17411 9.874×10−3

0.012 −0.18317 8.906×10−3 −0.17958 0.01187 −0.17467 0.01791 −0.17786 0.01382
0.013 −0.18661 0.01237 −0.18316 0.01592 −0.17858 0.02287 −0.18158 0.01818
0.014 −0.19003 0.01621 −0.18670 0.02033 −0.18242 0.02812 −0.18525 0.02287
0.015 −0.19342 0.02036 −0.19020 0.02503 −0.18620 0.03359 −0.18888 0.02781
0.016 −0.19677 0.02477 −0.19365 0.02995 −0.18993 0.03925 −0.19245 0.03297
0.017 −0.20008 0.02938 −0.19706 0.03507 −0.19360 0.04506 −0.19597 0.03829
0.018 −0.20335 0.03416 −0.20042 0.04034 −0.19721 0.05098 −0.19944 0.04376
0.019 −0.20658 0.03909 −0.20373 0.04575 −0.20077 0.05700 −0.20286 0.04934
0.020 −0.20977 0.04414 −0.20701 0.05126 −0.20428 0.06311 −0.20624 0.05502
0.021 −0.21292 0.04929 −0.21024 0.05687 −0.20775 0.06928 −0.20958 0.06078
0.022 −0.21604 0.05452 −0.21343 0.06255 −0.21117 0.07551 −0.21287 0.06660
0.023 −0.21911 0.05983 −0.21658 0.06829 −0.21455 0.08178 −0.21612 0.07249
0.024 −0.22216 0.06520 −0.21969 0.07410 −0.21789 0.08809 −0.21934 0.07841
0.025 −0.22517 0.07062 −0.22278 0.07994 −0.22119 0.09444 −0.22252 0.08438
0.026 −0.22815 0.07608 −0.22583 0.08583 −0.22445 0.10081 −0.22567 0.09038
0.027 −0.23110 0.08158 −0.22884 0.09175 −0.22768 0.10720 −0.22878 0.09641
0.028 −0.23403 0.08711 −0.23183 0.09770 −0.23088 0.11361 −0.23186 0.10246
0.029 −0.23692 0.09267 −0.23479 0.10368 −0.23404 0.12003 −0.23492 0.10853
0.030 −0.23979 0.09825 −0.23772 0.10967 −0.23718 0.12647 −0.23794 0.11462

with the pseudopotential (8) or with (9), can be expressed in
analytical forms (see Appendixes A and B).

Due to the nonorthogonality of the basis elements (13)
the Schrödinger equation (Hθ − Eres)ψθ = 0 represented in
this basis does not reduce to a typical eigenvalue problem,
but rather to a generalized one of the form (H− EresS)x = 0.
The matrices H and S are given by the matrix ele-
ments 〈χ (k)

nlm|Hθ |χ (k)
n′l′m′ 〉 and 〈χ (k)

nlm|χ (k)
n′l′m′ 〉, respectively (see

Appendixes A and B), whereas the components of the
eigenvectors x are 〈χ (k)

nlm|ψθ 〉. Convergence of the results was
ensured by optimizing the Sturmian parameter k and the
rotation angle θ . For a large basis [a few tens of states (13)]
the resonances only weakly depend on the rotation angle
θ . Depending on the field strength, θ here takes the values
between 0 and 0.7 rad. Optimizing k is, however, essential
(k ∼ 1). When the parameters are adequately adjusted the
computed resonance energies are approximately stationary
with respect to variations of these parameters.

IV. RESULTS

The lowest-state energies and widths (ionization rates) for
the alkali-metal atoms at different values of applied electric

field, obtained numerically by the complex rotation method
within the single-electron model, are given in Tables III–V.
In order to test the sensitivity of results to the choice of
ECP model, the calculations for lithium and sodium are
carried out in parallel using the Hellmann and Bardsley
pseudopotentials (Tables III and IV). As expected, better
agreement between the results for different pseudopotentials
is obtained for sodium: The results obtained by the Hellmann
pseudopotential in the range F ∈ (0,0.03) do not deviate by
more than 0.3% for energies and 0.8% for widths from the
values obtained using the Bardsley pseudopotential. However,
even for lithium, i.e., the alkaline-earth element for which
the Hellmann pseudopotential poorly reproduced the observed
spectrum (see Table II), the deviations for energies and widths
in the same range do not exceed 1.5% and 11.3%, respectively.
(These deviations in principle grow with F and the maximal
values given here in fact correspond to F = 0.03.) The results
for lithium suggest that the Hellmann pseudopotential, when
used for calculating energies and widths of other alkali-metal
elements in an electric field (Table V), should give results of a
similar or better accuracy.

