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Interference and nonlinear properties of four-wave-mixing resonances in thermal vapor:
Analytical results and experimental verification
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We develop a model to calculate nonlinear polarization in a nondegenerate four-wave mixing in diamond
configuration which includes the effects of hyperfine structure and Doppler broadening. We verify the model
against the experiment with 5 2S1/2, 5 2P3/2, 5 2D3/2, and 5 2P1/2 levels of rubidium 85. Treating the multilevel
atomic system as a combination of many four-level systems we are able to express the nonlinear susceptibility of
a thermal ensemble in a low-intensity regime in terms of Voigt-type profiles and obtain an excellent conformity
of theory and experiment within this complex system. The agreement is also satisfactory at high intensity and
the analytical model correctly predicts the positions and shapes of resonances. Our results elucidate the physics
of coherent interaction of light with atoms involving higher excited levels in vapors at room temperature, which
is used in an increasing range of applications.
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I. INTRODUCTION

Coherent interactions of light and atomic vapors involving
higher excited states have attracted much attention recently.
A seminal work by Peyronel et al. [1] demonstrated elec-
tromagnetically induced transparency resonance with extreme
single-photon sensitivity due to utilization of Rydberg levels. A
host of other works explore the use of multiphoton transitions
involving higher states in the context of nonlinear optics and
quantum information.

The so-called diamond configuration of atomic levels, as
sketched in Fig. 1, is frequently used. Applications include
coherent interaction of atoms with ultrashort laser pulses,
useful for interferometric measurements [2], and coherent
control [3]. In the continuous-wave regime, atoms in diamond
configuration demonstrate high resonant nonlinearities that
enable generation of coherent blue and infrared light [4–7] via
four-wave mixing (4WM), as well as strong phase-dependent
response [8]. This up-conversion scheme also enables coherent
transfer of light angular momentum [9].

Atoms in diamond configuration have been successfully
used as a nonlinear frequency conversion medium [10–13],
applicable to light at single-photon level. Both spectral [14,15]
and temporal [16] properties of the diamond configuration
have been studied. When the diamond configuration involved a
Rydberg state, 4WM has also been observed [17] and coherent
revival effects have been seen even in a warm ensemble
of atoms [18]. A similar configuration is also proposed to
be a room-temperature single-photon source [19]. Finally,
4WM in diamond configuration has been used as a source
of single-photon pairs [20,21] with well-defined temporal
properties [22] which, thanks to proper postselection, can be
perfectly matched to absorption by single atoms [23].

In most of the aforementioned works, a maximally five-
level-atom model was used to model the experiment. Thereby
the interferences between different paths through rich hy-
perfine structure of actual atoms were neglected. The hy-
perfine structure inevitably influences any room-temperature
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experiments where different transitions are driven in classes
of atoms depending on their velocity. The susceptibility of
a room-temperature ensemble is a convolution of respective
cold-atomic function in a multidimensional space of fre-
quencies of the driving fields with a Gaussian corresponding
to thermal velocity distribution. This particular convolution
reshapes resonances and forms band structures which extend
in certain directions while they stay sub-Doppler in others. It
is therefore very important to take into account contributions
of all hyperfine states or, in other words, a multitude of paths
through intermediate levels.

In this paper, we develop simple theoretical tools for
predicting the influence of this effect on a coherent process in
which it is crucial to consider interference between contribu-
tions of different atomic states. We introduce a formalism that
enables us to treat the realistic atom as a combination of many
four-level atoms. This can be understood as an interference of
many possible paths of 4WM. For weak driving fields, the final
result is a superposition of Voigt-type profiles, and a relatively
simple recipe is provided for higher intensities. The simplicity
worked out enables us to explain the intricacies of interference
between contributions of various hyperfine sublevels, taking
into account the Doppler broadening in a precise and exact
way.

We verify our results against experiment in which we
measure the intensity of 4WM in diamond configuration in
warm rubidium 85 vapor as a function of laser frequencies.
The comparison covers both low- and high-intensity regimes.
We obtain good conformity of theory and experiment despite
complexity of the system.

