
PHYSICAL REVIEW A 91, 023417 (2015)
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The time-dependent multiconfiguration self-consistent-field method based on the occupation-restricted
multiple-active-space model is proposed (TD-ORMAS) for multielectron dynamics in intense laser fields. Extend-
ing the previously proposed time-dependent complete-active-space self-consistent-field method [TD-CASSCF;
Phys. Rev. A 88, 023402 (2013)], which divides the occupied orbitals into core and active orbitals, the TD-ORMAS
method further subdivides the active orbitals into an arbitrary number of subgroups and poses the occupation
restriction by giving the minimum and maximum number of electrons distributed in each subgroup. This enables
highly flexible construction of the configuration-interaction (CI) space, allowing a large-active-space simulation
of dynamics, e.g., the core excitation or ionization. The equations of motion for both CI coefficients and spatial
orbitals are derived based on the time-dependent variational principle, and an efficient algorithm is proposed to
solve for the orbital time derivatives. In-depth descriptions of the computational implementation are given in a
readily programmable manner. The numerical application to the one-dimensional lithium hydride cluster models
demonstrates that the high flexibility of the TD-ORMAS framework allows for the cost-effective simulations of
multielectron dynamics by exploiting systematic series of approximations to the TD-CASSCF method.
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I. INTRODUCTION

One of the main objectives of strong-field physics and
attosecond science is a direct measurement and control of
electron motions in atoms and molecules [1]. The time-
dependent Schrödinger equation (TDSE) provides the rigorous
theoretical framework for investigating such electron dynam-
ics [2–17]. However, direct real-space simulations of the
TDSE to systems with more than two electrons are extremely
difficult. To investigate multielectron dynamics in intense
laser fields, the multiconfiguration time-dependent Hartree-
Fock (MCTDHF) method has been developed [18–22], in
which the time-dependent total wave function is given in the
configuration interaction (CI) expansion,

�(t) =
∑

I

�I(t)CI(t), (1)

where �I(t) is a Slater determinant built from a given number,
n, of orbital functions {φi(t)}. Both CI coefficients {CI} and
orbitals are simultaneously varied in time, which allows the
use of considerably smaller number of orbitals than in the
fixed orbital approach. This method, however, suffers from
the exponential increase of the computational cost against the
number of electrons N .

To circumvent this difficulty, we have recently proposed
the time-dependent complete-active-space self-consistent-
field (TD-CASSCF) method [23], which divides the orbitals
into core and active orbitals. Simultaneously, the total electrons
are classified into core and active electrons, N = NC + NA,
and the CI expansion of Eq. (1) consists of all Slater
determinants including doubly occupied core orbitals. The
flexible core-active classification enables compact yet accurate
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representation of dynamics according to the given physical
situation. For example, in the presence of intense, long-
wavelength laser pulses, the tightly bound electrons are
expected to remain nonionized, while only weekly bound
electrons ionize appreciably. The TD-CASSCF method is
ideally suited to such situations, with tightly and weakly bound
electrons treated as core and active, respectively.

The TD-CASSCF method is featured by the fully correlated
description of the active electrons, by means of the complete
CI expansion within the active orbitals. This guarantees
that important properties of the rigorous MCTDHF method
are preserved for the TD-CASSCF method including core
orbitals [23]. However, the complete-CI expansion still results
in the exponential scaling of the computational cost, albeit
with respect to NA, not to N . This causes an immediate
difficulty when, e.g., the core ionization from tightly bound
orbitals is of interest. In such situations, all electrons would
have to be assigned as active. One should also recognize that,
even for the dynamics dominated by chosen active electrons,
the TD-CASSCF result with a small number, nA, of active
orbitals is, at best, qualitative. Instead, a sufficiently large
number of orbitals, typically nA � 2NA, is required to ob-
tain quantitatively, or even qualitatively, correct descriptions.
Again, the computational cost grows steeply against nA for a
fixed NA, hindered large-active-space calculations. Clearly, the
noncomplete CI expansion is mandatory to have wider range
of problems at hand.

An important step in this direction has been made in
Refs. [24,25], which divides the active orbitals into two
subspaces and allows variable distributions of electrons among
the two subspaces. The method was applied to the one-
dimensional model Hamiltonian [25], with the total wave
function given by the truncated CI expansion,

� = �0C0 +
∑
ia

�a
i C

a
i +

∑
ijab

�ab
ij Cab

ij + · · · (2)
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(time argument is omitted), where �0 is the closed-shell
Hartree-Fock determinant built from the NA/2 spatial orbitals,
�a

i is the singly excited determinant with φi in �0 replaced
with φa in the second active subspace, and �ab

ij is the analogous
doubly excited determinant, etc., truncated after a given order
of excitations. Although this wave function converges to the
complete-CI wave function with up to NA-fold excitations
included, the accuracy of this method is strongly system
dependent, as discussed in the present work. In addition,
the computational algorithm proposed in Ref. [25] involves
a severe bottleneck in increasing the order of excitations in
Eq. (2). A more flexible and efficient method is required to take
full advantage of, and minimize the drawback of, noncomplete
CI expansions.

In this work, we adopt the occupation-restricted multiple-
active-space (ORMAS) model [26], originally developed for
stationary electronic structure problems, as a highly flexible
framework to construct noncomplete CI spaces. On top of the
core-active subspacing, the ORMAS method further divides
the active orbitals into an arbitrary number of subgroups
and poses the occupation restriction through specifying the
minimum and maximum numbers of electrons distributed in
each subgroup. The ORMAS method has been applied [26,27]
both to fixed-orbital CI methods and to the multiconfiguration
self-consistent-field (MCSCF) method, where not only CI
coefficients but also the occupied orbitals are variationally
optimized. Our interest is placed on the latter, in the context
of the time-dependent nonstationary problems. Namely, we
develop the time-dependent MCSCF method based on the
ORMAS model, hereafter called the TD-ORMAS method.

This paper proceeds as follows. In Sec. II, the ORMAS
method is introduced in the rigorous second quantization
formalism. Then, in Sec. III, the equation of motion for the
TD-ORMAS method is derived based on the time-dependent
variational principle. The computational implementation is
described in detail in Sec. IV. The performance of the TD-
ORMAS method is assessed using one-dimensional multielec-
tron models in Sec. V. Finally, concluding remarks are given in
Sec. VI. Appendixes A–C and D, respectively, describe further
details of theory and implementation and another numerical
example. The Hartree atomic units are used throughout unless
otherwise noted.

II. ANSATZ

In this section, we introduce the ORMAS method [26].
Since we consistently rely on the second quantization formal-
ism in this work, we first briefly discuss the second-quantized
representation of the MCSCF wave function, followed by the
rigorous definition of the ORMAS method. We consider a
system with N↑ (N↓) up (down) spin electrons, thus N =
N↑ + N↓ total electrons.

A. MCSCF wave functions
in the second quantization

We define the set of Nb orthonormal spatial orbitals, {φμ},
assumed to span the spinless one-electron Hilbert space H.
In principle, H consists of infinite number of orbitals, but
in practice, the number of orbitals Nb is determined by the

number of underlying basis functions, e.g., the number of
spatial grid points in the finite difference approach. The
one-electron complete-orthonormal basis is constructed by
the direct product H × {↑,↓}, where ↑ (↓) represents the up
(down) spin eigenfunction. This implies the spin-restricted
treatment, using the same spatial orbitals for up and down spin
orbitals. For each element of H × {↑,↓}, the Fermion creation
(annihilation) operator â†

μσ (âμσ ) is associated with σ ∈ {↑,↓}.
The MCSCF wave function is based on the division of the

full Hilbert space H into occupied (P) and virtual (Q) orbital
subspaces,

H = P + Q, (3)

where P has n members called occupied orbitals and the
remaining virtual orbitals form the Q space:

P = {φ1,φ2, . . . ,φn}, (4)

Q = {φn+1,φn+2, . . .}. (5)

The determinant �I of Eq. (1) is built from theP-space orbitals
only. The essence of the MCSCF method, in both the time-
dependent and the time-independent theories, is the variational
separation of P and Q spaces; the CI problem is solved within
the optimized P space.