Numerically calculated lowest-state energies of alkali-
metal atoms as functions of F (using the Bardsley
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pseudopotential for Li and Na and the Hellman pseudopo-
tential for K, Rb, Cs, and Fr) are shown in Fig. 2 together
with the estimations based on the Stark shift expansion (4).
The formula that takes into account only the quadratic
Stark shift (�E = −αF 2/2) agrees with numerical results
approximately for F < Fs , whereas the application of the
full expression (4) (with the fourth-order term) extends the
agreement approximately to F < 1.75Fs . We remark that the

values for polarizabilities given in Table II are experimental
data (except for francium), whereas the values for hyper-
polarizabilities are estimated from the calculations beyond
the single-particle model. Thus, the agreement between the
energies E(F ) calculated numerically and those obtained by
formula (4) (in the domain of validity) confirms the accuracy
of the former and consequently confirms the applicability of
the single-electron approach and ECP models. It should be

FIG. 3. (Color online) Lowest-state widths and ionization rates of alkali-metal atoms in the static electric field F determined numerically
(diamonds), by the ADK formula (dashed lines), by the ADK formula with second- (fourth-) order Stark shift correction [solid gray (red) lines],
and by the ADK formula corrected using numerically calculated energy (black dots). The corresponding energies [obtained numerically and
by the use of Eq. (4)] are shown in the insets (dots and solid lines, respectively). Vertical gray lines mark the field strengths Fs dividing the
tunneling and OBI areas for each atom.
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stressed, however, that for field strengths significantly larger
than Fs the expansion formula does not converge and the
estimated energies strongly deviate from numerical values,
which in the OBI regime decrease more linearly.

Numerically calculated widths of the lowest state (the
ionization rates) for alkali-metal atoms in an electric field
(again using the Bardsley pseudopotential for Li and Na and the
Hellman one for K, Rb, Cs, and Fr), as well as those obtained
using the ADK formula, are shown in Fig. 3. For all six
atoms a significant disagreement between the numerical and
the (uncorrected) ADK values is evident, even at weak-field
strengths (F < Fs). This fact, however, is not surprising.
Namely, in Sec. II we pointed out that the accuracy of the ADK
formula, in the case of atoms with low ionization potentials,
might be unsatisfactory if we ignore the Stark shift. In the
same figure we also show the results obtained by applying the
correction (7) in the ADK formula (5). The most accurate and
the most general correction is obtained by inserting in Eq. (7)
the numerically determined values of energy. However, for the
practical use it is more convenient to use the expansion (4). In
Fig. 3 we show the rate values obtained by the energy-corrected
ADK formula using the numerical values as well as the values
determined by the expansion (4) up to the second and fourth
powers of F . One can see that, in contrast to the ionization
rates obtained by Eq. (5) (uncorrected ADK formula), those
obtained using the energy-corrected ADK formula are in an
excellent agreement with numerical results in the tunneling
domain (F < Fs).

Finally, the ionization rates for the alkali-metal atoms in the
alternating field walt are obtained from the static rates using
relation (6). Figure 4 shows the ionization rates walt for these
atoms versus the laser field intensity I (I = I0F

2, where F is

FIG. 4. (Color online) Ionization rates walt of alkali-metal atoms
versus the laser field intensity I . Vertical gray lines mark the field
intensities dividing the tunneling and OBI areas for each atom.

given in atomic units and I0 = 3.509 45 × 1016 W/cm2 is the
atomic unit value for intensity). For the lowest values of the
field strength (F � Fs) the ionization rates are determined by
the energy-corrected ADK formula. Otherwise, the numerical
values are used.

