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For a simple illustrative model Hamiltonian for xenon in a low-frequency linearly polarized laser field we
obtain a remarkable agreement between the zero-order energy as well as the amplitude and phase of the zero-order
Floquet states and the exact eigenvalues and eigenfunctions of the Floquet operator. Here we use as a zero-order
Hamiltonian the adiabatic Hamiltonian where time is used as an instantaneous parameter. Moreover, for a variety
of low laser frequencies, ω, the deviation of the zero-order solutions from the exact quasienergy (QE) Floquet
solutions approaches zero at the time the oscillating laser field is maximal. This remarkable result gives a further
justification to the validity of the first step in the simple man model. It should be stressed that the numerical
calculations of the exact QE Floquet solutions become extremely difficult when ω approaches zero and many
Floquet channels are nested together and are coupled by the laser field. This is the main motivation for the
development of perturbation theory for QE Floquet solutions when the laser frequency is small, to avoid the
need to represent the Floquet operator by a matrix when the Fourier functions are used as a basis set. A way to
calculate the radius of convergence of the perturbational expansion of the Floquet solutions in ω is given.
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I. MOTIVATION

A. The adiabatic approximation as it appears
in the three-step model

In 1993 Corkum [1] and Kulander, Schafer, and Krause [2]
showed that the three-step model (TSM) provides a classical
interpretation of the high-harmonic generation from atoms in
strong laser fields without the need to solve numerically the
time-dependent Schrödinger equation (TDSE). This approach
is known also as the simple man’s theory. In 1994 Lewenstein
et al. [3] generalized the TSM to describe the interaction of
arbitrary one-electron potentials with laser fields of arbitrary
ellipticity and spectrum, that is, provided that the laser
frequency is sufficiently low to ensure that the Keldysh
parameter is small enough [3]. In 2006 Santra and Gordon
[4] and Gordon et al. [5] generalized the TSM to atomic and
molecular many-electron systems.

According to the TSM, in the first step an electron is excited
to the continuum with no kinetic energy. This happens via
tunneling through a potential barrier obtained when time is
considered as an instantaneous parameter. In the second step,
the subsequent motion is governed classically by an oscillating
electric field. In the third step, the electron returns to recombine
with the parent nucleus. During this recombination process
high-order harmonics are emitted.

The first step in the TSM is an essential assumption in the
derivation of this powerful and useful semiclassical approach.
For this reason we focus here on the conditions under which
the electron tunnels into the continuum through the adiabatic
potential barrier. When these conditions are not met, the TSM
is not applicable. We wish to find out how well the zero-order
solutions describe the amplitudes and the phases of the exact
Floquet (quasienergy) solutions. Particularly, we look for a
formal justification of the successful applicability of the first
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step in the TSM, where the electron is assumed to tunnel
through the adiabatic potential barrier near the peak of the
laser field.

B. On the validity of the adiabatic approximation and on the
possibility to extend it to the high-frequency regime

Within the adiabatic approximation, time is treated as an
instantaneous parameter. The adiabatic hypothesis is based on
a comparison between the (estimated) tunneling time with the
period of the laser field. For sufficiently low laser frequencies,
the tunneling time is smaller than the periodic time of the
oscillating electric field, T = 2π/ω. The question we address
in this article is, how can one extend this approach to higher
laser frequencies? For sufficiently long laser pulses, the pho-
toinduced dynamics can be described by the Floquet solutions
which are eigenstates of the Floquet operator Ĥ ad(t) − i�∂t .
It is natural to apply perturbation theory where Ĥ ad(t) is the
zero-order Hamiltonian and −i�∂t is taken as a perturbation.
By making a simple transformation to dimensionless time units
τ = ωt , ω is obtained as the perturbational strength parameter.

In order to keep the adiabatic functions and energies as
the leading dominant terms in the perturbation expansion
of the Floquet eigenstates and eigenvalues, ω has to be a
small parameter. For large values of ω, one should calculate
the high-order terms in perturbation theory. Calculating the
metastable photoionization states (so-called resonances) using
outgoing boundary conditions (as used by Gamow to calculate
the tunneling decay rates for radioactive reactions), enables
one to use the standard time-independent perturbation theory,
as we will explain later.