It is possible, and highly beneficial [23], to separate the
occupied space into core (C) and active (A) subspaces,

P = C + A, (6)

where C consists of nC core orbitals and A consists of nA

active orbitals, with n = nC + nA:

C = {φ1,φ2, . . . ,φnC}, (7)

A = {φnC+1,φnC+2, . . . ,φn}. (8)

At the same time, N electrons are classified into NC core
electrons and NA active electrons, where

NC = 2nC, (9)

NA = N − NC. (10)

With these relations, the summation I in Eq. (1) is taken over
those Slater determinants including nC doubly occupied core
orbitals. Thus, in the second quantization we write

|�〉 = �̂C|�A〉, |�A〉 =
P∑
I

|I〉CI, (11)

where �̂C ≡ ∏
i∈C â

†
i↑â

†
i↓ and |I〉 represent the core and active

parts of the determinant �I in Eq. (1), respectively, with

|I〉 = Î|〉, Î =
∏
σ

∏
t∈A

(â†
tσ )Itσ , (12)

where |〉 represents the vacuum state, Itσ = {0,1}, and∑
σ

∑
t∈A Itσ = NA. In Eq. (11), the summation I runs through

the element of a CI space P, which, in general, consists of
a given set of active determinants {|I〉}. Up to now, Eq. (11)
represents the general MCSCF wave function (nC can be zero).
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We separate the core part in Eq. (11) to maximally exploit the
simplification due to the core wave function. In what follows,
the term determinant denotes the active part |I〉.

For later convenience, we introduce the symbols

Î(A′) =
∏
σ

∏
t∈A′

(â†
tσ )Itσ , (13)

[A′]N
′ ≡

{
Î(A′);

∑
σ

∑
t∈A′

Itσ = N ′
}

, (14)

where Î(A′) is the segment of Î for a given subset of active
orbitals A′ ⊂ A, and [A′]N

′
denotes the set of determinants

constructed by distributing a given number, N ′, of electrons
among orbitals in A′ in all the possible ways.

B. ORMAS wave function

In the ORMAS model [26], the active orbital space A is
further subdivided into a given number, G, of subgroups,

A = A1 + A2 + · · · + AG, (15)

A1 = {
φ

(1)
1 ,φ

(1)
2 , . . . ,φ(1)

n1

}
,

A2 = {
φ

(2)
1 ,φ

(2)
2 , . . . ,φ(2)

n2

}
,

(16)
. . .

AG = {
φ

(G)
1 ,φ

(G)
2 , . . . ,φ(G)

nG

}
,

with nA = ∑G
g=1 ng and φ

(g)
j ≡ φi ; i = nC + ∑g−1

g′=1 ng′ + j .
At the same time, the occupation restriction is posed through
specifying the minimum and maximum numbers of electrons
in each subgroup,

Nmin
1 � N1 � Nmax

1 ,

Nmin
2 � N2 � Nmax

2 ,
(17)

. . .

Nmin
G � NG � Nmax

G ,

with

NA = N1 + N2 + · · · + NG. (18)

The boundaries of Eq. (17) determine the possible set of
occupation distributions d = (N1,N2, . . . ,NG) which satisfies
Eq. (18). Upon this active subspacing and occupation restric-
tion, the ORMAS-CI space is constructed as

PORMAS =
∑

d

P(d), (19)

P(d) = [A1]N1 [A2]N2 · · · [AG]NG (20)

=
{

Î = Î1Î2 · · · ÎG;
∑

σ

∑
t∈Ag

Itσ = Ng,1 � g � G

}
,

(21)

where Îg ≡ Î(Ag). The ORMAS-CI space is given by the direct
sum [Eq. (19)] of disjoint CI spaces P(d) for all the allowed
distributions {d = (N1,N2, . . . ,NG)}, where P(d) is the direct
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FIG. 1. Examples of the ORMAS-CI space for 6 active electrons
and 12 active orbitals. (a) The CAS(12) space with no subdivision of
active space. (b) The Hartree-Fock reference CI space with (n1,n2) =
(3,9). (c) The CAS(6) reference CI space with (n1,n2) = (6,6).
(d) An example of the RAS CI space with (n1,n2,n3) = (3,3,6).
The first (lowest) group of orbitals, and also the union of first two
groups in the case of RAS CI space, are bracketed. The straight up
and down arrows represent electrons in the HF configuration, which
are to be distributed according to the respective ORMAS restriction.
The curved upward arrows represent the excitations from one to the
other subgroup. See text for more details.

product space [Eq. (20)], consisting of determinants built by
distributing N1 electrons in the subgroup A1, N2 electrons in
A2, . . . , and NG electrons in AG, in all the possible ways
[Eq. (21)].

Here we give a few examples of the ORMAS-CI spaces.
(1) No subdivision of A (G = 1, N1

min = N1
max = NA)

gives the complete CI space [Fig. 1(a)],

PCAS = [A]NA . (22)

The TD-CASSCF method [23] is based on this CI space. In
this work, the TD-CASSCF method with nA active orbitals is
simply denoted as CAS(nA).

(2) As shown in Figs. 1(b) and 1(c), dividing A into
two subgroups (G = 2), and restricting the occupation by
NA − L � N1 � NA, 0 � N2 � L, for a given L generates
the CI space including all the determinants built from the first
(lowest in Fig. 1) active orbitals (reference CI space), and
those configurations generated by single, double, triple, etc.,
and up to L-fold excitations from the reference to the second
subgroup. Especially, we focus on the following two schemes.

Hartree-Fock reference CI space. With n1 = NA/2, the CI
space includes the Hartree-Fock reference determinant plus
excitations from the reference to the second subgroup. The
corresponding TD-ORMAS method is denoted as HF+X for
brevity, with X = S, SD, SDT, and so on, indicating the
inclusion of only single, single and double, etc., up to triple
excitations. The first-quantized expression is given by Eq. (2),
which is pictorially explained in Fig. 1(b).

CAS(NA) reference CI space. With n1 = NA, the CI space
consists of all the determinants built from the first NA

active orbitals [CAS(NA) reference], plus excitations from
the reference to the second subgroup. The corresponding
TD-ORMAS method is denoted as CAS(NA)+X. An example
is given in Fig. 1(c).

(3) Another important example, shown in Fig. 1(d), is
the so-called restricted active space (RAS) model proposed
by Olsen et al. [28], which divides A into three subgroups

023417-3



TAKESHI SATO AND KENICHI L. ISHIKAWA PHYSICAL REVIEW A 91, 023417 (2015)

(G = 3), and restricts the occupation by setting the maximum
number of holes Mhole in A1 and the maximum number
of electrons Melec in A3, while N2 is unconstrained. In
the ORMAS notation, this corresponds to the following
boundaries:

NA − Mhole � N1 � NA, 0 � N3 � Melec. (23)

The RAS scheme allows excitations (1) from the first subgroup
into the second, and (2) from the union of first two subgroups
into the third, up to different maximum ranks, Mhole and Melec

for (1) and (2), respectively. Figure 1(d) shows a special case
with NA = 2n1, for which Melec � Mhole should hold.

Note that the “TD-RASSCF” method proposed in Ref. [25]
uses the second type of CI spaces, but not based on the RAS
scheme of Ref. [28]. To avoid confusion and for consistency
with the terminology widely used in the stationary electronic
structure theory, we refer to the latter method as RAS, which
includes the method of Ref. [25] as a special case. The
ORMAS framework can be used to construct a variety of other
CI spaces as summarized in Ref. [26], allowing a tailored
approximation for a given problem. In Sec. V we discuss the
physical significance and computational (dis)advantages of
these models with numerical applications.

III. TD-ORMAS METHOD

A. Time-dependent variational method
in the second quantization

We first review the general equations of motion (EOMs) for
CI coefficients and orbitals [Eq. (32) and (33) below] derived
in our previous work [23]. The same equations have been
the basis of Refs. [24,25,29]. Based on the time-dependent
variational principle [30–32], the action integral S,

S =
∫

dt〈�|Ĥ − i
∂

∂t
|�〉, (24)

is required to be stationary, i.e., δS = 0, with

δS = δ〈�|Ĥ |�〉 − i

(〈
δ�

∣∣∣∣∂�

∂t

〉
−

〈
∂�

∂t

∣∣∣∣δ�
〉)

. (25)

Here Ĥ is the spin-free second-quantized Hamiltonian,

Ĥ =
∑
μν

hμ
ν Êμ

ν + 1

2

∑
μνλγ

gμλ
νγ Êμλ

νγ , (26)

with Êμ
ν = ∑

σ â†
μσ âνσ , Êμλ

νγ = ∑
στ â†

μσ â
†
λτ âγ τ âνσ , and

hμ
ν =

∫
d rφ∗

μ(r)h(r,∇r )φν(r), (27)

gμλ
νγ =

∫∫
d r1d r2

φ∗
μ(r1)φν(r1)φ∗

λ(r2)φγ (r2)

|r1 − r2| , (28)

where the one-electron matrix element hμ
ν consists of

kinetic, nucleus-electron, and external laser terms. The
orthonormality-conserving representation of variations and
time derivatives of orbitals are given [23,29] by

δφp =
∑

μ

φμ�μ
p, �μ

p = 〈φμ|δφp〉, (29)