V. CONCLUSION

In this paper we studied the alkali-metal atoms in a strong
electromagnetic field using the single-electron model (valence
electron plus atomic core) and the quasistatic approximation
that is applicable when the Keldysh parameter γ [given by
Eq. (1)] is much smaller than one. In addition, due to strong
interactions inside the core, the field effects on the core
electrons can be neglected (the FCA). In this quasistatic field
regime the ionization is realized either by the tunneling of the
valence electron through or by its escape over the barrier that
is formed by the core potential and the external electric field.
A consequence of the presence of the barrier is that all states
of the atom have resonant character.

The lowest-state energy and the corresponding width,
which is proportional to the ionization rate, for the field
strengths corresponding to the tunneling regime (F < Fs ,
where Fs is the OBI threshold) were estimated from the
Stark shift expansion (4) and from the ADK formula (5),
respectively. It was shown that for alkali-metal atoms, because
of small ionization potentials, the values Fs are much lower
than in the case of hydrogen (see Table I) and the tunneling
domain is significantly reduced. On the other hand, when
F increases (starting from zero), the lowest-energy levels
of alkali-metal atoms, due to large values for the dipole
polarizability and hyperpolarizability, decrease much faster
than in the case of hydrogen. For these reasons, the accuracy
of the original ADK formula in the case of alkali-metal atoms
is not satisfactory and we introduced a correction that takes into
account the dependence of the binding energy of the valence
electron on the field strength [Eq. (7)].

The lowest-state energies and widths (ionization rates)
given by the Stark shift expansion and the corrected ADK
formula were compared with numerical results obtained by
the complex rotation method. Good agreement for both
the energies and the widths was found in the tunneling
domain (F < Fs). In the numerical calculations two kinds of
pseudopotentials were used to simulate the ECP: a local one
[the Hellmann pseudopotential (8)] and a nonlocal one [the
Bardsley pseudopotential (9)]. It was found that the calculated
energies agree with the Stark shift formula slightly better when
the nonlocal pseudopotential is used.

The good agreement between the numerically calculated
lowest-state energies and those estimated from the polarizabil-
ity and hyperpolarizability data using the Stark shift expansion
formula (4) is a confirmation of the validity of the proposed
single-electron model (including the chosen ECP models and
the FCA), at least in the tunneling regime. The exactness of
the model is obviously the lowest in the inner region where the
ECP, as an empirically determined part of the total potential, is
significantly different from the Coulomb potential (see Fig. 1).
Consequently, this model should be even more adequate for
calculating the ionization rates than the energies because the
latter are primarily determined by the potential in the inner
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region, whereas the former depend mainly on the form of the
potential barrier, which is only partially determined by the
core potential. (This is also a crucial point in the ADK theory.)
Hence we expect that the values of calculated ionization rates
in the tunneling regime are correct. A confirmation is the
agreement between the numerically calculated rates and those
determined by the energy-corrected ADK formula, especially
when the numerically determined energies are used. This
means that the real and imaginary parts of the calculated
complex energy (determined by the complex rotation method)
are compatible. A more direct verification, however, is missing.
Measurements of the tunneling rates for alkali-metal atoms in
quasistatic fields carried out so far (see, e.g., Ref. [6]) were
able to confirm only roughly their exponential growth when
the field strength increases.

Finally, it should be mentioned that the correction in the
ADK formula significantly reduces deviations of the ADK
rates from those determined numerically even in the OBI
regime (F > Fs). A difference between numerical results and
those obtained by the energy-corrected ADK formula (with
numerically determined energies) in this regime (see Fig. 3)
can be attributed to a decrease in accuracy of the latter at
stronger fields, when, in addition to the correction in the
binding energy, a correction of the wave function form in
the inner region is required.
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APPENDIX A: MATRIX ELEMENTS FOR THE COULOMB
PROBLEM IN AN ELECTRIC FIELD IN

THE STURMIAN BASIS

From the orthonormality relation (15) one obtains directly
the matrix elements for the Coulomb potential VC = −Z/r ,

〈nlm; k|VC |n′l′m′; k〉 = −Z
k

n
δnn′δll′δmm′ , (A1)

where |nlm; k〉 are the Sturmian functions χ
(k)
nlm(r) written

using Dirac notation. Further, it can be shown that

〈nlm; k|n′l′m′; k〉

= 1

2
NnlNn′l

(n + l + 1)!