The effects we describe and explain herein are especially
important to studying phase-dependent interactions [2,3,8],
to optimizing single-photon generation setups [21,22], and
to explaining 4WM spectra observed in many experi-
ments [7,14,15] or possible magnetic field effects.

This paper is organized as follows. In Sec. II, we introduce a
theoretical description of 4WM in an inhomogeneously broad-
ened multilevel atomic medium. In Sec. III, we describe the
details of our 4WM experiment in rubidium vapors. Section IV
presents a comparison of experimental and theoretical data.
Section V concludes the paper.
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FIG. 1. (Color online) The diamond scheme of atomic levels and
transitions. Rubidium 85 is used to generate light at the wavelength
λ3 = 762 nm via 4WM of incident light fields at the wavelengths
λ1 = 780 nm, λ2 = 776 nm, and λ4 = 795 nm, and Rabi frequencies
�1, �2, and �4. Levels |1〉 to |4〉 correspond to 5 2S1/2, 5 2P3/2, 5 2D3/2,
and 5 2P1/2 states of rubidium 85, respectively. The optical frequencies
are parametrized by two one-photon detunings �2 and �4 and a
two-photon detuning �3. Note that the single-photon detuning of the
�2 field can be written as �3 − �2.

II. THEORY

In this section, we calculate the intensity of the light
generated by 4WM in diamond configuration depicted in
Fig. 1. We start with calculating the optical coherence in
a four-level-atom model. Next, we take into account the
hyperfine structure, and finally the Doppler broadening.

A. Nonlinear polarization of a four-level atom

In the experiment we observe the intensity of light generated
at the transition between levels |3〉 and |4〉 at λ3 = 762 nm via
4WM. The starting point for the theoretical treatment is the
calculation of steady-state optical coherence ρ43 in a four-level
atom in diamond configuration. For the sake of simplicity, we
assume that the intensity of the incident laser light remains
constant along the atomic medium. When the geometry
of the laser beams enables perfect wave-vector matching,
the amplitude of the emitted light wave E3 is proportional
to the optical polarization P3, which, in turn, is proportional
to the density of atoms n, the dipole moment of the transition
μ∗

43, and the optical coherence

E3 ∝ P3 = nμ∗
43ρ43 + c.c. (1)

The steady-state coherence ρ43 can be calculated from the
Liouville equation with relaxation, constructed as in Ref. [17].
For low-light intensities, we may use the lowest nonvanishing
order of the perturbative solution and obtain a compact formula
for the optical coherence:

ρ43 = �1�2�
∗
4

8�̃2�̃3�̃
∗
4

, (2)

where �̃j = �j + i�j/2 is the complex detuning of field from
level |j 〉, �j is the decay rate of level |j 〉, �k is the Rabi
frequency of field Ek coupled to |k〉 − |k + 1〉 transition for
k = 1,2, and �4 is the Rabi frequency of field E4 coupled to
|1〉 − |4〉 transition, in accordance with Fig. 1. For rubidium
85, the decay rates are �2 = 6.1 × 2π MHz, �3 = 0.66 ×
2π MHz, and �4 = 5.7 × 2π MHz. This leads to the following

FIG. 2. (Color online) Intensity of the 4WM signal |E3|2: (a) the
detuning of strong �4 driving field is kept constant (�4 = 0) while
the frequencies of the �1 field (�2 detuning) and �2 field (�3 − �2

detuning) are swept to probe the splitting, (b) the detuning of �1

field is kept constant (�2 = 0) while the frequencies of �2 (�3) and
�4 (�4) fields are swept, (c) two strong driving fields (�1 and �4)
of constant frequency (�2 = 0 and �4 = 0) induce a splitting of√

|�1|2 + |�4|2, which is probed by a weak �2 field detuned by �3

from resonance, (d) strong �2 field of constant single-photon detuning
from the |2〉 − |3〉 resonance (�3 = �2), and strong �4 field (�4 = 0)
causes four peaks to appear when �2 detuning is varied.