∂φp

∂t
=

∑
μ

φμXμ
p , Xμ

p =
〈
φμ

∣∣∣∣∂φp

∂t

〉
, (30)

in terms of anti-Hermitian transformation matrices � and X.
Note that in Ref. [23], the Hermitian matrix R ≡ iX was
used as the working variable. We change notation for a better
transferability between real- and imaginary-time equations as
discussed in Appendix C. Using these matrices, the variation
δ� and the time derivative �̇ ≡ ∂�/∂t of the total wave
function are compactly given [23] by

|δ�〉 = �̂C

∑
I

|I〉δCI + �̂|�〉, (31a)

|�̇〉 = �̂C

∑
I

|I〉ĊI + X̂|�〉, (31b)

where �̂ = ∑
μν �μ

ν Êμ
ν , X̂ = ∑

μν Xμ
ν Êμ

ν . Inserting Eqs. (31)
into Eq. (25) and requiring δS/δC∗

I = 0,δS/δ�μ
ν = 0

gives [23]

ĊI = −i〈I|�̂†
CĤ |�〉 − 〈I|�̂†

CX̂|�〉, (32)

〈�|Êμ
ν Q̂X̂ − X̂Q̂Êμ

ν |�〉 = −i〈�|Êμ
ν Q̂Ĥ − Ĥ Q̂Êμ

ν |�〉.
(33)

Hereafter, we use notations P̂ and Q̂ (with upright typeface)
to denote the configuration projector onto and against the
CI space P, respectively; P̂ = ∑P

I |I〉〈I|, and Q̂ = 1̂ − P̂.
Equations (32) and (33) are the general EOMs for CI
coefficients and orbitals, respectively, valid for MCSCF wave
functions with arbitrary CI spaces P.

Equation (33) suggests that the set of orbital rotations {Êμ
ν }

can be classified into the following disjoint categories.
(1) Redundant. Both Êμ

ν |�〉 and Êν
μ|�〉 lie inside P or

vanish. In this case, Eq. (33) reduces to an identity (thus called
redundant), and Xμ

ν may be arbitrary anti-Hermitian matrix
elements [18]:

Xμ
ν = 〈φμ|θ̂(t)|φν〉, θ̂ †(t) = −θ̂ (t). (34)

(2) Nonredundant uncoupled. At least one of Êμ
ν |�〉

and Êν
μ|�〉 does not vanish, and Êμ

ν |�〉 and Êν
μ|�〉 lie, if

nonvanishing, outside P. Such rotations do not contribute to
the CI equations, Eq. (32) (thus called uncoupled). In this case,
Eq. (33) reduces to a simpler expression [23],

〈�|[Êμ
ν ,Ê

γ

λ

]|�〉Xγ

λ = −i〈�|[Êμ
ν ,Ĥ

]|�〉. (35)

(3) Nonredundant coupled. Either Êμ
ν |�〉 or Êν

μ|�〉 lies
across P and Q. Such rotations do contribute to both the CI
and orbital EOMs (thus called coupled). In this case, one needs
to directly work with Eq. (33).

B. Analyses of orbital rotations in the ORMAS wave function

In what follows, we use orbital indices {i,j,k} for core
(C), {t,u,v,w,x,y} for active (A), {p,q,r,s} for occupied
(P), {a,b,c} for virtual (Q), and {μ,ν,λ,γ,δ} for general (H)
orbitals. The whole set of orbital rotations within the H space
is categorized as follows:{

Êμ
ν

} = {
Êi

j ,Ê
i
t ,Ê

t
i ,Ê

t
u,Ê

p
a ,Êa

p,Êa
b

}
. (36)
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Reference [23] identifies the core-core and virtual-virtual
rotations {Êi

j ,Ê
a
b } as redundant, and core-active and occupied-

virtual rotations {Êt
i ,Ê

i
t ,Ê

a
p,Ê

p
a } as nonredundant uncoupled,

for the CASSCF wave function. This conclusion is valid for
general CI space P, since the derivation of Ref. [23] makes
no use of the internal structure of the active space (complete
or not complete) for these parameters. Furthermore, for the
same reason, the final expression of relevant time derivative
terms {Xt

i ,X
i
t ,X

a
p} of TD-CASSCF method applies to general

MCSCF wave functions with no modifications.
Left unexplored above is the active-active rotations {Êt

u},
which we analyze as follows. First, active intragroup rotations
{Et

u; φt ,φu ∈ Ag} are redundant, since such rotations do not
change the occupation distribution, and the expansion of
Eq. (20) is complete for a given distribution; for every
|I〉 ∈ P(d) ⊂ P, Êt

u|I〉 ∈ P(d) ⊂ P, thus, Êt
u|�〉 ∈ P. Next,

active intergroup rotations {Et
u; φt ∈ Ag,φu ∈ Ag′ ,g �= g′}

are, in general, nonredundant coupled. This is understood
by considering the simplest example of Fig. 1(b) with, e.g.,
single and double excitations from the first into the second
subgroup included. In this example, the CI space is given
by P = P(6,0) + P(5,1) + P(4,2). Then if |I〉 ∈ P(6,0), then
Êt

u|I〉 ∈ P(5,1) ⊂ P, where φu and φt belong to the first and
second subgroups, respectively. However, for the same rota-
tion, if |I〉 ∈ P(4,2), then Êt

u|I〉 ∈ P(3,3) ⊂ Q; thus, Êt
u|�〉

lies across P and Q. See Ref. [24] for a similar discussion.

C. Final expression of TD-ORMAS orbital equations of motion

As pointed out in the previous section, the equations for
the CI coefficients and orbitals except the terms {Xt

u} are
independent of the active-space structure. Thus, we write the
final expression of EOMs by referring to the TD-CASSCF
formulas [23], first for orbitals in this section and for CI
coefficients in the next section, with active-active terms {Xt

u}
left unspecified until Sec. III E. The orbital EOMs are given by

|φ̇p〉 = −iQ̂F̂p|φp〉 +
∑

q

|φq〉Xq
p, (37)

where Q̂ is the orbital projector onto the Q space,

Q̂ ≡
∑

a

|φa〉〈φa| = 1̂ −
∑

p

|φp〉〈φp|, (38)

which prevents the explicit use of virtual orbitals [18], and

F̂i |φi〉 = f̂ |φi〉 +
∑
tu

Dt
uĜ

u
t |φi〉, (39a)

F̂t |φt 〉 = f̂ |φt 〉 +
∑
uvwx

Ŵ v
w|φu〉P uw

xv (D−1)xt , (39b)

where Dt
u ≡ 〈�A|Êu

t |�A〉 and P tv
uw ≡ 〈�A|Êuw

tv |�A〉 are one-
and two-electron reduced density matrix (RDM) elements,
respectively, defined within the active space, and

f̂ |φp〉 = ĥ|φp〉 + 2
∑

j

Ĝ
j

j |φp〉, (40)

Ĝp
q |φr〉 = Ŵp

q |φr〉 − 1
2Ŵp

r |φq〉, (41)

Wp
q (r1) =

∫
d r2

φ∗
p(r2)φq(r2)

|r1 − r2| . (42)

The core-active term Xt
i is given [23] by the solution of the

matrix equation (
2δt

u − Dt
u

)
Xu

i = −iBt
i , (43)

and Xi
t = −Xt∗

i , where

Bt
i ≡ 〈�|[Êi

t ,Ĥ
]|�〉 = 2F t

i −
∑

u

Dt
uF

i∗
u , (44)

Bt
u ≡ 〈�|[Êu

t ,Ĥ
]|�〉 =

∑
v

(
F t

vD
v
u − Dt

vF
u∗
v

)
, (45)

are the so-called Brillouin matrix elements used in the
stationary MCSCF methods, and

Fp
q = 〈φp|F̂q |φq〉. (46)

With no core orbitals, the core Fock operator of Eq. (40)
reduces to the bare one-electron operator ĥ, whereas if core
orbitals are classified into frozen (fixed in time) and dynamical
(allowed to vary in time) core orbitals [23], the range of
core indices i,j should be restricted to dynamical cores in
all equations in this section, with the operator ĥ in Eq. (40)
replaced with ĥFC given by

ĥFC(t) = ĥ(t) + 2
FC∑
k

Ĝk
k(0), (47)

where the summation k is restricted within the frozen-core
orbitals. Equation (47) emphasizes the fact that the (direct
and exchange) two-electron contributions from the frozen-core
electrons, Ĝk

k(0) ≡ Ĝk
k(t = 0), are time-independent.

D. Final expression of TD-ORMAS CI equations of motion

The CI equation is given as [23]

ĊI = −i〈I|ĤA − EA1̂|�A〉 − 〈I|X̂|�A〉, (48)

ĤA =
∑
tu

f t
uÊt

u + 1

2

∑
tuvw

gtv
uwÊtv

uw, (49)

where 1̂ is a unit operator, EA ≡ 〈�A|ĤA|�A〉, and

f t
u = 〈φt |f̂ |φu〉, (50)

gtv
uw = 〈φt |Ŵ v

w|φu〉. (51)

In Eq. (48), we make, without loss of generality, a particular
phase choice so that 〈�|�̇〉 = 0. Another, more common
choice of the phase i〈�|�̇〉 = 〈�|Ĥ |�〉 replaces the operator
ĤA − EA1̂ in Eq. (48), with ĤA + EC1̂, where EC = 2

∑
j f

j

j .
These approaches are mathematically equivalent, but the
former improves the stability of both real and imaginary
propagations [23]. The separation of the core wave function in
Eq. (11) allows to formulate the CI equation as the effective
NA-electron problem [Eq. (48)], rather than that of the total N

electrons [Eq. (32)].