(n − l − 1)!
δll′δmm′

×
[
n − l − 1

n + l + 1
(δnn′ − δn,n′+1) + δnn′ − δn,n′−1

]
, (A2)

where

Nnl =
√

(n − l − 1)!

n(n + l)!
. (A3)

Then, starting from Eq. (14), it follows that the matrix elements
for the kinetic energy operator T = p2/2 = − 1

2∇2 can be
expressed in terms of the matrix elements (A1) for Z = 1
and (A2), i.e.,

〈nlm; k|T |n′l′m′; k〉
= k2(δnn′δll′δmm′ − 1

2 〈nlm; k|n′l′m′; k〉). (A4)

The matrix elements of the field contribution VF = −Fz to
the total potential, after transition to spherical coordinates, can
be written in the form of a product of an angular and a radial
integral

〈nlm; k|VF |n′l′m′; k〉 = −FIa(l,m; l′,m′)Ir (n,l; n′,l′). (A5)

The angular integrals are

Ia(l,m; l′,m′) = 1√
(2l + 1)(2l′ + 1)

√
(l + m)!(l′ − m)!

(l − m)!(l′ + m)!

× [(l + m + 1)δl+1,l′ + (l − m)δl−1,l′]δmm′ .

(A6)

Obviously, the nonzero angular integrals are those with
l′ = l ± 1. Thus, the only radial integrals required here
are Ir (n,l; n′,l′ = l + 1) and Ir (n,l; n′,l′ = l − 1). The first
integral can be written in the form

Ir (n,l; n′,l′ = l + 1) = NnlNn′l′

4k

(
J

(l)
n,n′ − J

(l)
n−1,n′

)
, (A7)

where

J
(l)
n,n′ = (n + l + 1)!

(n − l − 1)!
(δn−1,n′ − 3δn,n′ + 3δn+1,n′ − δn+2,n′ ).

(A8)

The second radial integral reduces to the first one [Eq. (A7)]
with exchanged indices (n,l) and (n′,l′), i.e., Ir (n,l; n′,l′ = l −
1) ≡ Ir (n,l = l′ + 1; n′,l′) = Ir (n′,l′; n,l = l′ + 1). Finally,
the matrix elements of the rotated Hamiltonian for the
Coulomb problem in an electric field are

〈nlm; k|Hθ |n′l′m′; k〉
= e−2iθ 〈nlm; k|T |n′l′m′; k〉 + e−iθ 〈nlm; k|VC |n′l′m′; k〉

+ eiθ 〈nlm; k|VF |n′l′m′; k〉. (A9)

APPENDIX B: PSEUDOPOTENTIAL MATRIX ELEMENTS
IN THE STURMIAN BASIS

To construct the matrix elements of the rotated Hamiltonian
(12), besides the elements that appear in Eq. (A9), we
need also the matrix elements of the non-Coulomb terms in
Vcore(eiθ r). The Hellmann’s pseudopotential (8), in addition
to the Coulomb term (with Z = 1), contains a short-range
term that has the form of the screened Coulomb potential
VSR(r) = Ae−ar/r . The Bardsley pseudopotential (9), besides
the Coulomb term, contains a sum of short-range terms
of this kind as well as the dipole and quadrupole terms
Vd (r) = − 1

2αd/(d2 + r2)2 and Vq(r) = − 1
2αq/(d2 + r2)3, re-

spectively. The matrix elements of the rotated short-range
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potential V SR
θ (r) ≡ VSR(eiθ r) are

〈nlm; k|V SR
θ |n′l′m′; k〉

= ANnlNn′lδll′δmm′
(n + n′ − 1)!

(n − l − 1)!(n′ − l − 1)!

ke−iθ x2l+2

(1 + x)n+n′

×2F1(l + 1 − n,l + 1 − n′; 1 − n − n′; 1 − x2), (B1)

where x = e−iθ 2k/a and Nnl and Nn′l are given by Eq. (A3).
The matrix elements of the rotated dipole and quadrupole terms
V d

θ (r) ≡ Vd (eiθ r) and V
q

θ (r) ≡ Vq(eiθ r), respectively, can be
expressed as the sums

〈nlm; k|V d
θ |n′l′m′; k〉

= δll′δmm′NnlNn′l
αdξ

λ+2

4d4

u∑
i=0

(−ξ )i

i!