expression for the optical polarization:

P3 = n
μ12μ23μ

∗
43μ

∗
14

8�3�̃2�̃3�̃
∗
4

E1E2E
∗
4 + c.c. (3)

For driving light intensities exceeding saturation � � � we
need to solve the Liouville equation exactly. A computer alge-
bra system provides an exact solution in the form of a rational
function of complex detunings �̃i and Rabi frequencies �i .
We state this solution in a general way:

ρ43 = ρ43(�̃2,�̃3,�̃
∗
4,�1,�2,�

∗
4). (4)

In Fig. 2, we plot the 4WM signal intensity |E3|2 in
various situations, calculated using the solution (4) in Eq. (1),
to illustrate an already complex behavior of the system.
For high Rabi frequencies, i.e., � � �, the system reveals
Autler-Townes splitting [15,24] observed in the emission of
the signal field. To directly observe the splitting, we set one
driving field to be strong [�4/2π = 20 MHz in Fig. 2(a)
and �1/2π = 20 MHz in Fig. 2(b)], while frequencies of the
remaining weak fields are swept to probe the structure. In both
cases, we see two resonances of the signal field, and their
separation is proportional to the strong field Rabi frequency.
Even more complex behavior, that can be understood as
double dressing of atomic states [25], reveals itself when
two of the driving fields are strong. In Fig. 2(c), we set
�1/2π = 20 MHz and �4/2π = 20 MHz. When the two-
photon detuning �3 is changed, we observe resonances
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separated by
√

|�1|2 + |�4|2. Finally, following [13], we set
�2/2π = 15 MHz and �4/2π = 40 MHz and observe four
distinct resonances of four-wave mixing in Fig. 2(d), arising
due to double Autler-Townes splitting.

The above solutions can be readily applied to describe
4WM in a cold ensemble of atoms or a single atom where
the hyperfine structure of each of the intermediate levels is
fully resolved. Even though these solutions can already be
quite complex, they do not provide significant insight into
the behavior of the Doppler broadened medium, where direct
observation of Autler-Townes splitting becomes harder.

B. Hyperfine structure: Interference of paths

In order to fully account for the hyperfine structure of a
real atom, we would have to solve the Liouville equation
for an excessively large density matrix. Later in this paper,
we deal with an experimental case where the equation would
have to take into account at least 64 atomic states. Solution
of the resulting steady-state Liouville equation for a range
of parameters, such as detunings would be hard to compute.
Instead, we propose an alternative solution to this problem that
can be computed much more rapidly. For the sake of simplicity,
we assume that all light fields, both the driving ones and the
signal one, have a fixed polarization parallel to the quantization
axis x, as this is our experimental situation.

In our method, we treat the full system as a set of many four-
level systems. Each of these can be represented as a certain
path P = {|F1 mF1〉,|F2 mF2〉,|F3 mF3〉,|F4 mF4〉,|F1 mF1〉},
through intermediate levels, where Fi is the total angular
momentum of the state |i〉, and mFi

is its projection. As a
path P we understand a list of five atomic states. Each state
belongs to the hyperfine manifold of appropriate level |1〉
to |4〉 and is characterized by a specific F and mF for a
given path. Each path can be characterized by different dipole
moments μij (P), and different hyperfine detunings �i(P).
Angular momenta for all of the excited levels |2〉, |3〉, and
|4〉 vary through all possible values, but for the ground state
|1〉, which is both the initial and the final state of the path,
we choose only one ground-state angular momentum F1

and vary only its projection mF1 . This is due to the fact that
the ground-state hyperfine manifold is fully resolved in our
experimental case.