The question is, how far can we go with this approach?
How large can ω be so that one can still calculate the Floquet
resonances by using perturbation theory? A perturbational ap-
proach, as we suggest here, is applicable when the perturbation
series expansion converges. The method we use for calculating
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the radius of convergence avoids the need to calculate the
high-order terms in the perturbation series expansion of the
eigenstates and eigenvalues of the Floquet operator. Even when
the radius of convergence is zero, it might be possible to have
an asymptotic expansion where the deviation of the partial
sum of the terms from the exact solution is small, but at some
point the error starts to increase. For example, the energy
levels of atoms in a dc field (known as the Stark effect) and
the corresponding tunneling decay rates (inverse lifetimes)
can be estimated from the perturbational corrections up to the
second order (where the field-free Hamiltonian is the zero-
order Hamiltonian) for any value of the static field strength
parameter. The radius of convergence in this case is zero.

As we will show here, the radius of convergence of the
perturbation series expansion of the quasienergies is finite and
nonzero provided the expansion point is not a singularity. We
will show that, as the laser intensity decreases, the pertur-
bation theory converges to the exact Floquet eigenstates and
eigenvalues (which provide the photoionization lifetimes) for
increasing laser frequencies, which serve as the perturbational
strength parameter.

Our approach provides guidelines for future studies of
the dynamics of high-frequency strong lasers, based on
perturbation theory where the adiabatic Hamiltonian, as it is
used in the first step of the TSM, serves as the zero-order
Hamiltonian of the perturbation expansion.

II. PERTURBATION SERIES EXPANSION OF THE
QUASIENERGY (QE) SOLUTIONS

Here we use the perturbation approach as first presented by
Pont and his co-workers [6]. The zero-order Hamiltonian is
defined as

Ĥ (0)(x,τ ) ≡ Ĥ(τ ) = Ĥff + ε0d̂ sin(τ ) = Ĥ (0)(x,τ + 2π ).

(1)

The perturbation operator is

Ĥ (1)(x,τ ) = Ĥ (1)(x,τ + 2π ) ≡ −i�
∂

∂τ
, (2)

and the perturbation strength parameter is ω. The exact Floquet
operator is given by

ĤFloquet = Ĥ (0)(x,τ ) + ωĤ (1)(x,τ ). (3)

We should reemphasize that from now on we consider τ and
ω to be two independent variables or parameters despite that
in the original Hamiltonian τ = tω. Consequently, when the
perturbation parameter, ω, is set to zero then the zero-order
Hamiltonian becomes the exact one.

The perturbation series expansion of the QEs is given by

EQE
α = EQE(0)

α + ωEQE(1)
α + ω2EQE(2)

α + · · · . (4)

As it was proven in Ref. [6] the odd-order correction terms
vanish. A simple explanation based on symmetry arguments
is given below. Complex absorbing boundary conditions are
imposed on the solutions of the time-dependent Schrödinger
equation and on the Floquet solutions (within and without
the framework of perturbation theory) such that the field-free
bound states turn into metastable states (resonances). The

photoionization decay rates are associated with the imaginary
part of the complex QE eigenvalues.

III. ZERO-ORDER QE SOLUTIONS

The zero-order Hamiltonian is the adiabatic Hamiltonian
defined in Eq. (1). That is, Ĥ(τ ) = Ĥ (0)(τ ) = Ĥ (0)(τ + 2π ).
The τ -periodic eigenvalues and the eigenfunctions of the zero-
order Hamiltonian are given, respectively, by

E(0)
α (τ ) = E(0)

α (τ + 2π ), (5)

φ(0)
α (x,τ ) = φ(0)

α (x,τ + 2π ). (6)

We analytically continue x to the complex plane x =
x ′ exp(iθ ) and therefore the zero-order eigenvalues are com-
plex functions of τ . We might use only the resonance solutions
in the construction of the zero-order Floquet solutions. We
order the complex zero-order eigenvalues by the overlapping
integral of the corresponding eigenfunctions with the field-free
bound states. For example, α = 1 denotes the resonance
solution which is associated with the ground state of the
field-free Hamiltonian. As the field is turned on, the field-free
ground state becomes a metastable (resonance) state. See
Ref. [7] for a summary of the time-independent perturbation
theory and Ref. [8] for its extension to the complex scaled
Hamiltonians and in Ref. [9] for the use of time-independent
propagation for time-dependent Hamiltonians.