E. Active intergroup contributions

Now we turn to the active intergroup rotations {Et
u} to

derive the equation for {Xt
u}. Let us reemphasize that Eqs. (37)
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and (48) are valid irrespective of the active-space structure.
The equation to be solved for {Xt

u}, derived in this section,
thus finalizes our derivation of the TD-ORMAS method.

Although Eq. (33) is useful for the formal discussion as
made in Sec. III A, it does not fully take into account the
anti-Hermiticity of matrices � and X. Thus, instead of starting
from Eq. (33), we directly work with real and imaginary parts
of � and X:

�t
u = �R

tu + i�I
tu, (52)

Xt
u = XR

tu + iXI
tu. (53)

Here �R,XR are antisymmetric, and �I,XI are symmetric.
The active intergroup parts of operators �̂ and X̂ are now
expressed as

�̂ =
∑
t>u

′(
�R

tuÊ
−
tu + i�I

tuÊ
+
tu

)
, (54)

X̂ =
∑
t>u

′(
XR

tuÊ
−
tu + iXI

tuÊ
+
tu

)
, (55)

where Ê∓
tu = Êt

u ∓ Êu
t . The primed summations in these

equations are taken over active intergroup rotations, which
amounts to Nrot nonequivalent rotations with

Nrot =
G∑

g>g′
ngng′ . (56)

Inserting Eqs. (54) and (55) into Eq. (31), and requiring that
δS of Eq. (25) vanishes for �R

tu and �I
tu separately, after

straightforward rearranging of terms, we have∑
v>w

′(
A−−

tu,vwXR
vw + A−+

tu,vwXI
vw

) = b−
tu, (57a)

∑
v>w

′(
A+−

tu,vwXR
vw + A++

tu,vwXI
vw

) = b+
tu, (57b)

where

A∓∓
tu,vw = ±Im〈�A|Ê∓

tuQ̂Ê∓
vw|�A〉, (58)

A∓±
tu,vw = ±Re〈�A|Ê∓

tuQ̂Ê±
vw|�A〉, (59)

b−
tu = −Re〈�A|Ê−

tuQ̂ĤA|�A〉, (60)

b+
tu = +Im〈�A|Ê+

tuQ̂ĤA|�A〉. (61)

Equation (57) comprises the desired formulas for the
active intergroup contributions to the orbital time derivative.
Although our main focus is on the use of the ORMAS model,
this equation is, in fact, valid for the general MCSCF wave
function with arbitrary CI spaces P since it is equivalent to
Eq. (33), the general equation. However, without a systematic
construction of CI spaces, in general, all pairs of active orbitals
with Nrot = nA(nA + 1)/2, instead of Eq. (56), have to be
included, with no control of (non-) redundancy of active-active
rotations. The advantage of the TD-ORMAS method is that
it can limit the application of Eq. (57) to nonredundant,

intergroup pairs only. This improves both the efficiency and
the stability of the temporal propagation.

IV. IMPLEMENTATION

This section describes our implementation of the TD-
ORMAS method. Input parameters required are the number
of core (nC) and active (nA) orbitals, the number of active
subgroups G, and the size and occupation boundaries of each
subgroup,

n = (n1,n2, . . . ,nG), (62)

Nmin = (
Nmin

1 ,Nmin
2 , . . . ,Nmin

G

)
, (63)

Nmax = (
Nmax

1 ,Nmax
2 , . . . ,Nmax

G

)
. (64)

Our code first checks if the given input is a sensible one.
Thereafter, the possible set of occupation distributions d and
the information of the CI space are automatically generated
using the algorithm of Ref. [26].

Note that (some of) the intergroup rotations may turn
out to be redundant, e.g., due to the symmetry. Our code
removes such redundant rotations from Eqs. (57), if detected in
advance. It can also happen that some intergroup rotations are
identified as nonredundant uncoupled, e.g., when a subgroup
Ag has a fixed occupation Nmin

g = Nmax
g , which makes all

rotations involving an orbital in Ag and the other outside
Ag nonredundant uncoupled. For such cases, we still use the
general equation [Eq. (57)], since the reduction to simpler
expression [Eq. (35)] leads to no significant computational
gains.

Any type of propagator requires the evaluation of time
derivatives of variables {ĊI ,φ̇p} from the set of variables
{CI ,φp}. This proceeds as follows.

(1) Compute the active-space RDMs {Dt
u,P

tv
uw} from the

current CI coefficients. We use the algorithm of Ref. [33] to
efficiently handle the “coupling coefficients” 〈I|Êt

uÊ
v
w|I′〉 in

noncomplete CI spaces.
(2) Compute Q-space contributions to the orbital deriva-

tives [the first term of Eq. (37)] from the current orbitals and
RDMs obtained in step (1). This is done by first evaluating
the one-electron operator acting on occupied orbitals ĥ|φp〉
and mean-field operators Ŵ

p
q defined in Eq. (42), from

which f̂ |φp〉 and Ĝt
u|φi〉 are evaluated according to Eqs. (40)

and (41), respectively, and the right-hand sides of Eqs. (39a)
and (39b) are accumulated. To avoid the possible (near)
singularity of inverse 1RDM in Eq. (39b), the eigenvalues
{dt } of D are regularized as 1/dt → dt/(d2

t + δ2), where δ is
a small positive number.

(3) Compute the one- and two-electron Hamiltonian ele-
ments, f t

u and gtv
uw, entering Eq. (49) by performing the inner

products of Eqs. (50) and (51), using f̂ |φt 〉 and Ŵ
p
q obtained

in step (2).
(4) Compute the Brillouin matrix elements B

p
q entering

Eqs. (43) and (A4) by performing the inner products of
Eq. (46), using F̂p|φp〉 obtained in step (2).

(5) Compute the direct Hamiltonian contribution to the CI
derivative [the first term of Eq. (48)] from the matrix elements
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f t
u , gtv

uw evaluated in step (3) and the current CI coefficients.
The algorithm of Ref. [33] is also used here.

(6) Compute the core-active contributions to the orbital
derivative {Xt

i ,X
i
t } by solving Eq. (43). The regularization

method given above is applied to the matrix 21 − D, where 1
is a nA × nA identity matrix.

(7) Compute the active intergroup contributions to the
orbital derivative {Xt

u}. First, the matrix elements of Eqs. (58)–
(61) are evaluated by the method described in Appendix A.
Then Eq. (57) is formulated as a real-valued matrix equation
with the dimension 2Nrot,

Ax = b, (65)

where A ≡ ((A−−,A+−)t,(A−+,A++)t), b ≡ (b−,b+)t, and x
is the solution vector whose first and last Nrot elements being
the real and imaginary parts of X, respectively. Here the
matrix A is antisymmetric for a real-time derivative [Eqs. (58)
and (59)], and symmetric for an imaginary-time derivative
[Eqs. (C3) and (C4)]. This equation is solved by the singular
value decomposition of the coefficient matrix A, with its
singular values being regularized by the same procedure as
used in steps (2) and (6).

(8) Add in the completed P-space orbital derivative matrix
{Xp

q } both to the orbital equation [Eq. (37)] and to the CI
equation [Eq. (48)].

For the full MCTDHF method, steps (1)–(3), (5) [and (8) if
θ̂ �= 0 in Eq. (34)] complete the evaluation of time derivatives.
The TD-CASSCF method requires steps (1)–(6) and (8). For
more general cases, all steps have to be executed. See Ref. [23]
for more detailed explanation of these steps except (7). The
efficient algorithm given in Appendix A allows step (7) to be
performed with a very small computational cost.

The above-described procedures are used both for real-time
propagations and imaginary-time propagations (to obtain the
stationary state). For the latter case, each propagation is
followed by the normalization of CI coefficients and the
Schmidt orthonormalization of orbitals. One should be careful
in transforming the real-time EOMs into the imaginary-time
ones in the case of noncomplete CI spaces. Appendix C
explicitly gives the equations appropriate for the imaginary-
time propagation.