The dipole moments μij (P) = 〈JiI FimFi
|μ̂|JjIFjmFj

〉,
where μ̂ is the dipole moment operator, I is the nuclear spin,
and Ji is the total angular momentum of the electron on the
level |i〉, are calculated using known values of reduced dipole
moments μij = 〈Ji ||μ̂||Jj 〉 according to the formulas given
in Ref. [26]. The complex detunings �̃i(P) calculated from
respective lines are affected by hyperfine shifts in the following
way:

�̃i(P) = �̃i + �Fi − �F1, (5)

where �Fi is the shift of a given Fi from the centroid of the
manifold |i〉. It follows that the detunings �̃i are measured to
the manifold centroids.

In our experimental case, 61 paths through intermediate
states contribute to the optical polarization P3. For each path
P we calculate its contribution P3(P) by inserting solution (4)

into Eq. (1). In total, we obtain

P3 =
∑
P

n(P)μ∗
43(P)ρ43(P) + c.c., (6)

where n(P) is the density of the atoms in the ground-state
sublevel F1,mF1 of a particular path P , while ρ43(P) is
calculated taking into account hyperfine shifts and dipole
moments corresponding to the given path P . The above
equation expresses an approximation neglecting coherent
interplay of different paths in a single atom.

However, such interplays may only matter when two paths
share common levels and some coherences oscillate at similar
frequencies. In our experimental situation, all of the optical
fields are polarized linearly in the same direction x, which
we take as quantization axis. In this case, all mFi

in each
path are the same due to selection rules for dipole moments.
Consequently, if two distinct paths share a level |i〉, then
they must have a different total angular momentum Fj at
some other level |j 〉. The natural oscillation frequencies of
coherences for these paths differ by the hyperfine splitting.
As the Rabi frequencies in our experiment are smaller than
the hyperfine splittings, we conjecture such paths will not
interplay coherently. This is verified in the experiment. Strong
driving beams significantly redistribute the atoms among the
ground-state sublevels F1,mF1 altering n(P). We find the
steady state of a set of rate equations to determine n(P) and
thus the relative contributions of paths.

To conclude this section, let us note that within the limit of
low intensities of driving fields � � �, the total polarization
can be calculated exactly using perturbation calculus. In the
lowest nonvanishing order, Eq. (3) can be inserted into Eq. (6)
leading to a simple result:

P3 = ε0E1E2E
∗
4

∑
P

χ (P) + c.c., (7)

where we identified the susceptibility χ (P) of the system:

χ (P) = n(P)
μ12(P)μ23(P)μ∗

43(P)μ∗
14(P)

8ε0�
3�̃2(P)�̃3(P)�̃∗

4(P)
. (8)

The above expression approximates the rough features of full
nonperturbative solution quite well and we find it worthwhile
to track the contributions of various hyperfine components to
the final result. We list them in Table I for the 4WM process
we study in experiment.

TABLE I. Theoretical relative amplitudes of 4WM resonances in
rubidium 85 (F3 ground state) parametrized by spin of |2〉 and |4〉
states F2 and F4 for each spin projection of the ground state mF1 . The
result is summed over the spin of highest excited state F3 = 1 . . . 4
due to negligible hyperfine splitting.

χ (P) F2 = 2 F2 = 3 F2 = 4

|mF1 | 3 2 1 0 3 2 1 0 3 2 1 0
F4 = 2 0 −40 32 72 0 140 56 0 0 180 360 432
F4 = 3 0 80 32 0 360 0 −21 0 216 144 45 0
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C. Doppler broadening

The final step in the construction of our model consists
in averaging the contributions of atoms moving with various
velocities v along almost parallel laser beams. We take the one-
dimensional Maxwell-Boltzmann velocity distribution g(v) =√

m
2πkBT

exp(− mv2

2kBT
), where m is the atomic mass, T is the

temperature, and kB is the Boltzmann’s constant, to calculate
the number of atoms with velocity v. To perform the average
over the thermal ensemble, we introduce velocity-dependent
detunings: �̃

(v)
2 = �̃2 + 2πv

λ1
, �̃

(v)
3 = �̃3 + 2πv

λ1
+ 2πv

λ2
, �̃

(v)
4 =

�̃4 + 2πv
λ4

. Then, we integrate the optical polarization P3 with
the velocity distribution g(v), obtaining

〈P3〉T =
∫ +∞

−∞

∑
P

g(v)n(P)μ∗
43(P)ρ43(P,v)dv + c.c., (9)

where we have neglected velocity-dependent pumping effects
and assumed the distribution of the atoms among ground levels
n(P) to be velocity independent.