(
u + λ

u − i

)

×
v∑

j=0

(−ξ )j

j !

(
v + λ

v − j

)
I

(2)
i+j+λ+1(ξ ), (B2)

〈nlm; k|V q

θ |n′l′m′; k〉

= δll′δmm′NnlNn′l
αqξ

λ+2

4d6

u∑
i=0

(−ξ )i

i!

(
u + λ

u − i

)

×
v∑

j=0

(−ξ )j

j !

(
v + λ

v − j

)
I

(3)
i+j+λ+1(ξ ), (B3)

where ξ = e−iθ 2kd, λ = 2l + 1, u= n− l − 1, v = n′ − l − 1,
and

I (s)
κ (ξ ) =

∫ ∞

0

tκe−ξ t

(1 + t2)s
dt. (B4)

The integral in (B4) can be expressed in terms of lower-
order integrals. For s = 2 and the odd values of κ one
has

I (2)
κ (ξ ) = (−1)(κ+1)/2

2

{[
κ − 1

2
Iln(ξ ) + I

(1)
0 (ξ )

]
ξ − 1

+
(κ−3)/2∑

i=1

(−1)i
κ − 2i − 1

2i

	(2i + 1)

ξ 2i

}
, (B5)

whereas for the even values of κ it is

I (2)
κ (ξ ) = (−1)κ/2

2

{
[I (1)

1 (ξ ) − (κ − 1)Iat(ξ )]ξ

−
κ/2−1∑
i=1

(−1)i
κ − 2i

2i − 1

	(2i)

ξ 2i−1

}
. (B6)

For s = 3 and the odd values of κ the integral (B4) becomes

I (3)
κ (ξ )

= (−1)(κ−1)/2

4

{[
(κ − 1)(κ − 3)

4
Iln(ξ )

+ (κ − 1)I (1)
0 (ξ ) − I

(2)
0 (ξ )

]
ξ − (κ − 2)

+
(κ−5)/2∑

i=1

(−1)i

i

(
κ − 3

2
− i

)(
κ − 1

2
− i

)
	(2i + 1)

ξ 2i

}
,

(B7)

whereas for the even values of κ one has

I (3)
κ (ξ ) = (−1)κ/2

4

{[
(κ − 1)(κ − 3)

2
Iat(ξ )

+2κ − 3

2
I

(1)
1 (ξ ) + I

(2)
1 (ξ )

]
ξ

+
κ/2 − 2∑

i=1

(−1)i
(κ/2 − i − 1)(κ/2 − i)

i − 1/2

	(2i)

ξ 2i−1

}
. (B8)

The lower-order integrals used in the expressions above are

I
(1)
0 (ξ ) =

∫ ∞

0

e−ξx

1 + x2
dx

= cos ξ [π − 2 Si(ξ )]/2 + Ci(ξ ) sin ξ, (B9)

I
(1)
1 (ξ ) =

∫ ∞

0

xe−ξx

1 + x2
dx

= {sin ξ [π − 2 Si(ξ )] − 2 Ci(ξ ) cos ξ}/2, (B10)

I
(2)
0 (ξ ) =

∫ ∞

0

e−ξx

(1 + x2)2
dx

= 1

4
{−ξ cos ξ [π − 2 Si(ξ )] + 2 − 2ξ Ci(ξ ) sin ξ},

(B11)

Iln(ξ ) =
∫ ∞

0
ln(1 + x2)e−ξxdx

= {sin ξ [π − 2 Si(ξ )] − 2 Ci(ξ ) cos ξ}/ξ, (B12)

Iat(ξ ) =
∫ ∞

0
arctan(x)e−ξxdx

= {cos ξ [π − 2 Si(ξ )] + 2 Ci(ξ ) sin ξ}/2ξ, (B13)

where Si(x) = ∫ x

0 sin t/t dt and Ci(x) = − ∫ ∞
x

cos t/t dt are
the sine and cosine integrals, respectively.
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