We use here the c-product such that(
φ

(0)
α′ (τ )

∣∣φ(0)
α (τ )

) ≡ 〈[
φ

(0)
α′ (τ )

]∗∣∣φ(0)
α (τ )

〉 = δα′,α. (7)

Here we come to a delicate point in the perturbation derivation
of the Floquet solutions. The zero-order QEs are not E(0)

α (τ ),
but as usual in time-independent perturbation theory we
should calculate expectation values by integrating over all
independent variables of the full Hamiltonian (x and τ in our
case). Therefore,

EQE(0)
α = 1

2π

∫ 2π

0
dτ

∫ +∞

−∞
dx

(
φ(0)

α (x,τ )
∣∣Ĥ (0)

∣∣φ(0)
α (x,τ )

)

= 1

2π

∫ 2π

0
dτE(0)

α (τ ). (8)

In Fig. 1 we show for a one-dimensional (1D) model Hamilto-
nian that the exact QE eigenvalues approach the value obtained
by the zero-order calculations of EQE(0)

α=1 as the laser frequency
is reduced. Moreover, numerical fitting shows that the QEs
are linearly proportional to ω4 and therefore the leading terms
are the zero-order and the fourth-order perturbational terms.
To show that the exact QE periodic eigenfunctions of the
Floquet operator are well described by the zero-order QE
solutions for sufficiently low laser frequencies, we calculated
the overlap between the zero-order QE functions and the
exact QE Floquet solutions. Our calculations show that the
overlapping integral between the zero-order QE functions with
the exact QE Floquet solutions of the 1D model Hamiltonian
is very close to unity for a variety of laser frequencies. Larger
overlap is obtained as the laser frequency is reduced. In Fig. 2
we present the deviation of the amplitudes of the zero-order QE
Floquet functions from the exact QE functions as a function
of τ (the dimensionless time variable) for different values of
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FIG. 1. (Color online) The exact quasienergies (QEs) approach
the zero-order QE [defined in Eq. (8)] as the laser frequency is
reduced. The calculations were carried for a 1D model Hamiltonian
which mimics crudely a xenon atom in a linearly polarized laser
field with laser field amplitude ε0 = 0.015 a.u. which is 7.89 × 1012

W/cm2. Note that the first-order derivative of the exact QE with
respect to ω in our numerical fitting is equal to −2.4 × 10−6 in
harmony with our proof that EQE(1)

α = 0 [see Eq. (13)].
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FIG. 2. (Color online) The deviations from unity of the absolute
value of the overlap integrals between the zero-order wave functions
and the Floquet (QE) solutions which are associated with the field-
free ground state, (1 − S), where S = |〈�QE(0)

(τ )|�QE(τ )〉|2. The
calculations were carried for ε0 = 0.015 a.u., which is 7.89 × 1012

W/cm2. As the frequency is reduced, the deviation of the amplitude
of the zero-order QE solutions from the exact Floquet solutions
is reduced. The minimal deviation from the exact QE solutions is
obtained when the amplitude of the oscillating laser field reaches
its maximal value. This result strongly supports the first step in the
three-step model [1–3].
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FIG. 3. (Color online) The phases of the overlap integrals be-
tween the zero-order wave functions, φ(0)

α (x,τ ), and the Floquet (QE)
solutions which are associated with the field-free ground state. We
show here that the deviations of phase of the zero-order solutions
from the exact values are reduced by several orders of magnitude
when we multiply the adiabatic solutions by a time-dependent phase
factor (a zoom in is shown in Fig. 4). It is a point of interest that the
minimal (almost zero) phase deviation from the exact QE solutions
is obtained when the amplitude of the oscillating laser field is zero or
maximal.

the laser frequency ω. As one can see the error is less than
10−3 (0.1%) for the large frequency and it is reduced as ω is
reduced. In Fig. 3 we represent the deviation of the phases
of the adiabatic solutions from the exact QE eigenfunction
of the Floquet operator. As before, the deviation between the
exact and the adiabatic solution is small and oscillates due to
the oscillations of the laser field. Our results presented in
Figs. 2–3 support the first step in the TSM [1–3]. It is
remarkable indeed that for quite large values of the laser
frequencies, the zero-order wave functions describe so well
the exact Floquet solutions at the time the laser field gets its
maximal amplitude.