In the perturbative case � � �, we can perform the above
integration analytically. Since only the susceptibility χ (P)
given in Eq. (8) is velocity dependent, the velocity-averaged
version of Eq. (7) is 〈P3〉T = ε0E1E2E

∗
4

∑
P〈χ (P)〉T + c.c.

Here, the susceptibility 〈χ (P)〉T is calculated by integrating
g(v)/�̃(v)

2 �̃
(v)
3 �̃

(v)∗
4 , which in turn is reduced into a sum

of Voigt-type profile integrals. This is achieved by partial
fractions decomposition as detailed in the Appendix. The result
can be cast into the following form:

〈χ (P)〉T = n(P)
μ12(P)μ23(P)μ∗

43(P)μ∗
14(P)

16iε0�
3

×
√

m

2πkBT

∑
i


iV
[
�̃i(P) 
i

2π

√
kBT
2m

]
Qi[{�̃j (P)}] , (10)

where V(z) is the profile function we define in the Appendix,

2 = λ1, 
3 = λ1λ2

λ1+λ2
, 
4 = λ4 and Qi({�̃j }) are second-

order polynomials of detunings. The polynomials Qi({�̃j }),
given in the Appendix as well, are responsible for the sub-
Doppler features in the 4WM spectrum. Their real parts are
zero when real parts of any two out of three factors in the
susceptibility denominator �̃

(v)
2 �̃

(v)
3 �̃

(v)∗
4 are zero for the same

velocity v. This determines the position of the resonances, as
we will see in Sec. IV.

III. EXPERIMENT

The heart of the experimental setup is a magnetically
shielded rubidium vapor cell heated to the temperature of
373 K. The 2.5-cm-diameter and 7.5-cm-long cell contains
a natural mixture of rubidium isotopes and no buffer gas. We
have decided to use only 85Rb (nuclear spin I = 5

2 ) due to
its higher concentration and, in consequence, higher optical
depth. For the ground state |1〉 we have chosen the F1 = 3
hyperfine component of the 5 2S1/2 state. For the intermediate
states, we have chosen 5 2P3/2 for the |2〉 state and 5 2P1/2

for the last intermediate state |4〉. As the highest excited
state |3〉 we use the 5 2D3/2 level. The respective wavelengths
for the resonant transitions are λ1 = 780 nm (the D2 line),

(a)

(c)(b)

Rb cell BIF NF

776

795

780
762

APD

780

795

776

762

FIG. 3. (Color online) Schematic of the experimental situation.
Generation and detection stage (a) of the experimental setup; beams
enter the rubidium vapor cell and the four-wave-mixing signal is
separated from the driving light using spatial separation, bandpass
interference (BIF) filter, and a notch filter (NF). The signal is detected
using an avalanche photodiode (APD). The 3D configuration of beams
(b) enables phase matching without beam overlap. In the focal plane
(c) we see four distinct points corresponding to four beams. The
signal at 762 nm is marked with an arrow.

λ2 = 776 nm, λ3 = 762 nm, and λ4 = 795 nm (the D1 line).
Out of many possible diamond configurations, the one we use
has the main advantage of high efficiency of detectors for
each of the wavelengths, thus enabling future quantum optics
applications.