V. APPLICATIONS

In this section, we apply the TD-ORMAS method to the
one-dimensional (1D) model systems. The 1D multielectron
models have served as a convenient but reliable testing ground
for assessing new theoretical methods [18,23–25,34–39]. By
doing this we demonstrate the flexibility of the ORMAS
framework and discuss (dis)advantages of various options of
active spaces. The 1D model Hamiltonian for N electrons in
the potential of M fixed nuclei interacting with an external
laser electric field E(t) is taken as

H =
N∑
i

{
−1

2

∂2

∂x2
i

−
M∑
a

Za√
(xi − Xa)2 + c

− E(t)xi

}

+
N∑

i>j

1√
(xi − xj )2 + d

, (66)

-2.0
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↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓
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LiH (LiH)2 (LiH)3

FIG. 2. (Color online) Hartree-Fock orbital energy levels of 1D
LiH clusters. Numerical values obtained for (LiH)3 are −1.860,
−1.794, −1.742, −0.747, −0.661, and −0.565. Those for LiH
(−1.824 and −0.674) and (LiH)2 (−1.848, −1.767, −0.728, and
−0.599) are taken from Ref. [23]. Red and blue arrows indicate elec-
trons occupying the weakly and deeply bound orbitals, respectively.

where xi is the position of the ith electron, {Xa} and {Za} are
the positions and charges of nuclei, and c = 0.5 and d = 1
[23] adjust the soft Coulomb operators of electron-nuclear and
electron-electron interactions, respectively. The electron-laser
interaction is included within the dipole approximation and in
the length gauge. Note that the result is gauge invariant [23,25].
The redundant orbital rotations of Eq. (34) are fixed as θ̂ = 0,
and the regularization parameter δ introduced in Sec. IV is
taken to be sufficiently small (typically δ = 10−10). The orbital
EOMs are discretized on equidistant grid points with spacing
�x = 0.4 and box size |x| < 600. Further computational
details are the same as in Ref. [23].

Specifically, we investigate 1D lithium hydride (LiH)
cluster models, 1D-(LiH)m [23], with m = 1,2,3. We consider
the collinear configuration, LiH-LiH-· · · (nuclear charges
3131 · · · ), with interatomic LiH distance 2.3 and intermolec-
ular H-Li distance 3.5 as optimized for (LiH)2 [23]. Figure 2
shows the ground-state Hartree-Fock orbital energies. As
shown in the figure, the electronic structure of (LiH)m consists
of m tightly bound orbitals (with 2m electrons) and m weakly
bound orbitals (with 2m electrons). This is the consequence
of the strong bonding interaction within LiH and the weak
intermolecular interaction between LiH molecules. We have
previously found the following observations [23] for m = 1,2.

(1) The lowest nC = m orbitals can be treated as core in
a very good approximation: The TD-CASSCF method, with
only the upper NA = 2m electrons treated as active, closely
reproduces the full MCTDHF results.

(2) At least nA = 2NA orbitals are required for NA active
electrons to obtain the convergent results for, e.g., the temporal
evolution of the dipole moment and ionization yields in the
presence of an intense laser field.

As a preliminary to the present work, we confirmed that
the latter conclusion is valid also for (LiH)3; successive
TD-CASSCF calculations with NA = 6 and increasing nA

reached the convergence at nA = 12 for the above observables.
We could not perform the full MCTDHF calculation with
n = nC + nA = 15 orbitals and N = NC + NA = 12
electrons due to the large CI dimension (more than 25 × 106

determinants), which exceeds the capability of our present
computational code. However, one reasonably expects a
similar accuracy for TD-CASSCF descriptions of (LiH)3 as
for those of smaller systems. In this work, therefore, we use the
TD-CASSCF method with NA = 2m active electrons and

023417-7



TAKESHI SATO AND KENICHI L. ISHIKAWA PHYSICAL REVIEW A 91, 023417 (2015)

TABLE I. Ground-state properties of 1D-(LiH)3 model. The
number of active orbitals nA, the number of determinants Ndet, the
total energy E, and the dipole moment 〈x〉 are shown for various
methods.

Method nA Ndet E 〈x〉

HF reference CI wave functions

HF 3 1 −21.2125 −3.128
+S 6 19 −21.2300 −3.214
+SD 12 1000 −21.2636 −3.336
+SDT 12 7000 −21.2647 −3.352
+SDTQ 12 23 200 −21.2653 −3.356

CAS(6) reference CI wave functions

CAS(6) 6 400 −21.2540 −3.335
+S 12 4000 −21.2635 −3.349
+SD 12 15 700 −21.2652 −3.356
+SDT 12 32 700 −21.2653 −3.356

RASCI wave functions

RAS(3,1) 12 2082 −21.2631 −3.343
RAS(3,2) 12 5340 −21.2648 −3.350
RAS(4,2) 12 11 955 −21.2652 −3.355
RAS(4,3) 12 20 455 −21.2653 −3.356
CAS(12) 12 48 400 −21.2653 −3.356

nA = 2NA active orbitals, abbreviated by CAS(2NA), as a
standard.

Table I shows the ground-state properties of 1D-(LiH)3

obtained with various methods, grouped according to the type
of underlying CI spaces discussed in Sec. II B. The rigorous
definitions of these methods are given below in Secs. V A–V C.
At this point, we mention that these classes of methods
provide different series of approximations, whose accuracy
can be improved systematically until final convergence to the
CAS(2NA) description. Table I demonstrates such a systematic
improvement for each class of methods, where the total energy
and the dipole moment of the ground state are converged to
the CAS(2NA) values to four and three decimal places, respec-
tively. The higher accuracy is achieved at the expense of higher
computational cost, as shown in the steep increase of the CI di-
mension in Table I. The question is then how fast, with respect
to the level of approximation within each class of methods, the
adequate accuracy is obtained for a given physical problem.

In the following three sections, we address this question for
the description of intense-field-driven multielectron dynamics.
For this purpose, we consider the temporal evolution of the
dipole moment as a basic measure of the accuracy. The
high-harmonic generation (HHG) spectrum is investigated
in Sec. V D to see the performance of methods to predict
an experimentally relevant observable. Appendix D includes
a numerical test of more complex ORMAS wave functions
than those assessed in this section, addressing a difficulty
encountered in propagating such a complex wave function.
We consider a laser field of the form

E(t) = E0 sin(ω0t) sin2

(
π

t

τ

)
, 0 � t � τ, (67)

with laser parameters corresponding to a wavelength of 750 nm
(period T ≈ 2.5 fs), a peak intensity of 4 × 1014 W/cm2, and
a duration of three optical cycles (τ = 3T ≈ 7.5 fs).

A. Hartree-Fock reference CI wave functions

First we assess the HF+X methods. The ORMAS pa-
rameters for the (LiH)m models are set as G = 2, n =
(NA/2,3NA/2), Nmin = (L,0), and Nmax = (NA,L), with
NA = 2m, generating the following CI spaces:

PLiH =
L∑

l=0

[φ1]2−l[φ2φ3φ4]l , (68a)

P(LiH)2 =
L∑

l=0

[φ1φ2]4−l[φ3φ4φ5–φ8]l , (68b)

P(LiH)3 =
L∑

l=0

[φ1φ2φ3]6−l[φ4φ5φ6φ7–φ12]l . (68c)

We exceptionally set n = (NA/2,NA/2) for the HF+S
method [doubly underlined orbitals are removed in Eq. (68)],
for which only nA � NA is meaningful [39]. This class of
methods has been proposed and assessed for 1D models of
helium, beryllium, and carbon atoms in Ref. [25]. These
models are similar to our 1D-(LiH)m models with m = 1,2,3
in the sense that helium, beryllium, and carbon atoms are two-,
four-, and six-electron systems, respectively. However, since
the innermost orbitals of 1D beryllium and carbon models
are energetically far apart from the other orbitals [25], they
indeed represent effective two (helium), two (beryllium), and
four (carbon) electron problems under the investigated laser
parameters [25]. In contrast, our 1D-(LiH)m models involve
equally important NA = 2m active electrons as shown in
Fig. 2, thus serve as more stringent test cases.

Figure 3 shows the evolution of the dipole moment com-
puted with HF and HF+X methods. The HF method gives the
dipole with large deviations from that of CAS(2NA) for all m =
1,2,3. The HF+X methods with L � 2 offer a substantially
better description, showing the steady convergence to the
CAS(2NA) description with increasing L. However, it should
be noted that the convergence rate with respect to L gets
slower for larger systems. For example, the HF+SD method
(L = 2) is exact (equivalent to the CAS) for LiH with NA = 2
[Fig. 3(a)], closely reproduces the CAS(2NA) result for (LiH)2

with NA = 4, except a small deviation at the final stage of
the pulse [Fig. 3(b)], but gives the dipole which noticeably
deviates from the CAS(2NA) result for (LiH)3, with NA = 6
[Fig. 3(c)]. We also note that a larger value of L is required to
properly describe dynamics than the static electronic structure;
the HF+SD describes the ground state of (LiH)3 very well, as
seen in the inset of Fig. 3(c), but the accuracy gets deteriorated
in the presence the electron-laser interaction. Meanwhile, we
observe that the HF+S method gives a reasonably accurate
result only for LiH, but brings no major improvement over
the HF description for larger systems. This is in contrast to
Ref. [39], which reported a good performance of this method
for 1D model atoms.