In order to minimize the deviation of the phase of the QE
solutions obtained by the zero-order perturbation theory from
the exact values, we multiply the eigenfunctions of the zero-
order (adiabatic) Hamiltonian φ(0)

α (x,τ ) by the factor eifω(τ ),
where fω(τ ) is real and it is given by

fω(τ ) = 1

2πω

∫ τ

0
dτ ′Re

[
E(0)

α (τ ′) − EQE(0)
α

]
. (9)

The solutions that include the phase factor above are defined
as

φ̃(0)
α (x,τ ) = e+ifω(τ )φ(0)

α (x,τ ). (10)

In Fig. 3 we show how by introducing the phase factor fω(τ )
the deviation of the phases of the modified adiabatic solutions
from the exact values is reduced by several orders of magnitude
and becomes almost ω independent (on this scale). In Fig. 4 we
zoom on the results obtained when the adiabatic solutions are
multiplied by the phase factor exp[ifω(τ )]. As one can see, on
large scale the deviation of the phase of the modified functions
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FIG. 4. (Color online) The phases of the overlap integrals be-
tween the modified zero-order wave functions, φ̃(0)

α (x,τ ) as defined in
Eq. (10), and the Floquet (QE) solutions which are associated with the
field-free ground state. The phase of the overlap between the modified
zero-order QE solutions and the exact Floquet solutions is reduced by
several orders of magnitude in comparison with the results presented
in Fig. 3.

from the exact value increases as ω is increased, although on
the scale of Fig. 3 it seems to be ω independent. In a way, the
fact that the contribution of high-order terms to the power se-
ries expansion of the QE eigenvalues is reduced as ω is reduced
reminds us of the increasing of the applicability of the semi-
classical theory as � is reduced. It is important to notice that the
phase factor as we defined it here is different from the expo-
nential complex phase factor exp[i

∫ τ

0 E(0)
α (τ ′)dτ ′/(�ω)] that

was defined in the perturbation theory presented in Ref. [6].
When the zero-order wave functions describe so well the

exact Floquet (QE) solutions, one might expect a nonzero
radius of convergence. Note that this situation is very different
from the standard perturbation theory where the zero-order
Hamiltonian is the field-free Hamiltonian and the interaction
with the field is taken as a perturbation. This is the well-known
Stark approach where the intensity of the laser is taken as the
perturbation strength parameter (and not the frequency as we
do) and the radius of convergence is zero.

The zero-order solutions were calculated for a 1D effective
model potential V (x), which crudely mimics a xenon atom
and is given by

V (x) = −V0 exp(−ax2), (11)

where V0 = 0.63 and a = 0.1424. This potential has two
bound states, with energies ε1 = −0.4451 a.u. and ε2 =
−0.1400 a.u. This model has been used before for calculating
the high-order harmonic generation spectra of xenon [10].
The atom interacts with the linearly polarized laser field
ε0x sin(ωt). Using the adiabatic approximation, time is used
as an instantaneous parameter defined by τ = ωt . In Fig. 5
we show how the potential varies with τ . For τ �= 0 the
bound states of the field-free Hamiltonian turn into resonance
states. We used the complex scaling transformation [9], i.e.,
z = x exp(iθ ), to impose outgoing boundary conditions.
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FIG. 5. (Color online) The potential for a model xenon
atom represented by the 1D Gaussian potential V (x) =
−0.63 exp

(−0.1424x2
)

which interacts with a staticlike potential
induced by the linearly polarized field ε0x sin(τ ). In this figure
ε0 = 0.035. The potential is displayed for different values of τ .

IV. ODD-ORDER QEs

The first-order correction term to the perturbation series
expansion of the QE (Floquet) energy is defined, as usual, as
the expectation value of the perturbation using the zero-order
functions. That is,

EQE(1)
α = 〈〈

φ(0)
α

∣∣Ĥ (1)
∣∣φ(0)

α

〉〉
xτ

= 1

2π

∫ 2π

0
dτ

∫ +∞

−∞
dxφ(0)

α (x,τ )Ĥ (1)φ(0)
α (x,τ )

= − 1

2π

∫ 2π

0
dτ

1

2

(
i�

∂

∂τ

)∫ +∞

−∞
dxφ(0)

α (x,τ )φ(0)
α (x,τ )

= −i�
1

4π

∫ 2π

0
dτ

∂

∂τ
1 = 0. (12)

Our proof that[
∂EQE(exact)

α

∂ω

]
ω=0

= EQE(1)
α = 0 (13)

has been confirmed in our numerical calculations presented in
Fig. 1.

Based on same symmetry-type arguments we reach the con-
clusion that all odd-order correction terms to the perturbational
expansion of the QEs are equal to zero since

EQE(2n+1)
α = 〈〈

φ(2n)
α

∣∣Ĥ (1)
∣∣φ(2n)

α

〉〉
xτ

= 1

2π

∫ 2π

0
dτ

∫ +∞

−∞
dxφ(2n)

α (x,τ )Ĥ (1)φ(2n)
α (x,τ )

= − 1

2π

∫ 2π

0
dτ

1

2

(
i�

∂

∂τ

)

×
∫ +∞

−∞
dxφ(2n)

α (x,τ )φ(2n)
α (x,τ )

= −i�
1

4π

∫ 2π

0
dτ

∂

∂τ
1 = 0. (14)
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These results are in complete agreement with the proof
given by Pont and his co-workers [6] that the odd-terms in the
Taylor series expansion of the exact EQs in tω vanish.