Inside the cell, three beams from three different lasers
at 780, 795, and 776 nm intersect at a small angle as
depicted in Fig. 3. The fourth beam of light at 762 nm is
generated in the cell according to the phase-matching condition
k1 + k2 = k3 + k4. The values of wave vectors are approxi-
mately k1 ≈ 2π

λ1
[0,−θ,1], k2 ≈ 2π

λ2
[0,θ,1], k3 ≈ 2π

λ3
[−θ,0,1],

and k4 ≈ 2π
λ4

[θ,0,1], where θ = 8 mrad. The nearly collinear
configuration entails broad phase matching. Experimentally,
we verified that varying the angle of k1 by 2 mrad shifts the
signal beam accordingly but does not have significant influence
on signal intensity. Inside the cell, the beams are collimated
with a 1/e2 diameter of approximately 3 mm.

We use three Toptica lasers: two distributed feedback diodes
at 780 and 795 nm and an external cavity laser at 776 nm. The
beams are combined to intersect at a small angle inside the cell
and then we employ a high-extinction Wollaston polarizer to
prepare the light of all beams in the x polarization state.

Finally, the generated 762-nm light needs to be separated
from the driving beams. We use three distinct filtering
methods to obtain high signal-to-background ratio, as shown
in Fig. 3(c). A tilted interference bandpass filter comes first,
then we use an iris diaphragm in the focal plane to cover
the driving beams, and finally we apply a notch filter with a
central wavelength of 785 nm (Thorlabs NF785-33). The only
residual light from the driving lasers we detect comes from
the amplified spontaneous emission at 762 nm in laser diodes.
The 4WM signal is detected using an avalanche photodiode
(Thorlabs APD120A).

The measurement scheme is designed to obtain maps of
the 4WM signal as a function of two out of three driving
laser detunings. We lock the frequency of the 776-nm laser
using a wavelength meter (Angstrom WS-7) at a fixed detuning
�776, nearly resonant to the |2〉 − |3〉 transition. During the
measurement, the detuning �795 of the 795-nm laser frequency
is altered in small steps of 4 × 2π MHz, while the detuning
�780 of the 780-nm laser is scanned over the relevant range
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of optical frequencies. The exact scan rate varied for different
measurements, but was of the order of 50 × 2π MHz/ms. Data
from 800 to 1000 scans were collected and averaged to give a
dependence of the 4WM signal from �780 for fixed �795 and
�776.

All detunings are measured from the centroid of respective
resonance line. The detunings of lasers resonant to D1 and D2
lines are determined using saturated absorption signal obtained
in auxiliary rubidium vapor cells. Note that through comparing
the laser detunings with the theoretical model, we obtain
�2 = �780, �3 = �780 + �776, and �4 = �795.

IV. RESULTS

The first measurement we present was aimed to determine
the shape of a single 4WM resonance in the regime of a
perturbative solution. To verify the linear perturbative theory
we performed a measurement of the 4WM signal, where all
driving field intensities were low and corresponded to the
Rabi frequencies of �1/2π = 5 MHz, �2/2π = 0.3 MHz,
and �4/2π = 4 MHz. Note that these are all lower than
corresponding transitions’ linewidths. We chose the strongest
resonance that corresponded to the path leading through
F2 = 4, F3 = 3, and then F4 = 2 levels. The choice of such
a configuration entails that there should be no splitting of this
resonance due to the hyperfine structure of the highest |3〉 state,
as there is only one possible spin F3 if F2 = 4 and F4 = 2.

Figures 4(a) and 4(b) present the experimental and theoret-
ical 4WM signal intensity |E3|2, respectively. The presented
maps show an excellent conformity of theory [Eq. (10)] and
experiment. The only free parameter for the theory is the
intensity multiplicative factor. Additionally, we need to take
into account the laser linewidth, which is of the order of several
MHz for each laser when averaged over duration of a single
measurement.

In Figs. 4(c) and 4(d), we present two cross sections of
the maps. The cross sections, denoted by dashed lines on the
maps, are taken far from the resonance, as the structure there is
nontrivial. It exhibits two peaks and it is instructive to observe
their separation and relative intensities. The cross sections
show a quantitative agreement between theory (solid line) and
experiment (dots with error bars), confirming the correctness
of our theoretical approach. On the maps we observe a small
discrepancy of intensity and shape in the very center of the
resonance that are due to small nonlinearity, as the Rabi
frequencies are only slightly lower than the linewidths.