The distinct advantage of the HF+X method, with a fixed
L, is the polynomial scaling of the computational cost against
NA, as emphasized in Ref. [25]. However, as noted above,
the accuracy of the HF+X with a fixed L rapidly drops for
larger systems and depends on the electronic structure in hand.
The first difficulty (size dependence) is the consequence of
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FIG. 3. (Color online) The time evolution of the dipole moment
of (a) LiH, (b) (LiH)2, and (c) (LiH)3 models, computed with HF
and HF+X methods (with X = S, SD, SDT signifying L = 1, 2, 3,
respectively) compared with the CAS(2NA) results.

the lack of the size extensivity [40,41]. The latter problem
(situation dependence) is related to the fundamental limitation
of the Hartree-Fock wave function; the closed-shell wave
function cannot properly describe the tunneling ionization
process [23,38]. The Hartree-Fock reference determinant,
in the HF+X method, is no longer a good starting point,
demanding the inclusion of higher excitations to describe the
more delocalized wave function that arises during the course
of tunneling ionization.

B. CAS(NA) reference CI wave functions

Next we consider the CAS(NA)+X methods. The ORMAS
parameters are identical to those of the HF+X methods except
for the different allocation of nA = 2NA active orbitals as
n = (NA,NA). The resultant CI spaces for (LiH)m models with
m = 2,3 read

P(LiH)2 =
L∑

l=0

[φ1–φ4]4−l[φ5–φ8]l , (69a)

P(LiH)3 =
L∑

l=0

[φ1–φ6]6−l[φ7–φ12]l . (69b)

This class of methods has been proposed in Ref. [25], but
not numerically investigated. We do not show results for LiH,
since no new approximations can be generated in the case of
NA = 2. One expects that the CAS(NA) reference serves as
better starting point than the single HF reference in the HF+X

method and thus remedies the undesirable system dependence
of the accuracy of the latter approach.

This expectation is verified in Fig. 4, which compares the
CAS(NA) and CAS(NA)+X dipoles with the CAS(2NA) ones
for (LiH)2 and (LiH)3. As seen in the figure, for both (LiH)2

and (LiH)3, the CAS(NA) dipole shows much better agreement
with the CAS(2NA) result than does the HF one (Fig. 3),
although the large-amplitude oscillation during the second
laser cycle is not completely followed. The CAS(NA)+SD
method gives the dipoles with excellent agreement with
those of CAS(2NA), and even the CAS(NA)+S method also
reproduces the CAS(2NA) results surprisingly well.

The reduced system dependence, thus the more uniform
accuracy, which is not much affected by different system
sizes and different stages of the electron-laser interaction, is
achieved by accounting for the most important part of the
electron correlation with small CAS expansion (NA orbitals
for NA electrons), which enables the remaining correlation to
be included with low rank excitations. In the present case, the
first kind of correlation is the breakdown of the closed-shell
dominance during the course of tunneling ionization [38].
This is analogous to the static correlation involved in the
bond-breaking process [40,41]. Although the size extensivity
is still missing in the CAS(NA)+X method, the resultant error
is considerably reduced from that in the HF+X approach.
The drawback is the greater number of determinants involved
compared to the HF+X method with the same L, as shown in
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FIG. 4. (Color online) The time evolution of the dipole moment
of (a) (LiH)2, and (b) (LiH)3 models, computed with CAS(NA)
and CAS(NA)+X methods (with X = S, SD signifying L = 1, 2,
respectively) compared with the CAS(2NA) results.

023417-9



TAKESHI SATO AND KENICHI L. ISHIKAWA PHYSICAL REVIEW A 91, 023417 (2015)

Table I for the (LiH)3 case. The cost scales exponentially with
respect to NA, as just so does the CAS(2NA) method.

C. RAS CI wave functions

To pursue further flexibility, we consider the RASCI
space mentioned in Sec. II B. We set G = 3 and n =
(NA/2,NA/2,NA), with NA = 2m. The CI spaces for (LiH)2

and (LiH)3 can be written as

P(LiH)2 =
Melec∑
l2=0

{
Mhole∑
l1=0

[φ1φ2]NA−l1 [φ3φ4]l1−l2

}
[φ5–φ8]l2 ,

(70a)

P(LiH)3 =
Melec∑
l2=0

{
Mhole∑
l1=0

[φ1–φ3]NA−l1 [φ4–φ6]l1−l2

}
[φ7–φ12]l2 .

(70b)

The factor within the braces in Eq. (70), with l2 = 0, represents
the CI space with the HF determinant (l1 = 0) plus up to
Mhole-fold excitations (l1 > 0) to the second subgroup. It
serves as the reference CI space, from which further excitations
(l2 > 0) to the third subgroup are to be included. Note
that if Mhole = Melec, Eq. (70) reduce to Eq. (68), while if
Mhole = NA > Melec, Eq. (70) are identical to Eq. (69), with
L = Melec. In this way, the present RAS scheme provides a
flexible series of approximations that includes the HF+X and
CAS(NA)+X approaches as special cases, with two accuracy
(cost) controlling parameters Mhole and Melec. See Fig. 1(d) for
a pictorial understanding.

To estimate a reasonable value of Mhole, we performed
preliminary calculations (not shown) with Melec = 0. They
correspond to the HF+X calculations with the active space
reduced by half from that in Sec. V A; n = (NA/2,NA/2).
We have found that the (reduced) HF+SD and HF+SDT
methods approximate the CAS(NA) method quite well for
(LiH)2 and (LiH)3, respectively, exactly as seen for the
twice larger active space in Sec. V A. Thus, we use Mhole =
NA/2 = m, or more, for (LiH)m. In addition, we consider
two possibilities Melec = 1,2, having the good performance
of CAS(NA)+X methods with L = 1,2 in mind. For brevity,
the method based on Eq. (70) is denoted as RAS(Mhole,Melec).
The RAS(NA/2,1) and RAS(NA/2,2) methods are further
abbreviated as RAS1 and RAS2, respectively, which aim for
reduced-cost alternatives to CAS(NA)+S and CAS(NA)+SD
methods, respectively.

Figure 5 shows the dipole moment computed with the
RAS1 and RAS2 methods for (LiH)2 and (LiH)3 models.
As seen in the figure, these methods closely reproduce the
dipole evolution of the CAS(2NA) method, including the
global oscillation at the center of the pulse. In a closer look
at the figure, the RAS1 dipole evolutions are found to be very
similar to those of the CAS(NA)+S method in Fig. 4. The
RAS2 result of (LiH)2 is identical to that of HF+SD in Fig. 3,
as should be since Mhole = Melec. In whole, the performance
of the RAS methods is satisfactory, especially when we notice
the significant reduction of the CI dimension as shown in
Table I for (LiH)3. We further confirmed (not shown) that
increasing Mhole by one (Mhole = NA/2 + 1 = m + 1) results
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FIG. 5. (Color online) The time evolution of the dipole moment
of (a) (LiH)2 and (b) (LiH)3 models, computed with RAS1 and RAS2
methods compared with the CAS(2NA) results.

in the dipole which is indistinguishable, in the scale of the
figure, from the corresponding CAS(NA) + X one. The high
performance of the RAS schemes is attributed to the two-stage
approximations controlled by Mhole and Melec. The reference
CI space accounts for the (system-dependent) important part
of the correlation (with system-dependent Mhole), while the
excited configurations are responsible for the remaining part
(with Melec typically up to doubles).

D. High-harmonic generation spectrum

Next we investigate HHG spectra. The HHG spectrum is
obtained by the Fourier transform of the expectation value
of the dipole acceleration evaluated using the Ehrenfest
expression [42]. Before entering the assessment of different
methods, we comment on the physical interpretation of the
HHG spectra of (LiH)m models. Figure 6 shows the HHG
spectra computed with the CAS(2NA) methods. Shown in
the figure with downward arrows are the cutoff positions,
calculated based on the static Hartree-Fock-Koopmans picture,

ωcutoff
i = −εi + 3.17Up, (71)

where Up ≡ E2
0/4ω2

0 is the ponderomotive energy and εi is
the orbital energy depicted in Fig. 2. As seen in Fig. 6(a), the
computed HHG spectrum of LiH is characterized by the two-
stage cutoff structure, with the positions of the first and
second cutoffs being well reproduced by Eq. (71) with weakly
(I) and deeply (II) bound orbital energies, respectively. The
comparison of dynamical-core and frozen-core treatments
[denoted as CAS(2NA) and CAS(2NA)-FC, respectively]
reveals that the second cutoff originates from the core response,
since it is absent in the frozen-core spectrum. This simple
picture based on the independent particle model gets less valid
in larger systems [Figs. 7(b) and 7(c)]. The higher complexity
of the spectra for larger systems is presumably attributed to the
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FIG. 6. (Color online) The HHG spectra of (a) LiH, (b) (LiH)2,
and (c) (LiH)3 models, exposed to a laser pulse of the form Eq. (67)
with a wavelength of 750 nm and an intensity of 4 × 1014 W/cm2,
computed with CAS(2NA) methods. The dynamical-core and frozen-
core (“-FC” appended) spectra are compared. The three-step model
prediction of cutoff positions are indicated by arrows. See text for
more details.

higher probability of multiple ionizations and the increasing
importance of the multichannel effect with growing molecular
size. Further physical discussions of HHG spectra will be
made elsewhere. Below we focus on how the various methods
reproduce the CAS(2NA) spectra.