V. RADIUS OF CONVERGENCE

For the association of radius of convergence of perturbation
series expansion in a “small” parameter, λ, see Ref. [11]. When
the zero-order Hamiltonian and the perturbation commute,
there is no branch point in the spectrum of Ĥ (λ) = Ĥ (0) +
λĤ (1) and the eigenvalues and eigenfunctions of Ĥ (λ) are
analytical functions of λ. Consequently, perturbation theory
converges for any value of λ. In our case, λ is the perturbation
strength parameter ω analytically continued to the complex
regime. ω, the physical laser frequency, gets only positive real
values. However, when Ĥ (0) and Ĥ (1) do not commute,

[Ĥ (0),Ĥ (1)] �= 0, (15)

the perturbation expansion EQE
α = EQE(0)

α + ωEQE(1)
α +

ω2EQE(2)
α + · · · converges if and only if

ω < |λbp|, (16)

where λbp is the branch point closest to the origin, provided
there is no singularity at ω = 0. That is,

λbp = |λbp|eiγbp , (17)

for which the two eigenfunctions which have a dominant
overlapping integral with the zero-order solution of interest
(α = 1 for example) coalesce. In such a case, the exact QE
solution is an analytical function of the complex λ for any
point which is inside a circle with radius |λbp|. See, for
example, Refs. [8,12] and references therein and Ref. [9]. Let
us add a technical explanation of how the branch point can be
calculated. When the branch point results from the coalescence
of two QE solutions, the difference between the values of two
almost degenerate QE eigenvalues of the Floquet operator [as
defined in Eq. (3)] is given by

�Eexact
α,α′ (ω) = a

√
(ω − λbp)(ω − λ∗

bp) (18)

for laser frequencies sufficiently close to |λbp|. a is a complex
prefactor. The complex parameters a and λbp can be computed
from the high-order terms in the perturbational series expan-
sion in ω (for a given value of the maximum field amplitude).
However, this procedure is quite complicated (but doable) as
described in Refs. [8,12] and in Ref. [9] on pages 331–333
(see also pp. 235–237) and in the solution to Ex. 9.4. Here
we present a new approach for the calculation of the branch
point which determines the radius of convergence, based on
the zero-order solutions which are easier to calculate than the
exact QE solutions. In particular, it is hard to calculate the
QE solutions for low laser frequencies. In the low-frequency
regime many Floquet channels are closely nested together and
even a weak laser field couples them one to another such
that the dimensions of the Floquet matrix required to get
converged results become extremely large. Moreover, as it
was shown in Appendix B in Ref. [6], the eigenvectors of
the Floquet matrix as obtained when the periodic solutions are
expanded in a Fourier basis function do not have a well-defined
limit as ω → 0. In other words, the radius of convergence of

perturbation theory is zero when Fourier functions are used as
a basis set. In this case the Floquet Hamiltonian is given by

HF = H(0)
F + �ωH(1)

F , (19)

where the Fourier matrix elements of the zero-order Hamilto-
nian and the perturbation are given by[

H(0)
F

]
n′,n = Ĥff δn′,n + 1

2ε0d̂δn′,n±1,[
H(1)

F

]
n′,n = nδn′,n, (20)

where n,n′ = 0, ± 1, ± 2, . . .

Note that the resonance solutions are obtained by imposing
outgoing boundary conditions or by using one of the complex
scaling transformations for which square integrable resonance
solutions and rotating continuum are obtained. As mentioned
above in Ref. [6] it was shown that as ω → 0 the eigenvectors
of HF (Eq. (B1) in Ref. [6]) do not have a well-defined
limit. For this reason we developed a new approach for
calculating the branch point (so-called exceptional point)
which determines the radius of convergence of the perturbation
theory presented in this article, without expanding the time
periodic solutions in a Fourier basis. The fact that indeed in
our numerical calculations the phase of the Floquet solutions
is obtained very accurately by the zero-order solutions for
sufficiently small values of ω is an indication that there is
no branch point at ω = 0 when the phase corrections to the
zero-order solutions are taken as described above (see Figs. 3
and 4).