The results of the second measurement we present here
demonstrate the influence of the hyperfine structure of inter-
mediate levels on the 4WM signal. For this measurement we
increased the power of each of the driving lasers, and obtained
Rabi frequencies of �1/2π = 34 MHz, �2/2π = 0.7 MHz,
and �4/2π = 28 MHz. As the ground state is the F1 = 3 state,
we expect six possible resonances, as this ground state is
coupled to three hyperfine levels (F2 = 2,3,4) of the |2〉 state
and two hyperfine levels (F4 = 2,3) of the |4〉 state. We do not
expect to see different resonances arising due to the hyperfine
structure of the highest state |3〉, as the hyperfine splitting of
this state is smaller than the resolution of our experiment.

Figures 5(a) and 5(b) present the experimental and theoret-
ical results for the 4WM signal, respectively. We identify the

FIG. 4. (Color online) Experimental (a) and theoretical (b) maps
of the intensity of the 4WM signal |E3|2 as a function of 780- and
795-nm laser detunings in case of low driving field intensities around
the F2 = 2 and F4 = 4 resonance. The cross sections, marked on
the maps with dashed lines, from experimental (dots with error bars)
and theoretical (solid lines) data are presented in figures (c) and (d),
where (c) depicts the horizontal and (d) the vertical cross section. The
detuning of the 776-nm laser frequency was �776/2π = −51 MHz.

positions of the resonances corresponding to the crossings of
the dashed lines. Each line corresponds to a certain hyperfine
level of the |2〉 or the |4〉 state; these lines correspond to zeros
of the real part of denominator of Eq. (10), or more precisely
the polynomials Lij , defined in the Appendix. This brings
about two resonance conditions

�780 = −�F1 + λ1 + λ2

λ1
�F2 + λ1

λ2
�776, (11)

�795 = λ1λ2

(λ1 + λ2)λ4
(�780 + �776)

+
(

λ1λ2

(λ1 + λ2)λ4
− 1

)
�F1 + �F4, (12)

where again we neglected hyperfine splitting of the highest
excited state |3〉. The first equation defines the lines cor-
responding to hyperfine levels of the |2〉 state. These are
vertical on our map, but their separation is twice the hyperfine
splitting, as λ1+λ2

λ1
≈ 2. The second equation defines the lines

corresponding to the |4〉 state. These lines have a slope of
λ1λ2

(λ1+λ2)λ4
≈ 1

2 , but their separation is simply equal to the
splitting of the |4〉 state.
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FIG. 5. (Color online) Experimental (a) and theoretical (b) 4WM
signal demonstrating all possible resonances arising due to the hyper-
fine structure. Dashed lines correspond to the resonance conditions
given by Eqs. (11) and (12) for different F2 and F4. Crossings of the
lines correspond the four-wave-mixing resonances. The detuning of
the 776-nm laser frequency was �776/2π = 30 MHz.

For the full theoretical calculation [Fig. 5(b)], we use the
nonperturbative framework introduced in Sec. II. The results
show good qualitative agreement with the experiment. We
observe that both in theory and experiment, the strongest
resonances are the rightmost ones on our map, corresponding
to highest F2 spin. This is due to the relative amplitudes of
resonances, that can be calculated even in the perturbative
regime from the products of dipole moments. In Table I,
we give these relative amplitudes for each resonance as
a function of the ground-state spin projection |mF1 |. Note
that different ground-state populations give rise to different
4WM resonances. Consequently, nonequilibrium populations
may significantly change observed relative amplitudes. In
our calculation, we take this into account by modifying
ground-state populations according to the numerical solution
of Liouville equation with relaxation and repopulation [27].