Figure 7 compares the HHG spectra computed with HF
and HF+X methods with those of CAS(2NA). As can be
seen in Fig. 7(a), the HF method already gives the HHG
spectrum of LiH with a good agreement with that of CAS(4),
as opposed to the large deviation in the dipole moment
[Fig. 3(a)]. With the present laser setting, the high-harmonic
emissions are dominated by those during the second laser
cycle (T < t < 2T ). As seen in Fig. 3(a), for LiH, the
electron motion within this time region is restricted near
the origin, which allows the HF method for a qualitatively
correct description. In contrast, for (LiH)2 and (LiH)3, the
HF method clearly overestimates the spectral intensity below
the first cutoff. The underestimation of tunneling ionization
and first-order response, and the overestimation of harmonic
intensity for a high-intensity laser are common faults of
the TDHF method [23,34,37,38,43]. The argument for the
performance of the HF+X methods goes parallel to that for

the dipole moment made in Sec. V A. Increasing L steadily
improves the description, but the accuracy with a fixed L

gets poorer for larger systems. The HF+SDT method well
reproduces the CAS(2NA) spectra up to (LiH)3. The HF+SD
and CAS(2NA) spectra agree exactly and quite well for LiH
and (LiH)2, respectively, but deviates noticeably for (LiH)3.
The HF+S spectrum of (LiH)3 is no better than that of the HF
method.

The HHG spectra computed with CAS(NA), CAS(NA)+X,
and RAS methods are shown in Fig. 8. The performance of
the CAS(NA) method [Figs. 8(a) and 8(d)] is found to be
unsatisfactory, with little improvement over the HF spectra
[Figs. 7(d) and 7(g)]. However, as in Figs. 8(c) and 8(f), the
CAS(NA)+SD spectra show a quite good agreement with
the CAS(2NA) ones. This convinces us that the CAS(NA)
description is indeed the adequate starting point (qualitatively
correct for the tunneling ionization event), on top of which
the remaining correlation effect is included effectively with
low rank excitations. It is encouraging that the CAS(NA)+S
method also gives rather accurate HHG spectra as shown
in Figs. 8(b) and 8(e). Finally, as in the case of dipole
evolution, the RAS1 and RAS2 methods perform similarly
to the CAS(NA)+S and CAS(NA)+SD methods, respectively,
despite their significantly reduced CI dimensions. Again, we
confirmed (not shown) that the HHG spectrum of (LiH)3

computed with the RAS(4,2) method [with Mhole increased
by one from the RAS2 ≡ RAS(3,2) method] agrees almost
perfectly with that of the CAS(NA)+SD method. The great
advantage of the CAS(NA)+X and RAS methods is that the
accuracy with a fixed L (Melec) is not lost for larger systems
as badly as in the case of the HF+X method.

E. Analyses of computational cost

Finally, we analyze the computational cost of the TD-
ORMAS methods using the simulation for (LiH)3 as an
example. Table II shows CPU times for propagating 1000
time steps from the initial ground state with various methods
using the algorithm described in Sec. IV, recorded on a single
Xeon processor with a clock frequency of 3.33 GHz. It is
encouraging that the HF+SDT, CAS(6)+S, CAS(6)+SD,
RAS(3,1), and RAS(3,2) methods, which are reasonably
accurate for (LiH)3 as shown in Secs. V A–V D, all reduce
the total computational time compared to that of the CAS(12)
method, with relative speed-up factors 2.3, 4.5, 2.0, 4.7, and
2.6, respectively. Table II also shows the CPU times for the
computational steps (1)+(5), (2)–(4), and (7) described in
Sec. IV, separately. Their sum accounts for more than 98%
of the total CPU time. As seen in the table, the CPU times for
steps (1)+(5) are reduced for the case of approximate methods
depending on the number of determinants Ndet, while those
of steps (2)–(4) are roughly constant [except for CAS(6)+S
and RAS(3,1) methods, mentioned shortly]. This is because
the former step (RDMs and CI derivatives) scales linearly
with Ndet, while the latter (orbital derivatives except for the
active-active terms and operator integrals) is independent of
Ndet and depends only on the number of orbitals and basis
functions or grid points [23].

The CPU times for steps (2)–(4) of CAS(6)+S and
RAS(3,1) methods are shorter than those of the other methods.
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FIG. 7. (Color online) The HHG spectra of LiH (a)–(c), (LiH)2 (d)–(f), and (LiH)3 (g)–(i) models, computed with HF and HF+X methods
(with X = S, SD, SDT signifying L = 1, 2, 3, respectively) compared with CAS(2NA) spectra. Also see the caption of Fig. 6.

This is due to the higher sparsity of the 2RDM [originating,
in turn, from the maximum occupancy 1 of the last orbital
subgroup as shown in Figs. 1(c) and 1(d)], which reduces
the cost for the second term of Eq. (39b). Also, the spar-
sity of the coupling coefficients of these methods makes
steps (1)+(5) faster. Consequently, the total CPU times of
CAS(6)+S and RAS(3,1) methods are shorter than that of
the HF+SD method despite their larger Ndet, as shown in
Table I. Finally, step (7), which is unique to the method with
an noncomplete CI space, is found to occupy less than 1%
of the total CPU time, highlighting the high efficiency of the
algorithm given in Appendix A. As a whole, the flexibility
of the TD-ORMAS method and its optimal implementation
enable computational cost reduction without significant loss of
accuracy.

VI. SUMMARY

A new time-dependent multiconfiguration method is devel-
oped based on the ORMAS scheme to construct not-complete
CI spaces. The TD-ORMAS method attains further flexibility
on top of the previously developed TD-CASSCF method [23]
by the subdivision of active orbitals into an arbitrary number
of subgroups and the occupation restriction posed for each
subgroup of orbitals. The equations of motion for the CI
coefficients and orbital functions in the TD-ORMAS method,
derived based on the time-dependent variational principle, are
shown to be formally identical to those of the TD-CASSCF
method, except for the nonvanishing active intergroup terms
of orbital time derivatives. An efficient algorithm is devised
to solve for the intergroup contributions, circumventing the
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FIG. 8. (Color online) The HHG spectra of (LiH)2 (a)–(c) and (LiH)3 (d)–(f) models, computed with CAS(NA), CAS(NA)+X (with X = S,
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TABLE II. Computational times for the 1D-(LiH)3 model. The
CPU times (second) for the computational steps (1)+(5), (2)–(4), and
(7) of Sec. IV as well as the total CPU time are shown for various
methods. The total speed-up factor relative to the CAS(12) method
are also shown in parentheses. See text for more details.

Method (1)+(5) (2)–(4) (7) Total

HF reference CI wave functions

HF+SD 196.6 688.2 3.7 898.2 (3.8)
+SDT 780.7 678.5 12.7 1481.1 (2.3)
+SDTQ 1565.6 676.9 13.8 2265.9 (1.5)

CAS(6) reference CI wave functions

CAS(6)+S 202.9 551.2 2.2 766.0 (4.5)
+SD 1041.5 680.0 9.9 1741.1 (2.0)
+SDT 1991.3 690.5 14.9 2706.4 (1.3)

RASCI wave functions

RAS(3,1) 157.2 556.4 2.8 726.6 (4.7)
RAS(3,2) 603.4 684.6 10.3 1308.5 (2.6)
RAS(4,2) 905.5 683.8 11.2 1610.9 (2.1)
RAS(4,3) 1456.2 686.9 15.8 2169.1 (1.6)
CAS(12) 2736.5 689.8 0.0 3434.9

costly evaluation of the three-particle RDM. The core wave
function is explicitly separated from the active CI space
[Eq. (11)], transforming the original N -electron CI equation
[Eq. (32)] to that of NA active electrons [Eq. (48)]. The
implementation of the TD-ORMAS method is described in
depth, allowing existent MCTDHF codes to be readily adapted
to the TD-ORMAS method.