A. Calculation of the radius of convergence by diagonalizing the
nonadiabatic time-dependent potential matrix

The effective Hamiltonian, where the nonadiabatic cou-
plings are taken into consideration, is given by a 2 × 2 matrix
for the two-level model Hamiltonian:

Heff(ω,ε0,τ ) =
(

H11(ε0,τ ) ωH12(ε0,τ )

ωH21(ε0,τ ) H22(ε0,τ )

)
, (21)

where

H11(ε0,τ ) = Ead
1 (ε0,τ ),

H12(ε0,τ ) = i
ε0 cos(τ )

Ead
2 (ε0,τ ) − Ead

1 (ε0,τ )

〈(
�ad

1

)∗∣∣z∣∣�ad
2

〉
,

H21(ε0,τ ) = −H12,

H22(ε0,τ ) = Ead
2 (ε0,τ ). (22)

As previously discussed, the radius of convergence of the
perturbation series expansion in ω for a given set of parameters
(ε0,τ ) is obtained by replacing ω in Eq. (21) by a complex λ.
We found λ = λBP for which the spectrum of Heff(ω,ε0,τ ) is
degenerate. This value is obtained when the discriminant of
the second-order polynomial of the eigenvalue solutions of
Heff(ω,ε0,τ ) vanishes. That is, a branch point in the spectrum
of the full Hamiltonian, Heff(ω,ε0,τ ), is obtained for

λBP(ε0,τ ) = −
[
Ead

2 (ε0,τ ) − Ead
1 (ε0,τ )

]2

2ε0 cos(τ )
〈(
�ad

1 (ε0,τ )
)∗∣∣z∣∣�ad

2 (ε0,τ )
〉 . (23)
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FIG. 6. (Color online) The absolute value of the complex “fre-
quency” at which a branch point is obtained in the spectrum of the
time-dependent Hamiltonian matrix, |λBP(ε0,τ )| as defined in Eq.
(23), is plotted as function of sin τ for different values of the field
amplitude ε0. “L” and “G”, respectively, denote the local and the
global minima of |λBP(ε0,τ )|. The global minimum “G” provides the
radius of convergence for the laser frequency which is used as the
perturbational strength parameter.

By calculating the complex λBP(ε0,τ ) for a given value of
ε0 as a function of τ we obtained the value of the radius of
convergence for the laser frequency ωr.c.(ε0):

ωr.c.(ε0) ≡ Min |λBP(ε0,τ )|τ=τ0
. (24)

Note that in the equation above Min |λBP(ε0,τ )| is the global
minimum in the variation of |λBP(ε0,τ )| as a function of τ (see
Fig. 6).

For a given value of the field amplitude ε0, the radius of
convergence in perturbational expansion in ω, which holds for
any 0 � τ � 2π , is given by

|ω| < ωr.c.(ε0). (25)

In Fig. 6 we show that the upper limit of the laser frequency
for which perturbation theory can possibly converge is reduced
as the field amplitude is increased.

VI. CONCLUDING REMARKS

In this work we have studied the application of perturbation
theory for calculating the QE Floquet solutions, where in the
zero-order Hamiltonian time is treated as an instantaneous
parameter rather than a dynamical variable. Our results
for a time periodic model Hamiltonian (which mimics the
interaction of a xenon atom with a linearly polarized laser
field) show that the overlapping integral (amplitude and phase)
of the zero-order solutions with the exact Floquet solutions is
remarkable for a quite large range of the laser frequencies. We
have shown that the deviation of the zero-order solutions from
the exact Floquet solutions is smallest when the oscillating
laser field gets its maximal value. This result strongly supports
the first step in the TSM, as described in Refs. [1–3].

The radius of convergence is associated with a non-
Hermitian degeneracy (a branch point) in the spectrum of
the dressed-atom Hamiltonian. These branch points are very
different in their nature from the physical branch points which
are associated with exceptional points in the spectrum of
the Floquet operator of time periodic Hamiltonian systems,
since they are obtained as the laser frequency is analytically
continued into the complex plane. Here we show how for a
given laser intensity the range of laser frequencies for which
the perturbation theory converges can be calculated. As the
laser field intensity is increased, the laser frequency for which
the perturbation theory converges is reduced. These results
agree with the expectations based on physical intuition. Yet,
perturbation theory provides a rigorous method for improving
the results obtained on the basis of the adiabatic hypothesis.
In particular, it may be useful for laser frequencies which are
high enough to question the validity of the adiabatic hypothesis
and for going beyond the one-electron model simulations and
solving the full-body problem, where the electronic correlation
effects are taken into consideration.
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