One of the nonlinear effects we predict theoretically and ob-
serve experimentally is Autler-Townes–type splitting [15,24]
of the F2 = 4, F4 = 3 resonance, that does not occur in
the linear regime. Another effect observed near the F2 = 4,
F4 = 2 resonance is bending of the resonance line towards the
vertical direction. Namely, we note relatively higher intensity
as compared to the linear case in the top-left and bottom-right
corners of the resonance.

In the experiment, we witness two more effects that are not
present in the theoretical results. The first effect is that the
leftmost resonances, corresponding to lowest F2 spin values,
are even less intense than predicted. The second effect is the
appearance of narrow diagonal lines in the 4WM signal, which
should be less intense according to our theory. We believe
that these two effects stem from velocity-selective optical
pumping, that our model does not take into account at all.
Nevertheless, we find the agreement between our theoretical
and experimental results satisfactory.

V. CONCLUSIONS

Beginning with the theoretical description of a four-level
atom, we have derived a model for the the intensity of
4WM in a multilevel atomic medium with inhomogeneous
broadening. We are able to take into account the interference
of many possible paths of 4WM with a simple formalism, that
could be easily extended to many similar situations, including
possibly higher-order transitions. Our model is a reasonable
compromise between simplicity and accuracy for predicting
intensities, shapes, and positions of 4WM resonances.

In the experimental part, we have demonstrated the in-
fluence of the rich level structure of rubidium on the 4WM
process. We have obtained excellent agreement between theory
and experiment for low driving field intensities, as well as good
qualitative agreement for higher driving field intensities, where
more nonlinear processes contribute.

Combined with optical pumping, our methods may facil-
itate the design of coherent control in a multilevel atomic
medium with light. We have shown that light at 762 nm couples
to the population of the ground state. Future investigations
could include coupling of 762-nm light to the ground-state
coherence in order to create Raman-scattering-like light-atom
interface [28] or engineering the 4WM signal by optically
pumping the ground state. This could be accomplished in
the cells with buffer gas that makes the atomic motion
diffusive [29], the cell with antirelaxation coating [30], or
in a cold-atomic ensemble. Another approach could involve
control of 4WM signal through velocity-selective optical
pumping.
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APPENDIX: ENSEMBLE-AVERAGED SUSCEPTIBILITY

We decompose the formula (2) for the optical coherence ρ43

in the perturbative regime with velocity-dependent detunings,
obtaining a sum of three expressions with first-order polyno-
mials in terms of velocity in the denominators:

(
�̃

(v)
2 �̃

(v)
3 �̃

(v)∗
4

)−1 =
∑

i

[
�̃

(v)
i Qi({�̃j })

]−1
. (A1)
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The polynomials are Q2 = L23L24, Q3 = λ4(λ1+λ2)2

λ1λ
2
2

L23L34, Q4 = λ1
λ2

L24L34, where L23 = (1 + λ1
λ2

)�̃2 − �̃3, L24 = λ1
λ2

�̃2 − �̃4,

and L34 = λ4( 1
λ1

+ 1
λ2

)�̃4 − �̃3. Equating the real part of Lij to zero yields resonance conditions given by Eqs. (11) and (12).
The expression can now be easily integrated with velocity distribution g(v), as each component can be integrated separately to
give the Voigt-type profile used in Eq. (10):∫ ∞

−∞

e−v2/2〈v2〉

2πv/
 + �̃
dv = 


2i
exp

[
−�̃2

(


2π

)2

2〈v2〉

] [
erf

(
i

�̃ 

2π√

2〈v2〉

)
± 1

]
= 


2i
V

(
�̃ 


2π√
2〈v2〉

)
, (A2)

where we take +1 for Im(�̃) > 0 and −1 otherwise and 〈v2〉 = kBT
m

. The profile function is defined as

V(z) =
{

e−z2
[erf(iz) + 1], Im(z) > 0

e−z2
[erf(iz) − 1], Im(z) < 0.

(A3)

Note that it is customary to use the Faddeeva function w(z) = e−z2
[erf(iz) + 1] [27], but neither this function nor the plasma

dispersion function can be used here, as they would yield incorrect results in the lower half of the complex plane.
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