Out of a variety of methods that fall within the TD-ORMAS
framework, several representative classes of methods are
studied in detail; the HF+X, CAS(NA)+X, and RAS methods.
Note that the present RAS method is the straightforward
time-dependent version of the stationary RASSCF method,
differently from the “TD-RASSCF” method of Ref. [25]
(See Sec. II B). All the investigated approaches provide a
systematic series of approximations that converge to the
TD-CASSCF description, but at different rates with respect
to the level of approximation [the value(s) of L, or Mhole

and Melec]. Among these methods, the present numerical
analyses highlight the RAS method (encompassing the for-
mer two as special cases) as the most cost-effective one,
which allows the separate calibrations for the reference CI
space (by varying Mhole) and for the further excitations
from the reference (by varying Melec), thus enabling more
flexible convergence studies and applications with a reliable
accuracy. We plan to make further assessment of above-
mentioned and other problem-specific TD-ORMAS methods
based on 3D implementation. This article has worked out
the theoretical issues regarding the use of noncomplete
CI spaces and provides a solid ground for more realistic
applications.
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APPENDIX A: EVALUATION OF MATRIX ELEMENTS
OF EQS. (58)–(61)

To compute the matrix elements of Eqs. (58)–(61), we first
evaluate the quantities

P̄ uw
tv = 〈�A|Êt

uQ̂Êv
w|�A〉, (A1)

B̄u
t = 〈�A|Êt

uQ̂ĤA − ĤAQ̂Êt
u|�A〉, (A2)

from which A and b are easily obtained. First, the tensor P̄ is
obtained as a by-product in computing the 2RDM, since

P uw
tv = 〈�A|Et

uE
v
w − Et

wδv
u|�A〉

= 〈�A|Et
u(P̂ + Q̂)Ev

w − Et
wδv

u|�A〉
= 〈�A|Et

uP̂Ev
w|�A〉 + P̄ uw

tv − Dw
t δu

v , (A3)

where the identities Êtv
uw = Êt

uÊ
v
w − Êt

wδv
u and P̂ + Q̂ = 1̂ are

used. Next, the B̄ matrix is computed as

B̄u
t = 〈�A|Êt

u(1̂ − P̂)ĤA − ĤA(1̂ − P̂)Êt
u|�A〉

= 〈�A|[Êt
u,ĤA

]|�A〉 − 〈�A|Êt
uP̂ĤA − ĤAP̂Êt

u|�A〉
= Bu

t − (
D′u

t − D′t∗
u

)
, (A4)

where Eq. (45) is used, and D′u
t ≡ 〈�A|Êt

u|� ′
A〉, with

|� ′
A〉 =

P∑
I

|I〉C ′
I, C ′

I = 〈I|ĤA|�A〉. (A5)

The transformed coefficient C ′
I in Eq. (A5) is a part of the

CI derivative (48) obtained beforehand in step (5) of Sec. IV,
and the 1RDM like matrix D′ is easily computed with a cost
typically an order of magnitude smaller than that of 2RDM. As
a consequence, P̄ and B̄ (therefore, A and b) can be obtained
with a small additional effort on top of all the other operations.

Reference [25] took a different approach, involving the
explicit computation of a part of the third-order RDM,

ζ
uwy
tvx ≡ 〈�A|Êt

uQ̂Êvx
wy |�A〉, (A6)

to evaluate the two-electron contributions to Eq. (A2) as

〈�A|Êt
uQ̂ĤA|�A〉 ← 1

2

∑
vwxy

gvx
wyζ

uwy
tvx . (A7)

This constitutes a severe computational bottleneck, thus
hampering the inclusion of high rank excitations (L > 3) in the
case of large active spaces. The present algorithm [Eqs. (A4)
and (A5)] removes this bottleneck.
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APPENDIX B: ACTIVE INTERGROUP CONTRIBUTIONS
FOR RASSCF WAVE FUNCTION

Equation (57) can be transformed into a simpler form in case
of the RASSCF wave function [28]. As noted in Ref. [28] for
the RASCI space, while upward excitations Et

u|�A〉 (t > u)
can create states lying across P and Q spaces, all deexcited
configurations Eu

t |�A〉 (t > u) belong to the P space or vanish.
Using this fact in Eqs. (58)–(61) leads to∑

v>w

′
ARAS

tu,vwXvw = bRAS
tu , (B1)

where

ARAS
tu,vw ≡ 〈�A|Êu

t Q̂Êv
w|�A〉, (B2)

bRAS
tu ≡ 〈�A|Êu

t Q̂ĤA|�A〉. (B3)

This is identical to the equation used in Ref. [25]. Since the
matrix equation (B1) has the same dimension as the general
equation (57) (solution vector consists of two times Nrot real
values), we chose to always solve Eq. (57).

APPENDIX C: IMAGINARY-TIME PROPAGATION

Appropriate equations for the imaginary-time propagation
can be derived from the action integral (24) defined across
the pure imaginary-time axis t = −iτ with a real variable τ .
Noting the dual correspondence∣∣∣∣∂�

∂t

〉
= i

∣∣∣∣∂�

∂τ

〉
↔

〈
∂�

∂t

∣∣∣∣ = −i

〈
∂�

∂τ

∣∣∣∣, (C1)

the imaginary-time counterpart of Eq. (25) is obtained as

δS = δ〈�|Ĥ |�〉+
(〈

δ�

∣∣∣∣∂�

∂τ

〉
+

〈
∂�

∂τ

∣∣∣∣δ�
〉)

. (C2)

Based on this expression, formally the same equations are
derived for the CI derivative [Eq. (48)] and Q-space and
core-active contributions [Eqs. (37) and (43)] to the orbital
derivative, except for a replacement −i → −1 in the first
term of these equations. One should take into account the sign
difference of the third term of Eqs. (25) and (C2) for active
intergroup rotations in general. This results in the equation
identical to Eq. (57) with the coefficient matrix of Eqs. (58)
and (59) redefined as

A∓∓
tu,vw = ±Re〈�A|Ê∓

tuQ̂Ê∓
vw|�A〉, (C3)

A∓±
tu,vw = ±Im〈�A|Ê∓

tuQ̂Ê±
vw|�A〉, (C4)

constituting the real symmetric linear system of equations.
If both CI coefficients and orbitals are represented by real
numbers (as for the nondegenerate ground state without
external magnetic field), variations and time derivatives of
orbitals are parameterized only with the real antisymmetric
parts of Eqs. (52) and (53), leading to a matrix equation with
half the dimension of Eq. (57):∑
v>w

′〈�A|Ê−
tuQ̂Ê−

vw|�A〉XR
vw = −〈�A|Ê−

tuQ̂ĤA|�A〉. (C5)

APPENDIX D: TEST OF MORE COMPLEX ORMAS
WAVE FUNCTION

All the simulations adopting the noncomplete CI spaces
presented in Sec. V have no stability problem; the integration
of the EOMs is found to be as stable as that of the CAS method.
Here we give an example of the difficult case. We set G = 3,
n = (1,1,6), Nmin = (1,1,0), and Nmax = (2,2,2), generating
the following CI space for (LiH)2:

P =
1∑

l1=0

1∑
l2=0

[φ1]2−l1 [φ2]2−l2 [φ3–φ8]l1+l2 . (D1)

Figure 9 shows the evolution of the dipole computed using
this CI space. Unlike the simulations in Sec. V, we had to use a
step-size control to complete the simulation, with significantly
larger values (δ � 10−4) for the regularization parameter. The
figure reveals the δ dependence of the computed dipoles;
although the result with δ2 = 10−8 seems to be near the
convergence, the simulation with δ2 = 10−9 ends up with the
divergence at around t = 1.63T . This problem arises due to
the near singularity of the coefficient matrix A in Eq. (65),
with the smallest singular value of A dropping below 10−7 at
the divergence point. Generally, the occurrence of the stability
problem is the sign that the chosen CI space is not appropriate
for the problem at hand. In the present case, the CI space
should be revised as P → P′ = P + �P, with

�P = {[φ1]2[φ2]0 + [φ1]0[φ2]2}[φ3–φ8]2, (D2)

which is equivalent to the HF+SD CI space, making the
rotation between φ1 and φ2 redundant.

Another view of Fig. 9 is that the dipole obtained with
the present method (hopefully nearly convergent with respect
to δ) agrees with the CAS(8) result much better than that of
the HF+S method given in Fig. 3. Rather the performance is
similar to that of the HF+SD method. The CI space of Eq. (D1)
can be decomposed as

P = PHF+S + [φ1]1[φ2]1[φ3–φ8]2, (D3)

where PHF+S is given by Eq. (68a), with L = 1 and underlined
orbitals included. Then, the aforementioned performance com-
parison indicates the importance of product double excitations
represented by the second term of Eq. (D3). This encourages
the development of the time-dependent size-extensive theory
such as the coupled-cluster theory [44].
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FIG. 9. (Color online) The time evolution of the dipole moment
of (LiH)2 model, obtained using the CI space of Eq. (D1) with
different values of δ.
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